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Theory of domain patterns in systems with long-range interactions of Coulomb type
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We develop a theory of the domain patterns in systems with competing short-range attractive interactions
and long-range repulsive Coulomb interactions. We take an energetic approach, in which patterns are consid-
ered as critical points of a mean-field free energy functional. Close to the microphase separation transition, this
functional takes on a universal form, allowing us to treat a number of diverse physical situations within a
unified framework. We use asymptotic analysis to study domain patterns with sharp interfaces. We derive an
interfacial representation of the pattern’s free energy which remains valid in the fluctuating system, with a
suitable renormalization of the Coulomb interaction’s coupling constant. We also derive integro-differential
equations describing stationary domain patterns of arbitrary shapes and their thermodynamic stability, coming
from the first and second variations of the interfacial free energy. We show that the length scale of a stable
domain pattern must obey a certain scaling law with the strength of the Coulomb interaction. We analyzed the
existence and stability of localize@pots, stripes, annyland periodic(lamellar, hexagonalpatterns in two
dimensions. We show that these patterns are metastable in certain ranges of the parameters and that they can
undergo morphological instabilities leading to the formation of more complex patterns. We discuss nucleation
of the domain patterns by thermal fluctuations and pattern formation scenarios for various thermal quenches.
We argue that self-induced disorder is an intrinsic property of the domain patterns in the systems under
consideration.
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I. INTRODUCTION makes this class of systems extremely diverse. These sys-
tems include a variety of polymer systems, such as block
Pattern formation is a beautiful example of cooperativecopolymers[10,12,17—-19 weakly charged polyelectrolyte
behavior in complex systems. It is most pronounced in opesolutions[20—22, cross-linked polymer mixturg3], am-
dissipative systems maintained away from thermal equilibphiphile solutiong24], phase-separating ceramic compounds
rium by external fluxes of energy or mattgt—6]. At the  [25], systems undergoing reaction-controlled spinodal de-
same time, there exist a great number of systems interactireomposition [26]; photostimulated phase transitions
with the outside world only through contact with a heat bath[2,14,27, etc. Some aspects of systems with competing in-
which are also capable of pattern formation and selfteractions are shared by systems far from thermal equilib-
organization. Typically, these systems are characterized bgium, such as heated electron-hole and gas plasmas, semi-
the presence of coexisting phases, or a phase transition thatdgenductor device$2,5], crystal surfaces undergoing laser-
the driving force for the cooperative behavior. Examples ofinduced melting[28], autocatalytic chemical reactions, and
such classical systems include ferroelectric and ferromagsurface catalytic reactiof,29]. Furthermore, a number of
netic films, ferrofluids, Langmuir monolayers, various poly- quantum systems, such as degenerate magnetic semiconduc-
mer systems, etdsee, for example[7—-12)). Among such tors and high-temperature superconductors, which exhibit
quantum systems are type-1 superconductors in the intermelectronic phase separation, can be considered as systems
diate state, high-temperature superconductors, degeneratith competing Coulomb interactio45,30. In addition,
ferromagnetic semiconductors, eteee, for example[13—  the general problem of Wigner crystallizatign3,31, as
16)). well as the thermodynamic and glassy properties of spin sys-
In systems not far from thermal equilibrium, patterns maytems frustrated by Coulomb interacti¢80,32—38, can be
form as a result of the competition of interactions operatingconsidered from this point of view.
on different length scalg¥]. Typically, a short-range attrac- Here we develop a theory of patterns with sharp interfaces
tive interaction in the system would favor macroscopic phas€édomaing in systems with short-range attractive interactions
separation. The latter, however, is counteracted by a longand long-range repulsive Coulomb interactions. Our starting
range repulsive interaction. This is often accompanied by @oint is a mean-field free energy functional, which has a
microphase separation transition, which leads to spontaneougnlocal term associated with the Coulomb interaction. Spe-
formation of patterns in ideally homogeneous systems upogifically, we are interested in the case of a weak Coulomb
variation of the control parameters. interaction, when domain patterns with sharp interfaces are
An important class of systems with competing interac-realized. We view patterns as critical points of the free en-
tions are systems in which the long-range interaction is Couergy functional. Our main tool in the analysis is singular
lombic. The fundamental nature of the Coulomb interactionperturbation theory based on the strong separation of length
scales in the systems under consideration. We use the results
of our analysis of the domain patterns to study the nucleation
*Electronic address: muratov@njit.edu and formation of complex patterns. We also discuss the effect

1063-651X/2002/6@)/06610825)/$20.00 66 066108-1 ©2002 The American Physical Society



C. B. MURATOV PHYSICAL REVIEW E66, 066108 (2002

of thermal fluctuations and the thermodynamic properties oform is bounded at larg& vectors. Let us emphasize that

these systems. G(x—x") represents arepulsive long-range interaction.
Our paper is organized as follows. In Sec. Il, we introduceTherefore, the Coulomb long-range interaction represented

the general free energy functional and its reduction near By G(x—x’) is competingwith the short-range interactions

“local” critical point, derive the interfacial representation of represented by the first two terms in Ed). It is also clear

the free energy, and develop a renormalization scheme tihat since the Fourier transform Gf(x—x') is positive for

account for the effect of thermal fluctuations. In Sec. Il weall wave vectors, the functional in E¢l) is bounded from

derive the asymptotic equations for the stationary patternbelow on any finite domain.

and their stability. In Sec. IV we perform a detailed analysis If we formally put =0 in Eqg. (1), we will recover the

of localized and periodic patterns in two dimensions. In Secstandard free energy functional that is used in the studies of

V we discuss the nucleation and growth of complex patternphase separatioisee, for exampld41]). On the other hand,

as a result of instabilities of simple patterns, and in Sec. Vino matter how small the value of is, because of the singu-

we draw conclusions. This paper is partially based the autarity of the Fourier transform o (x—x’) atk=0 the effect

thor’s Ph.D. thesis. of the long-range interaction will remain significant on suf-
ficiently large length scales. Indeed, if the system has a finite

Il. SYSTEMS WITH COMPETING INTERACTIONS sizeL, from dimensional considerations the contribution of

OF COULOMB TYPE the Coulomb interaction to the free energy will scale as

) alL972, If the value ofa is decreased while remains fixed,
A. Free energy functional the contribution of the Coulomb interaction goes away. This
We start by considering the following general mean-fieldmeans that wher<1 the system behaves locally as if it did

free energy functional: not have the long-range interaction. On the other hand, for an

) infinite system this interaction is always relevant since its
\Y a ih d+2- | d
sz ddx<| ;ﬁ| +f(¢)+§f A% ol ()] contribution scales als LY. Therefore, for
a<l (3
XG(x—x")g[dp(X")]]. (1) the long-range interaction will be singular perturbation
globally affecting the behavior of the system. It is in this case
that domain patterns form in systems with a free energy of
. U He e ) the form of Eq.(1). Since we are interested in the domain
po;entlaI,G(lx_ X') is a positive definite I(_)ng range kernel, patterns here, Eq.3) will be assumed from now on. Note
a is a (positive coupling constantg(¢) is a monotonic . A o .
) ) — ) that this condition is satisfied in many systems with long-
function that is equal to zero at some=¢, andd is the  gnge interactions of Coulomb typ&5,17,18,21,23,24,30
dimensionality of space. Here and henceforth we use dimen- 11 singularity ofG(x—x") on the large length scales

sionless units. , _ implies that the Fourier component g{¢) at k=0 must
The functional in Eq(1) may be applicable to a variety of \anish in order for the last integral in EG.) to remain finite.

systems. Generallyp may stand for magnetization, density 1pis corresponds to overall electroneutrality for systems in
of the charged polymer in a polyelectrolyte solution, volume, hich the order parameter is associated with the electric

fraction of a block copolymer in a diblock copolymer melt, charge. The only possibleomogeneouphase of the system
density of electrons or holes in a charge density wave, struc- —

tural state of a catalytic surface, concentration of a chemicat” therefore ¢ = ¢. Thus, _due o the long-range Interaction
species, etc.[15,17,18,21,27,29,30,38 The kernel G(x global phase separation in the system becomes impossible.

—x") we are interested in is th€oulombpotential, i.e., it On the other hand, as we will see below, the system de-
satisfies P T scribed by the free energy functional from Eg) may be in
a patternedstate. By patterned statémore precisely, by
—V2G(x—x") = 5D (x—x’ 2 sja’uonary patterns we mean the mhomo'gleneous' distribu-
G( )= 3% ), @ tions of the order parameter that are critical points of the
functional F.

Here ¢(x) is a scalar order parameté(,¢) is a double-well

where 89 (x) is thed-dimensional Dirac delta function. The

physical nature of the Coulomb interaction may also signifi- ) ) N

cantly vary from system to system: it may arise as a result of B. The microphase separation transition

the actual electrostatic repulsion due to charges associated et us assume that in the absence of the long-range inter-

with the order parameter, it may have an entropic origin, agction the system would possess a critical point at tempera-

in block copolymers, or it can come from the diffusion of tureT=T_. Then, in the vicinity ofT; the functionf(¢) can

chemically reacting species (see, for example, be expanded as

[2,17,18,21,25-30,38 Note that in quantum systems Eg.

(1) arises within the framework of density functional theory arp® bo*

[31,39,4Q. = T )
The long-ranged nature @&(x—x’) from Eg. (2) is ex-

pressed in the fact that its Fourier transform has a singularitywhere 7= (T—T.)/T. is the reduced temperature, aaénd

at wave vectok=0. At the same time, this Fourier trans- b are positive constan{g!2]. In the following, we will talk
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aboutT. as the “local” critical temperature. Nedf., the realized if e is small enough; in terms of temperature, it
value of | ¢|~ ¢o=(al|7|/b)¥?<1 [42]. If also |p|<1, we  OCCUrS atT slightly below T. when Eq.(3) holds[see Eq.
can expand the functiog(#) in a Taylor series and retain (6)].

only the first term, s@($)=consi (¢— &). Then, rescal- As the temperature is decreased, the valueeofets

ing the order parameter and length with the valueggand smaller. Note that for sm_akk one can still be close.tﬁc and_
the short-range correlation lengéh=|ar| Y2 [42], we can yet havee<1. In this situation the long-range interaction

write the free energy from Ed@1) belowT. in the following can b? a singgl_ar_ perturbati¢m ”.‘? sense discussed eaflier
universalform: ¢ even in the vicinity of the transition. As was already men-

tioned, this is a necessary condition for the existence of the
Vo2 ¢2 ¢* € _ domain patterns, so below we will concentrate on the case
F=J ddx<———+ —+ —f d%'[p(X)— @] e<1. For e<1 the instability of the homogeneous phase
2 2 4 2 : . ;
occurs close to the classical spinodal of the Ginzburg-Landau
, .= free energy] ¢.|=1//3 [see Eq(11)]. In this case, accord-
XG(X=x")[(x")—~ ¢]), ®  ingto Eq.(110),C|the instability occurs at,<1.

There are two regions in tHespace in which the fluctua-
where we absorbed a constant factor into the definitioR.of tions of the order parameter around the homogeneous phase,
Here the parameteas, which plays the role of the effective with |#|>|¢|, behave differently whea<1. According to
coupling constant of the long-range interaction, is given by Eq. (9), for |k|~1 one could neglect the long-range contri-
bution, so the fluctuationg| 5¢,|?)=V/(|k|>+m?), where

e=al? M ~a' 71 (6) m2=3¢2—1, are those of thémean-field critical phenom-
ar ena[42], with the length scale independent af
Notice that in Eq.(5) the value of¢ has been rescaled as [ ~1. (12)

well, so it now depends on temperature:

— On the other hand, fdk|<1 one can neglect thig|? term,
po| 7|7 (7 so the fluctuations behave likddp|2)ocV/(m2+ e?k|~2)
=(VIm?)[1- €%/(e?+m?k|?)]. The first term in this ex-
pression represents local order parameter fluctuations, while
the second is the familiar Debye-ekel correlation function
[42]. The length scale associated with the latter isdtieen-

ing length

Also, as was discussed above, for E5). the singularity of
G(x—x") at small wave vectors implies that the total amount
of the order parameter must be conserying “electroneu-
trality” condition):

%J ¢ d%= b, (8) L~e L (13

For e<1 the(generally, metastableequilibrium state of
the system should bedomain patterrmade up of domains
of large size~R separated by narrow domain walls of width
~1. Clearly, the long-range interaction cannot significantly
affect the local profiles of the order parameter; however, it
can affect thdocationsof the domain walls. The size of the
domains will be determined by the competition between the
Vv surface energy of the domain watsR®~* per droplet and

_ ) (9) the energy of the long-range interactiene?R%*2, so the
|k|2+3¢2— 1+ €?|k| 2 characteristic size of the equilibrium domain pattern will be
of order(in the context of block copolymers, see al4@))

whereV is the system’s volume.
Let us consider small fluctuations of the order paramete

o= ¢—$ away from the homogeneous phase Tor T, .
From the second variation df from Eq. (5), the Fourier
transform of the pair correlation function of such fluctuations
is

(| 6epy|?)ex

This correlation function has a maximum at nonzkreec-
tors with |k| =k, where R~e 23 (14)
ko= €™ (10 Note that this result for the inimi
global minimizers of the sharp
interface limit of Eq.(5) was recently proved by Chokist3].
Choksi also obtained rigorous upper and lower bounds on the
2 energy of global minimizers of Ed5) in the situation when
— 1 € 1 ; -
e _( 1— _) . e==. (11) the screening effects are negligible. .
J3 € 2 According to Eq.(10), the wavelength of the fluctuations
with respect to which the instability of the homogeneous
The divergence of the fluctuations |&f =k, signifies an  phase is realized is
instability of the homogeneous phase and leadsnie
crophase separatiofi7]. Note that the instability can only be N=27lk~e 2. (15

The fluctuations ak, diverge wheng= = ||, where
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Comparing all these length scales, one can see that for s o[ ) =
<1 the following hierarchy holds: pto—¢ e f d%'G(x=x")[(x") = ¢]=0, (20)
[<AN<R<L. (16)  whereu is the chemical potentigl constantcoming from

the constraint given by E@8). On the scale of the domains,
This is a crucial property of systems with weak long-range¢sy,= * 1 away from the interfaces. We will assume that in-
Coulomb interaction. side the domainges,{<1, which is justified forR<e !
(see below. This allows us to linearize Eq20) around g,
away from the interfaces. Using E(L7) with ¢%=1, Eq.

C. Interfacial representation of the free energy y !
c§20) is written as

The solutions of the Euler-Lagrange equation obtaine
from Eqg. (5) may be analyzed by singular perturbation 5 ,
theory in the asymptotic limie—0. We perform this analy- bsm=— K, k=3, (21)
sis in Sec. lll A. Now, however, we use a different method
which gives the free energy of the domain pattern in terms ofvhere we introduced an effective field
the locations of the domain interfacks/]. This method was
used by Goldstein, Muraki, and Petrich for a reaction- 2| ydor o ) N
diffusion system with a weak activator-inhibitor coupling y=—nte fd X' GCX=X ) herX') + PonlX") = p].
[44,45. Here we develop a procedure allowing one to calcu- (22
late the free energy of a domain pattern that takes into ac- . . - .
count the screenir?g]/ effects. P Note that the constant? is basically the coefficient of linear

Because of the strong separation of length scales we cdfySPonse for t2he local theory. )
introduce the following ansatz for the distribution of the or- obg?nplymg V* to Eq.(22) and using Egs(2) and (21), we

der parameter:
B(X)= hefX) + bonf X), (17 ~ V2t €12 y= (= ¢). (23

where ¢g, represents the sharp distributions, whose charac'§IOte that our definition ofs, together with Eq(21), implies

teristic length of variation is of the order of the domain wall Elt]rifs Eg'n(sgei:géol;naﬁgzlI?'af’iﬁ“Sge%)tgdsfféggvg{gr?ggf
width (which in our units is of order )1 and ¢, represents y 9 g HG

e smooth disirbutons, whose charactritc ength of! /S 27 (8 1 sccount et for o o per-
variation is comparable to the domain si2eThe distribu- y g

tion ¢4, is chosen in such a way that it is equal+td. inside g)r(opris;ﬁnogﬁr;'sszeﬁéﬁfno note that for the same repson
the positive domains and 1 outside, whereas at the inter- P 9 :

faces it is close to the one-dimensional domain wall of The solution of Eq(23) is
Ginzburg-Landau theor}46]:

=& f A G (x— X[ b X )~ B], (24

p
bsh= tanh\/—z, (18 where G, is the screened Coulomb interaction which satis-
fies
wherep is the distance from a given point to the interface, —V2G + k%G, .= 5D (x—x"). (25)

which is positive(negative in the positive(negative do-
mains. Thus, the location of the interface is built into thelt is explicitly given as
definition of ¢¢,. The contribution fromgg, to the free en-

ergy, coming from the integration in E¢5) in the vicinity (

1 .
—exp—ex|x—x'|) in d=1,

(of order ) of the interfaces, gives the surface energy 2€k
1
242 —y"={ m—Kg(ex|x—=x']) in d=2,
Faui=00 § 05 oo=2—i— . 19 CLX=) golenhx (20
exp(— ex|x—x'|) in d=3
Here the surface integral gives the total surface area of the 47|x—xX'| '
domain interfaces and is the surface tension coefficient of )
the domain wall in Ginzburg-Landau thed®6]. whereKy(x) is the modified Bessel function. Thus, the fluc-

To find the smooth distributiongs,, away from the inter-  tuations of the order parameter in the bulk indeed screen the
faces, we minimize the free energy in these regions. Takininteraction on the length scale~ e 1. This means that the
into account thatp,, varies slowly on a length scale of order finite size effects will become unimportant if the system size
1, we can neglect th&/%2¢ term arising in the Euler- is much greater thah. Notice that the value off is esti-
Lagrange equation and obtain mated asy~ e?R?<1 for R<e !, justifying the lineariza-
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tion used in the derivation. Also, according to E¢&l) and D. Renormalization
(17), in this situation the deviation of from =1 is small The treatment above is based on the mean-field free en-
away from the interfaces. ergy functional from Eq(5) and therefore neglects the ef-

_ Letus now calculate the contribution from the long-rangerecis of thermal fluctuations. In a fluctuating theory, this
mtergctlon to the free energy. Once again, neglecting thg,ctional will become an effective Hamiltonian, in general
|V |* term, expanding the nonlinearity in EG) arounds, requiring an appropriate field-theoretic treatment. Neverthe-
up to second order imbgy,, and taking into account that |ess we propose that the effect of the critical phenomena
¢sh=1 away from the interfaces, to leading orderdrwe  fiyctuations can be taken into account by an appropriate
can write the contribution of the long-range interactiopto  renormalization of the main parameters of the free energy in
an overall constaptas follows: the interfacial regimg48].
Indeed, if one looks at the singularly perturbégty. (3)]
1 1 B quctua_ti_ng system neaf., on small length scales one will
Flong range:f ddX(zzd’ngr §(¢Sh_ &)Y+ w) see critical phenomena fluctuations of a second-order phase
transitionwithout the long-range interaction. This will hap-

pen as long as the characteristic screening lehgtf the

+;¢>s,ﬁ(¢+ ) long-range interaction is much greater than the correlation
length ¢ of the critical phenomena fluctuations. The critical
€2 _ exponents associated with the local critical phenomena fluc-
=§f dI%dIX'[ pe(X) — p]1G (x—X") tuations must be those of thé-dimensional Ising model
[42]. So the local average of the order parameter will be
X[ a(X')— b1, (27)  Close to a constantp= + ¢o|7|P, wherer=(T—T,)/T. is

the reduced temperature agdis the corresponding critical
exponent. Also, the surface tension coefficient of an interface
where we used Eqs$8), (21), (22), and(24). One can see in which the order parameter changes sign ds
from this equation that the screening representedfiyen- = o 7|"®" 1), wherev is another critical exponent, and its
ters the free energy only via (x—x"). The integral in Eq.  width is roughly the correlation length= &;| 7| =¥ [42].
(27) can be transformed to an integral over the domain inter- Observe that the long-range coupling involves integration
faces by using Eq(25) and the fact thaipg,==*1 in the  over regions of size- R which for the domain patterns must
positive (negative domains[45]. After calculating the re- be much greater than the correlation length. Therefore, it is
spective integrals and collecting all the terms in the free enthe averagevalue of the order parameter that gives the main
ergy (see Appendix A we obtain contribution to the long-range interaction energy R £.
This energy has to be compared with the surface energy, so
in equilibrium we obtain

B g 2(1+ ) 4
F=o0y S— T 0. X ool 7l y(d—l)Rd—1~a¢g| 7_|25Rd+2_ (30)
+262f dIxdx' G _(x—x") (28) Rescaling the order parameter and length appropriately and
a,Jo, ¢ introducing therenormalizedcoupling constant
2 €= ag| 7P, (31)
=0o ¢ dS— — 3@ dS(x-n
fas- 22 fasii

we can still write down the interfacial free energy of the
5 system in the form of Eq.29), where, as usual, we dropped
-= é ds § dS' (n-N)G(x—x'), (29 the primes and neglected an _overall constant factor. Ca_\utlon,
K however, is necessary here in considering the screening ef-
fects. As was noted earlier, the constangppearing in the
~ mean-field definition of the screened long-range interaction
where (), denotes the positive domains,is the outward G_(x—x') is related to the coefficient of linear response for
normal to the interface of) . , and the surface integrals are the local theory. When the critical phenomena fluctuations
over the interface. The first integral in EQ9) is the overall  are taken into account, the value efcan be calculated via
surface area of the interfaces, the second gives the total volhe linear response functiop= x,|7| ~” that relates the un-
ume of the positive domains, and the third is the nonlocakcaled values of,, and # (below T,) [see Eqs(21) and
contribution of the screened long-range interactioote the  (22)]. After an appropriate rescaling and using the definition
distinction with the results di45]). Thus, Eq.(29) gives the  of ¢ from Eq. (31), we obtain that
free energy of the domain pattern in terms of the locations of
the interfaces only. Note that the unscreened version of Eq.
(28) was recently derived rigorously by Ren and Wei in the KZ;#, (32)
context of " convergencé47]. $oéo
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which is a constant of order 1, independent of temperature. _

In writing Eq. (32) we used the scaling relationg2y VZg+ ¢—¢3+M—€2J di%' G(x—x")[b(x')— ¢]=0,

—dv=0 between the critical exponeni2]. (34)
Thus, we can renormalize the parameteand redefine

the parametek to obtain once again the free energy of awhere x is the chemical potential. Formally, this integro-

domain pattern in the form of Eq29) even in the case of a differential equation can be rewritten as a pair of stationary

system locally experiencing critical phenomena fluctuationsreaction-diffusion equations of activator-inhibitor type

Let us point out that the free energy of a domain pattern of44,45,48,49 Indeed, if the last term in Eq34) is denoted

size of orderR> ¢ will be much greater thakgT; (in the by ¢, this equation can be rewritten as

unscaled units[see Eq.(29)], since o&4 Y/kgT.~1 [42].

This leads us to the conclusion that in a strongly fluctuating VZp+p—¢>— =0, (35
system the domain patterns should be essentially described -
by the interfacial mean-field theory, and all the properties of V2y+ e’ (¢p— ) =0, (P)=—p, (36)

the domains in the fluctuating system will be equivalent to
those of the domains in the mean-field systems described hyhere(-) denotes averaging over the system’s volume.
Eqg. (5), provided that one uses the renormalization given by Reaction-diffusion equations of the type of E¢35) and
Egs. (31) and (32). Thus, the universality discussed earlier (36) have been studied by many authdsee, for example,
for the mean-field model should in fact extend to all system$2,45,50-53). In the limit e—0 their solutions can be
near the local critical temperature as long as the couplingreated by the methods of singular perturbation theory
constanta of the long-range interaction is small enough. (matched asymptoti¢q2,50,54,5%. According to singular
Note that in this situation Eq5) may be used as a phase- perturbation theory, the solutiop of Eq. (35) can be broken
field model representation for the free energy of the domairup into inner and outer solutions. The inner solution varies
patterng 48]. on a length scale of order 1 and describes the variation of the
In the renormalization of the main parameters of the sysorder parameter in the vicinity of the domain interfaces,
tem we made the assumption that the size of the domainshile the outer solution varies on a length sc&eof the
must be much greater than the correlation lergtihccord-  order of the characteristic size of the domains and describes
ing to Eq.(14), this condition is satisfied as long ax1. In  the variation of the order parameter away from the interfaces.
view of Eq.(31), this is the case when the reduced temperaSimilarly, the solutionys of Eq. (36) will vary on the length
ture 7 is much lower tharr=— 7., where scaleR.
Since the variabley varies slowly on the inner scale, it
can be considered as constant in the interface. Since the cur-

— 7., the long-range interaction becomes progressively mordomain wall width, to the leading order we can write Eg.
and more relevant at long distances, until et — 7, (what (39 in the vicinity of the interface as
meanse<1) long-lived domain structures with the free en- pr p
ergy cost of each domaitaF/kgT.> 1 will start to form. On _¢_ _¢ 43—

. ) 7 2H—+¢—¢°—¢;=0, (37)
the other hand, for>+ 7 the long-range coupling, which ap ap

scales asvé&?, will be much smaller than the effective local ) ) _ ) )
coupling, which is of ordeny"*~|7|”, so one will observe Wherep is the distance from a given point to the interface,

only the critical phenomena fluctuations abowe It is a  Which is positive if the pojnt is inside the positive domain
question whether there is a microphase separation transitigid negative otherwiséi = 3 (k, + k,) is the mean curvature
from the homogeneous to the patterned phéshich is of the mterface(ppsﬁwe if the positive domam is convek;
analogous to the freezing transition in liquids a smooth ~ andk, are the principal curvaturgsandy; is the value ofys
crossover from one to another in a strongly fluctuating syson the interface. In the following, we will write all the for-
tem. It is clear, however, that the uniform phase must bénulas in the three-dimensional case; in two or one dimen-
thermodynamically unstable when<—7,. At the same Sions one has to set one or two principal curvatures of the
time, at7~ — 7. the fluctuations are strong, so one can en-interface, respectively, to zero. _ .

visage the system as a collection of domains that randomly Equation(37) can be solved exactly; its solution has the
appear and disappear in different locations and move abol@m ¢(p) =atanhbp+c), wherea, b, andc are certal?ecosn-
like particles in a dense liquid. In any case, there must exis$tants. This solution exists only when H2-gH

a narrow transition regior- 7.< r= ., upon going through = —3;/y2. Since in the domain patteti<1, it is suffi-

which the phase should change from uniform to patterned. cient to linearize this equation with respectto so we ob-
tain (see alsd56])

7o~ Q1A +2)=2p] (33

Ill. PROPERTIES OF THE DOMAIN PATTERNS

. . ooH=—1;, (39)
A. Equations for stationary patterns

The stationary patterns in the mean-field model intro-whereoy is given by Eq.(19). This, in turn, implies thaiy
duced in Sec. Il B must satisfy the Euler-Lagrange equatior<1 in order for a pattern to be stationary. Note that to lead-
obtained from Eq(5): ing order¢(p) in the interface is given by Eq18).
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Away from the interfacegon the outer scaje¢ varies fluctuations is small in both cases, the thermodynamic stabil-
slowly, so one can neglect the gradient square term in Edty of the patterns is determined by the second variation of
(35). Then, according to Eq35), we havep— ¢*=. Since  the free energy functional. Thus, the thermodynamically
we must have)<1, this equation can be linearized with stable stationary patterns will be local minimizers of the free
respect to¢ around ¢==1 in the positive and negative energy.
domains, respectlvely So, one obtains that to leading order The problem of finding the second variation of the func-
p=x1— K 2y in the outer regions. Here, as in Sec. Il C, we tional in Eq.(5) reduces to the calculation of the spectrum of

have x*=3. If we substitute this expression into EQ6), |inearization of Eq.(34). It is not difficult to see that it is
we will obtain precisely the same equation fos Eq.(23),  equivalent to the problem of linear stability of stationary
with ¢gp=*+1. patterns in systems obeying gradient descent dynamics. Such

The solution of Eq(23) can be written as an integral over

u ) a stability analysis in the context of general reaction-
the domain interface@ppendix A; see als(45,56)):

diffusion systems of activator-inhibitor type was performed
in [50]. Here, instead of analyzing the second variatioi of
1+ ¢ : . :
= § ds{n’-V'(G.—G)}, (399  from Eq.(5), we will use the interfacial free energy from Eq.
(29) for finding the spectrum of the fluctuations of the pat-
. _ _ o ~ tern’s interfaces. These are, in turn, the lowest-lying modes
whereV’ is the gradient with respect td. Combining this  of the spectrum and, therefore, cost the least free energy in

equation with Eq(38), we obtain the following equation for gq_ (5). Both these approaches give the same results in the
the locations of the interfaces: limit of small e.

143 2 Let us now proceed with the calculation of the second
- 1té_ = 3§ dS{n’-V'(G.~G)}. (40 variation of the interfacial free energy from E9). A small
K2 K perturbation of the domain shape means a slight shift of the

interface in the normal direction ky(x), wherex denotes a

This equatiori can be fu.rther simplified if the distarice be'point on the interface. In terms p{x), the second variation
tween the points on the interface is much smaller thah

f the f f Eq29) i A di
In this case one can expaf@] in Eq. (40) in ex|x—x’| and of the free energy from Ed29) s (see Appendix A

retain the terms up to second order. It is easy to see that only
ihe ter_ms_of secon_d _and higher prders of the_ expansim_of SF=0, ﬁ; dS[|V, p|2+ 2K p?— 4H2p?)
in e will give nontrivial contributions to the right-hand side
of Eq. (40). Also, in view of the approximations used to 4
derive EQq.(40), this equation is valid when the characteristic +— % dSp?(n-V) é ds{n’-vV'(G.—G)}
sizeR of the domains satisfiesdR<e ! K

Equation (40) describes the pressure balance across the
interface. Indeed, the term in the left-hand side of this equa- +4¢€2 é d8§ dS' G (x—x")p(X)p(x"), (41
tion is the Laplace law, the first term in the right-hand side
gives the bulk pressure, and the second one gives the nonlo-
cal contribution to pressure due to the interaction of the do-
main walls with each other. where V' is the gradient inx’, K=k;k, is the Gaussian

Let us emphasize that E¢40) can also be straightfor- curvature ata given point on the unperturbed interf&ces
wardly obtained by computing the first variation of the inter- the gradient along the interface, and the integration is over
facial free energy given by Eq29 (see Appendix A  the unperturbed interfaces.
Therefore, this equation also remains valid in the fluctuating Different terms in the integrand of Ed41) represent
system considered in Sec. Il D. Also, note that since the socompeting tendencies that stabilize or destabilize the pat-
lutions of Eq.(34) in the form of stationary domain patterns terns. Theo|V, p|? term coming from the surface tension
can be written in the form of Eql7) for e<1, Eq. (29 penalizes distortions of the interfaces; the term involving the
gives the asymptotic expression for the free energy of thesgurvatures zro(K—2H?)p?= _go(k2+k )p?<0 is a de-
patterns. stabilizing term coming from the curvature of the interface;

the term from the second line in E@L1) can be rewritten as

B. Deformations of the domain interfaces 2(ﬁ~ﬁw)p2, wherey is given by Eq(39) (see Appendix A

The solutions of the Euler-Lagrange equation given byand represents the change in the free energy due to the mo-
Eq. (34) are critical points of the free energy functional from tion of the interface in the fixed effective field (this term
Eq. (5). Similarly, the solutions of Eq40) are critical points  should be destabilizing also since we would generally expect
of the interfacial free energy from E(R9) and correspond to the gradient of/ to be directed inward at the interfacand
solutions of Eq(34) in the limit e—0. Both these solutions the last term is the stabilizing action of the long-range inter-
define (generally metastablestationary patterns. The ques- action.
tion, however, arises as to when these patterns are thermo- To gauge the relative strengths of these terms and deter-
dynamically stable Since, apart from the nucleation phe- mine whether a pattern is stable, we need to solve the fol-
nomena discussed in Sec. VA, the effect of thermalowing eigenvalue problem obtained from Egl):

O'0H
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Lp=\p,where

200

Lp=—UOVEp+20'OKp—4UOH2p+2(ﬁ~€¢)p <3,

150

+4e ff; dS G (x—x")p(x"). (42 § roof

50 F
The spectrum of the operatbrfor a stable pattern should not 5=5 /
contain any negative eigenvalues. We will analyze the spec-

trum of L for simple geometries below(see also
[28,45,48,50,51,59]. Now, however, let us discuss some =501 8>8
general properties of’F in Eq. (41). It is easy to see from
Eqg. (41) that a typical sizeR in a stable stationary pattern R

must have the same scaling as that in @4) (this point was .

first argued iM48,50,57 based on a stability analysis of the  FIG. 1. The free energy of a spot for different valuesgofA
localized and periodic patterndndeed, suppose a pattern is plot of F(R) from Eg. (43) with €=0.001, 0o=22/3, andk
made of a collection of droplets of size and distance betweer 1/y2. For these values of the parametas=0.0088 andd,,

each other of ordeR (here for definiteness we will consider =0.0186.

three-dimensional patternd.et us first assume that the drop-

lets are too small, sR<e 2. Consider a fluctuation that per, we will limit ourselves to studying two-dimensional
uniformly increases the volume of one droplet while decreaspatterns. Qualitatively the same results are expected for the
ing the volume of another next to it, so that the net volumemore experimentally relevant three-dimensional patterns.
change is zerdrepumping, seé2,48)). Then, if R<e 23, Note, however, that the one-dimensional case is qualitatively
the stabilizing contribution- €2R® from the last term in Eq. different from those of two and three dimensiofsee

(41) is negligible compared to the destabilizing contribution[2,50,58,60).

20 40 60 80 100

from the curvature terms-1, while the|V, p|? term is iden- Since our system possesses a symmétry — ¢, we can
tically zero. Therefore, such a fluctuation will lead to a freeonly consider the properties of positive domains immersed in
energy decrease. a negative background. This means that we only need to

Now, suppose that the droplets are too bigRsee 23, study the region of the system’s parameters in whEh

Let us now perturb the interface of one droplet in a localized<0.

fashion in a region of sizé<R, once again maintaining the

overall volume the §am_€distortion[2.,48,SQ). Then the last A. Solitary patterns

term in Eq.(41), which is ~ €2 €3, will once again be neg- o ) ) ,
ligibly small compared to the term from the second line of W& begin with the study of the simplest possible domain
Eq. (41), which is~ €2 ¢2R. On the other hand, the gradient patterns: solitary patterns. In two dimensions we will con-

square term in Eq(41), which is of order~1, will not be sider spots, stripes, and annuli.

able to compensate that contribution, éf 'R~ Y?<¢<R.

Such¢ can always be found wheRs> e~ %3 so this kind of

a fluctuation will lower the free energy, too. Note that for  Let us first look at spots: small positive circular domains

R~ e~ this instability result was also obtained by Nishiura in a negative background. If the radius of the spot is much

and Suzuki52]. smaller than the screening length?, the interaction poten-
The arguments above lead to the important conclusiofial G (x—x") in Eq. (29) can be expanded ia. Retaining

that (perhaps apart from some logarithmic factors; see bethe terms up toe?, after a straightforward calculation we

low) the stable stationary patterns must obey the equilibriunobtain that the free energy of a spot of radidsis asymp-

scaling from Eq.(14), which was obtained on global ener- totically

getic grounds. In other words, not only the global minimizers R 2s L L

of the free energy43] but all local minimizers must gener- B ™

ally obey this scaling. Note, however, that these argumentéz(R)_zmroR_ K2 —metR In(EGKR) Ty Z}’

do not apply in one dimensiofsee alsd2,50,51,58. Simi- (43

larly, the equilibrium scaling from Eq14) is not necessarily

obeyed by all stationary patterrisee for example, Secs. Wherey=0.5772 is the Euler constant and

IV A and IV B), contrary to the statement §59].

1. Spot

5=1+¢ (44)
IV. EQUILIBRIUM PATTERNS AND MORPHOLOGICAL o
INSTABILITIES measures the degree of metastability of the homogeneous
phase. The free energy of the spot given by E®) for a
Let us now use the tools developed in the preceding se@articular set of parameters is shown in Fig. 1.
tions to analyze stationary domain patterns with simple ge- Let us now analyze Eq43). First of all, whens<0, the
ometries, such as localized and periodic patterns. In this pdree energy is a monotonically increasing function 7f
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When the value of is increased, ab= 5,<1 a minimum
and a maximum of the free energy appé&me Fig. 1. These

correspond to radially stable and unstable spot solutions

with radii R=Rs and R=TR,, respectively. At6= 5, we
have Rs=R,,= Ruin- Asymptotically

3 2/3
5b=<ZEK30'O|nl/2€l) ~eRnY3e 1, (45)
30 1/3
Rmin:<—4ezlnz_l> ~e 131, (46)

This formula agrees up to the logarithmic factor with Eq.

PHYSICAL REVIEW 6, 066108 (2002

3=0.02565

EF(R)

eR

(14). These logarithmic factors are a specific feature of the FIG. 2. The free energy of an annulus as a functioriRofor
two-dimensional patterns; they are absent in three dimenf=La given by Eq.(51), obtained from Eq(50) with €=0.001,

sions[50].

When the value o is increased beyond,,, the radius
Rs grows, while the radiugk,, shrinks. At some value of
=6,<<1 at whichRs=TR,,, the free energy of the spot be-

00=2+2/3, andk=1/,/2.

Substituting this expression into E(O0), we then study the
critical points ofF with respect toR.

comes negative, making the spot thermodynamically more 'I;ge analysis of Eqs(50) and (51) shows that foro
favorable than the homogeneous phase. Once again, asymp<€ - there exists a single minimum of the free energy, cor-

totically,

1
5m:§(36K30.0|n1/26—1)2/3~ 52/3In1’35_1, (47)
1/3
30
— ( KEO—J e 2331 (48)

Comparing Eqs(45)—(48), we see thad,,=2%5, and R,
= 22/37?'min .
For 6> &, the radiiRs andR,, become asymptotically

N

This means that, fob>¢e?3n e ?, the radiusRs goes be-
yond the equilibrium scaling of Eq14). This is an indica-
tion of the morphological instability studied in Sec. IV C.

€2k%ne” 49

2. Annulus

responding to an annulus solution, whose radius and width
are asymptotically

52

“ 4ooe?k*In(e572)’

200k

6

a

In(ed2). (52

One can see that the conditidy<<R, used in the derivation
of Eq. (52) is satisfied as long a8> e?3n e 1.

According to Eq. (52), when 6~¢Y?, we have R,
~¢e 1, so screening effects become important. The analysis
of Eq. (50) shows that at some critical value 8f €> a new
minimum and maximum o (R) appear 6=0.0255 in Fig.

2). At a slightly higher value ofs~ €', the second mini-
mum of the free energy disappear§={0.0258 in Fig. 2.
The value of =4, at which this happens can be easily
calculated; see Eq54).

3. Stripe

Let us now determine the equilibrium parameters of a
quasi-one-dimensional domain pattern—a stripe. A stripe of
width £¢ can be considered as the limit of an annulus as

Let us now analyze a pattern in the form of a thin annulus;g .. Using Eq.(50), we obtain that the free energy of a

which has radiuskR and thicknessC<7R. Calculating the
free energy of such a pattern from E@8), we obtain

47
F(R,£)24WUOR— 77?,/:
+47e?R2L2o(ekR)Ko(ekR),  (50)
wherel y(x) is the modified Bessel function. Minimizing this

expression with respect t6, we obtain that the value of
= L4 in equilibrium is related tdR as follows:

S
La=—— .
2e°k“Rlo(exkR)Ky(€xkR)

(51)

stripe of length’l is

52

The term in the parentheses characterizes the rigidity of the
stripe. As can be seen from E(3), this rigidity becomes
negative at a critical value of= 6, , where

)1/2. (54)

8, =(20yK3e
At 6> 6, the stripe becomes unstable with respect to wrig-
gling (see Sec. IV ¢
Taking the limitR,—« in Eq. (51), we obtain
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the fractionf of the total area of the system occupied by
Le=—. (55  positive domains. The condition of E¢B) implies that this
fraction is related tap as
Note that the stripe solutions of E¢34) exist only when —
L=In€e1, so to have a solution we must have eln e ! 1+
[2,50]. Also, the width of a stripe is limited by .~ e~ in == (56)
which case our linearization approximation to E@®O0)
breaks dowr{see als¢2]). According to Eq(55), the region  since inside the domainéaway from the interfacesp=~

of existence of stripes is wider than that of spots. Also, note+ 1 [see the discussion after E@5)]. In the hexagonal pat-
that for 6~ 6, (when the spot is stablethe width of the  tern R and L, are related via

stationary stripel~e Y3<R,. This deviation from the

equilibrium length scale given by E¢l4) is essentially re- 149 12
lated to the one-dimensional nature of the stripe, for which Rs=3YL, ;) . (57)
curvature effects are absent. 4m

B. Hexagonal and lamellar patterns From this equation one can see that, wh;_bis not close to

When spots or stripes are introduced into the system, the. L, the values ofR and L, are comparable. Note that in
P P y ' ?eality Eq.(57) is approximate, since generally the domains

basic Interaction be.tween. them is repul;ﬁeee.Eq(ZS)]. In forming a hexagonal pattern are not ideally round. However,
an equilibrium configuration, the domains will therefore go according to the numerical simulations, the deviations from

as far apart from each other as possible. If in the end the ) -
distance between them is greater than the screening lengtf€ circular shape are very small whein<0, so one can
e 1, essentially they will not interact, so their behavior will S&fely assume the domains to be ideally circular all the way
be that of the solitary patterns discussed in Sec. IV A. Thelp to ¢=0.
situation changes, however, when there are so many domains In Eq. (57) the period of the pattern has not been speci-
in the system that even in the close-packed arrangement tfigd. In fact, an infinite set of solutions in the form of hex-
distance between them becomes less than the screeniagonal patterns with different periods exists fed < $<0
length. This is in fact a generic situation that is realized(asymptotically. All these solutions locally minimize the
whenever the value og is not close to—1 (or ~1). In  free energy of the system. However, among all the hexagonal
this case the domains will strongly interact with each otherpatterns there is a pattern with a particular perigfi for
arranging themselves intoraultidomainpattern, so in order which the value of the free energy is lowest. It is clear that,
to decrease the energy of the long-range repulsion, the ddfthe asymmetry between the positive and negative domains
mains not only adjust their positions, but also their geometrids strong, the domains will tend to form a close-packed struc-
characteristics. ture, so foré<1 in d=2 this pattern is expected to be the
Let us consider the simplest of the multidomain patterngglobal minimizer of the free energy.
in two dimensions, namely, periodic hexagonal and lamellar Using the Wigner-Seitz method, we find that the period
patterns. The equilibrium characteristics for several majoncg of the hexagonal pattern with the lowest free energy is
types of periodic pattern described by E§) in the limit e (Appendix B
—0 were found by Ohta and KawasdKi8]. They carried

out a rather involved calculation of the free energy using the 2\ Y2 20 13
Ewald summation method. Their results can be obtained by Lh=eP —= (m) (58)
the simpler, although approximate, Wigner-Seitz method f\3 n

[61]. Consider a hexagonal pattern made up of circular do-
mains, for example. In such a patteprwill satisfy Eq.(23) ~ As ought to be expecte®s~ L% ~ e~ 2%, It is interesting to
with no-flux boundary conditions on the boundaries of thenote that this result agrees with the exact calculation of Ohta
hexagonal Wigner-Seitz cell. Instead of solving this problemand Kawasaki irf18] to within 0.1% for allf<0.5.

let us consider a single domain inside a circular cell whose Similarly, in the case of a lamellar pattern the perigg
area is equal to the area of the Wigner-Seitz ¢@lsimilar ~ and width L4 of the stripe are related as

approach was used if60]). Then Eq.(23) with no-flux

boundary conditions can be easily solved. Furthermore, to 1+ ¢
leading order ine the screening terna®«2y in Eq. (23) can Lo=—F5—L,. (59
be neglected, if the period of the pattefn< e 1. This so-

lution can be used to calculate the contribution from the

long-range interaction to the free energy by substituting it in/ calculation analogous to the case of the hexagonal pattern
Eq. (27). Note that the one-dimensional analog of this Shows that the period of the lamellar pattern that has the

method is exact, so it can also be used to calculate the frd@West free energy is given biAppendix B
energy of the lamellar pattern.

Let the positive domains in a hexagonal pattern have ra- [ 23 60o | (60)
dius Rs and period( ,< e L. It is convenient to introduce p 1‘2(1—1‘)2
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m=2 corrugation wriggling of radiusR ;<€ ! one can neglect screening and @Gen

the integral form>0, since these fluctuations do not change
the overall area of the spot. Assumipg-€'™¢ and calculat-
ing the corresponding integrals, we obtain

O'Om2 2 GZRS

AN=Not —o+ : (61)
RZ " m

wherel is a constant that comes from the curvature and the

2(ﬁ~ﬁ¢) term. In fact, we do not need to calculate this
constant from the definition. Instead, we can use the transla-
tional symmetry of the problem and note that0 for m

=1 to find that

FIG. 3. Morphological instabilities of spots and stripes. No=— —3—2€°Rs. (62

This result agrees with that ¢18,28,47,58,6p Let us point Note thatA (<0 and is responsible for the instability of the

out that in one dimension Ren and Wei proved that the Iamelépot for large enougR, (see alsd2,51))
lar patterns of arbitrary periods are the only local minimizers According to Eq.(61), a single localized spot becomes

of the free energy47]. )
A comparison of the free energies per unit area of theunStabIeWﬁ:rg) with respect to themth mode whenRs

lowest free energy hexagonal and lamellar patterns shows Rem:
that the lamellar pattern has lower free energy wHen
>0.35[18]. For 0<f<0.35 the hexagonal pattern has the Rcm:(

oom(m+ 1)) s
lower free energy in two dimensions.

262 (63)
The instability is realized first with respect to the fluctuation
with m=2, so the spot is always unstable whRg>TR .,
An important feature of patterns in systems with compet-where
ing interactions is the fact that under certain conditions they
can undergamorphological instabilitieswhich lead to the Rer=(300) P %3 (64)
distortions of their shapes and transitions between th&m
In reaction-diffusion systems these instabilities have beedhe m=0 case can be treated analogously; this leads once
analyzed in2,45,48,50,51,53,57,63 again to Eqs(46) and (45). Therefore, comparing Eq64)
Apart from the arguments of Sec. Ill B, the physical rea-with Eq. (49), we see that the spot can be stable only when
son for the existence of morphological instabilities is the fact
that the energy of the long-range interaction increases faster 5y<0<8e, 02=3 w3’ Ine”t, (69
than the area of the domain as its size gets bigger. Therefore,
at some critical size it may become energetically favorables0 the spots are stable only in the limited rangesefe
for the domain to split into two domains of smaller size or <1 (apart from the logarithmic terms
significantly change its shape. It is interesting to note that A similar analysis shows that the thin annulus of radius
such an instability was first analyzed by Lord Rayleigh backR ;<€ ! considered in Sec. IV A is always unstable with
in 1882[64]. respect to then=2 wriggling mode, so we do not present
To investigate the morphological instabilities of the do-this analysis in detail here.
main patterns in systems with long-range Coulomb interac-
tion, we start by looking at the simplest possible patterns: 2. Stripe
spots and stripes. This analysis was performeib@j in the Let us now turn to the solitary stripe. Let us choose the
context of reactl_on-dlffu_smn equations of a_ct|vator_-|nh|b|to_r reference frame in such a way that the stripe is oriented
type. Here we will rederive these results using the mterfamabmng they axis in thezy plane. Because of the mirror sym-
approach{Eq. (42)]. metry of the stripe in the direction, there are two basic
types of fluctuation: the symmetric and the antisymmetric
distortions of the stripe walls, both characterized by the
Let us consider a single localized spot first. The fluctuatransverse wave vectder, (Fig. 3). Because of the transla-
tions of the spot’s shape are azimuthal distortions of its wallgional symmetry in they direction the operator in E¢42) is
characterized by the azimuthal number(Fig. 3. Because diagonal ink, . Assuming thatp"=e*Y andp ==p*,
of the radial symmetry, the operatbriin Eq. (42) is diagonal ~ wherep™ are the positions of the right and left boundaries of
in the basis formed by the functiore&™?, where¢ is the the stripe, respectively, we can calculate the integral in Eq.
polar angle that represents a point on the interface. For a sp6t2) at the location of the right wall:

C. Morphological instabilities of solitary patterns

2/3

1. Spot
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5 ) ) ) not unlike the problem of finding the band structure of a
de fﬁ dS' G (x—=x")p(x") crystal[61]. Below, we consider the stability of hexagonal

and lamellar patterns in two dimensions.
2e?[1+exp — L\e?k?+k?)]
= e

Let us consider a hexagonal pattern of perigdmade of
where “+” corresponds to the symmetric and—" to the  circular domains of radiu®s. For each domain centered at

kY (66) 1. Hexagonal pattern

antisymmetric fluctuationsts is the width of the stripe. R, let us write the displacemenpt, as
For the stripe, the curvature terms in E42) are zero,
and the 20-Vy) term reduces to a constant<0. The pn(@)=> aye'k Ra-ime (73)
m

case of the symmetric and antisymmetric fluctuations must
be treated separately. Fer > e the expression foh=\,

for the symmetric fluctuation igo leading order ire) where the angle represents a point on the interface of each

domain. Equatior{42) for fluctuations with a giverk in the

2e[1+exp(—k, Lq)] first Brillouin zone then reduces to
Ai=Ng+ook?+ . . (67)
) —Z—U"mzﬂ A S Ry (K) (74)
- am= — ’ Am’ ,
On the other hand, whefi;<e~* andk, £;<1, to leading rRZ "0 me e TmmA R Em

order in € the expression foh=A_ for the antisymmetric ) )
fluctuation becomes wherem andm’ are the azimuthal numberi, is a constant

independent om andk (assuming that with good accuracy
N_=Not ookl +26?Ls— €2LEe?k*+ki. (68 1.V is radially symmetric in the interfageand Ry (K)
are thek-dependent matrix elements ot45 (x—x'). The

Once again, we can use translational symmetry inztde 5 culation in Appendix C 1 shows thig]

rection to calculate\y, sincex =0 whenk, =0. We get
167762723 gl(m=m") (Vs +72)
L33 T |ktkg2+ €2

No=—2€L+ €k LI+ 0(*L3). (69) R (K) =

The analysis of the transcendent E§7) with Ay given

by the first term in Eq(69) shows that the instability of the X In([k+Kn| Rs) I ([K+Kn|Rs),  (75)
stripe with respect to symmetric distortions of its wdlier- ) )
rugation with k, =k, occurs atl> L, where[50] wherek, run over the reciprocal latticel,,(x) are Bessel
functions of the first kind, and9k+kn is the angle between
ke=1.1300 "%2®, L.1=1.6605% 2=, (700 the vectork+k, and thex axis.

. _ ) The value ofA; can be calculated by noting that the trans-
According to Eq.(68), the stripe becomes unstable with |a¢iona) invariance of the system requires that0 for k
respect to antisymmetric distortions of its waflgriggling) —=0andm=1, so(Appendix C 1

atk—0 andLs>L.,, where

_ 27R2
Leo=(20qk) Y212, (71) No=— 70 252735( 1- L) . (76)

. _ RS V3L2
This is also clear from Eq53). Comparing Eqs(71) and
(70), one can see that the instability with respect to wrigglingin writing the above equations we assumed tiRat- L,
is realized before the instability with respect to corrugation.<< ¢ 1,

In view of Eq. (55), the stripe is stable only when As was shown qualitatively by Kerner and Osipoyv, for the
most dangerous fluctuations the wave vedtarill lie close

to the edge of the Brillouin zonE2]. There are two basic
types of fluctuations we need to consider: fluctuations that
lead to repumping of the order parameter between neighbor-
ing domaing[Fig. 4(a)] and fluctuations that lead to asym-
metric distortions of the domair{&ig. 4(b)] ( [2]; see also
Sec. Il B). Analysis of Eq.(74) shows that the most danger-
ous fluctuations leading to repumping hake 3(b;—b,),

The solution of Eq(42) in the case of an arbitrary mul- whereb; andb, are reciprocal lattice vectors that make a
tidomain pattern is a formidable task. However, a simplifica-120° angle (see Appendix CJI while the most dangerous
tion of this problem is possible in the case of periodic pat-fluctuations leading to distortions hake=3(b,+b,) [48].
terns. Then, by Bloch theorem, the operaforcan be The instabilityh <O occurs with respect to repumping when
partially diagonalized by considering the fluctuations modu-£,< L, or with respect to the asymmetric distortion when
lated by the wave vectdc which lies in the first Brillouin  £,>L,, whereL,,, depend one andRs/L,. The result-
zone of the underlying domain lattice. The situation here isng stability diagram obtained by numerical solution of Eq.

elne l=s6<s,, (72

whereé, is defined in Eq(54). Thus, the region of existence
of stable stripes is wider than that for sppsee Eq.(65)].

D. Morphological instabilities of hexagonal and lamellar
patterns
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a) repumping 2. Lamellar pattern

. . ‘ ‘ In the case of the lamellar pattern one should consider

fluctuations that are modulated by the wave vetofrom

‘ ‘ ‘ . . ® ‘ the first Brillouin zone in the direction along the normal to
the stripes and an arbitrary wave veckorin the transverse
. ‘ ‘ ‘ direction:
pr =pg €LY TN, (77)
b) asymmetric distortion wherep, are the displacements of the right and left walls of
the stripe in thenth period of the lamellar pattern §t=0.
. . @ @ Because of the translational symmetry in the direction along

the stripes, these fluctuations are eigenfunctioh. af Eq.

‘ . . —> . . . (42). One can then reduce the operdidp a 2x 2 matrix, so

. . after a tedious calculatiofAppendix C 2; see alsf2,63))

)\t:)\O+UOkJ2_+Ri(kH7kL)’ (78)
FIG. 4. Two major types of instabilities of the hexagonal ]
pattern. whereR..(kj,k,) are given by
(74) with the parameters of the mean-field model from Sec. Ae2eklp

Il B is presented in Fig. 5. From this figure one can see thaR= (k| .k, )

- _ kL 2kL,
only the patterns with period o< L£,<L,, are stable. k(1—2e"rcosk Ly +e )

Figure 5 also shows the period of the lowest free energy X [sinhk L+ ({SinHk(L,— Ls)]
hexagonal pattern given by E(8). One can see that this . .
pattern is stable for all values @/ L, (except, possibly, for +cosk Losinhk L ¢} + sirPk) £ psintPk £o)M2],
Rs/ L, close to 0.5 where the assumption about the circular (79

shape of the domains ceases to be vyaliks was noted in

Sec. IV B, in two dimensions the lowest free energy hexagowhere k= /€22 + kZ. As before, the value ok, is deter-
nal pattern is expected to be the global minimizer of the fregnined with the aid of the translational invariance of the sys-
energy iff <0.35, or, equivalently, iRRs/L,<0.31, whereas  tem, which requires that=0 for kj=k, =0 for the anti-
for 0.31<Rs/L,<0.37 (the second condition means that  symmetric fluctuation. This gives the following value Xf
<0) the global minimizer should be the lamellar pattern.(to leading order ire):

Figure 5, however, does not show the transition from the
hexagonal to the lamellar pattern, so in fact the lowest-
energy hexagonal pattern is at leagttastabldor all values

of ¢ at which it exists.

Ls
No=—2€%L4 1——]|. (80)
EP

The analysis of Eq(78) shows thafin the validity range

04 ' ' ' ' of Eqg. (79), that is, whenl,>In € *; see alsq2]] the re-
035 L i pumping instability is not realized for the lamellar pattern.
‘ . This can be explained by a simple argument: the curvature of
o3 L repumpng 1  the stripes is equal to zero, so there is no force that would
lead to domain collapse as in the case of the spot. The analy-
T 025 stable - sis of Eq.(78) also shows that the most dangerous fluctuation
gf“ leads to antisymmetric distortions of the stripe and kas
Lo0zr o . =0 andk, — 0 (see als$63,65]). All other instabilities, such
) - RS as the corrugation instability, occur at higher valuesCof
Yoo - - J  ~e 23 (compare with[66,67)). Also notice that wherk,
o1 - e | =0, which corresponds to the one-dimensional situation, the
' , distortions lamellar pattern is always stable whenelit<( ,<e™* (see
00sk /7 4 Appendix C 2. This is in agreement with the result of Ren
’ and Wei that in this situation the lamellar patterns are all
0 ' ' ' ' local minimizers of Eq(29) [47].
0 0.1 0.2 0.3 0.4

Solving Eq.(78) with k=0, we obtain that the instability
R, /L:p is realized whenl,= Ly, where LJ i; the period of the
lowest-free-energy lamellar pattern given by EG0) (see
FIG. 5. The stability diagram for the hexagonal pattern with Appendix C 2. This result was also obtained by Yeung and
0=24/2/3. Thedashed line corresponds to the hexagonal patterrPesai in the casé=0.5[28]. Thus, the lowest-free-energy
with the lowest free energy given by ES). lamellar pattern isnarginally stable with respect to the wrig-
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patterns already present in the system react to changes in the
external parameters? In principle, to answer these questions
we need to specify the dynamics of patterns. This question is
quite complicated and significantly depends on the particular
system, despite the universality possessed by the free energy
(for various examples, s¢&,28,37,69. However, if the dy-
namics of the system idissipative it will result in a de-
crease of the free energy of the patterns with time. Note that
since the free energy functionals in Eq5) and (29) are
bounded from below in systems of finite volume, in the ab-
sence of noise the patterns must evolve to local minimizers
of the free energy. To mimic this behavior, we will use the
FIG. 6. Wriggled lamellar pattern. simple gradient descent dynamics defined by

gling instability. This fact has a simple geometric interpreta- 9 _ — i (82)

tion, and should in fact be true for any system with long- at o’

range competing interactions. Indeed, consider a small

wriggling modulation of the lamellar pattefiFig. 6). Inside  whereF is given by Eq.(5). This evolution equation is, in
the dashed rectangle the stripes can be considered as straighgt, applicable to a number of systems with nonconserved
but rotated by a small anglé. This pattern can be again order parametefl1,2,4,27,34 However, our conclusions
considered as a lamella, but with a smaller periﬁg should not qualitatively depend on this particular choice,
= L,cosd. The free energy of the system in this case will Since the evolution of patterns will generally be guided by
increase if,< L%, since the free energy is a decreasingthe free energy landscape and the morphological instabilities
function of £, for these values of,, or decrease ifC, of the patterns. Note that E(B1) is equivalent to a reaction-

>£; , since there the free energy is an increasing function offiffusion system with a fast inhibitor and can be reduced to a

Ly. The caseCp=Lﬂ|,c is marginal. Therefore, the lamellar free boundary problem in the limét— 0 [56], which, in tum,

pattern will be unstable with respect to wriggling i, ;srthta%adlent descent dynamics for the interfacial free en-
> Ly, or stable otherwise. gytaol

It is interesting to note the analogy between the lamellar
patterns and smectic-A phases. In smectics the long-wave A. Nucleation
modulations of the layered structure cost free eneidy The first question is how the domain patterns form in the
oc(BkﬁnL Klkj)|uz(k” k)%, whereu,(k .k, ) is the ampli-  system in the first place. As was discussed in Sec. Il B, at
tude of the layer displacements modulated by wave vectorsufficiently high temperatures abovie. the homogeneous
kj andk, along and perpendicular to the layers, respectivelyphase is the only equilibrium state. In the mean-field model
[42,68. This is precisely what we get for the pattern with of Sec. Il B the homogeneous phase becomes unstable as the
L,=Ly in the limit of smallk; .k, (see Appendix CR Fur-  temperature of the system is lowered. A0 this happens
thermore, in view of this analogy the long-wave instability of when e(7)=€e,~1. On the other hand, when the original
lamellar patterns withC,> L7 is equivalent to the Helfrich- (unscaledl value of ¢ is different from 0, the homogeneous
Hurault instability of smectics under stretching deformationsstate will remain stable even for lower temperatures. The

Also note that under the influence of thermal fluctuations thegreaterthe{unscaledvalue 0f|$| the lower the temperature
s ) ,
lamellar pattern withC,=Ly is subject to the Landau- a¢ \hich the homogeneous phase will lose its stability. This

Peierls instabilif[y[42,68. We would like to point out, how- oo that forv<1 the homogeneous phase will typically
ever, that all this does not apply to metastable lamellar Pat:amain stable in a range offor which e<1.

terns with £,<L{, which, according to our calculations,  op the other hand, as was shown in Sec. IV A, when the
have finite shear modulus. scaled value of¢| is less tharj¢,|=1— &, in addition to
the stable homogeneous phase the system can support stable
V. SCENARIOS OF DOMAIN PATTERN FORMATION domain patterngspot3. In a narrow range of ¢y <|d|

The analysis in the preceding sections shows that pattern§|¢b|’ where| ¢y =1- oy, the spolt5 will t?e energetically
in systems with long-range Coulomb interactions are venpinfavorable. On the other hand, in a wide range|#f
sensitive to the parametegsand e and can undergo various <|®m| the domain patterns will have lower free energy than
instabilities. As the temperature is lowered, batiand || "€ homogeneous phase. In the mean-field model of Sec. I B
rapidly decrease; see, for example, EG8.and (6). In this  the homogeneous phase remains stable as longsas
situation a small variation of the temperature may trigger>|¢¢/=1/y3 for e<1. Therefore, at¢¢|<|p|<|dn| the
complex spatiotemporal behavior in the system. Now wehomogeneous phase risetastable
would like to ask the following questions: How do patterns The metastability of the homogeneous phase implies the
form in an initially homogeneous system and how do thepossibility of nucleationof the domain patterns as a result of
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thermal fluctuations. It is natural to assume that the nucleatpattern will form as a result of a single nucleation evisee

ing droplet in two dimensions is a sp(t is localized in  Sec. V B. At the same time, the nucleation barrier decreases
space and radially symmetyid_et us consider the nucleation with temperature. Ao~ 1 the free energy barrier becomes
of positive domains from a negative homogeneous phase. IAF 4,,~1 [see Eqs(43) and (49)]. So in the renormalized
this case the value Q}is negative, so, as the temperature of model of Sec. 1l D nucleation becomes meaningless for these

the system decreases, the valu%hs well ass [recall Eq. values of §, and one can talk about thastability of the

(44)], increases. As was shown in Sec. IV A &t &, there homogeneous phase. Let us point out that der d., the
are two spot solutions. The spot with radifs="R,, is in annulus should also be considered as a potential candidate
. n

unstable equilibrium with the homogeneous phésee Fig. for the nucleation droplet. Comparison of the free energies of
1). Therefore, it is this solution that should play the role of " anrllulus ak';‘d alspot ?f radilt, shows, however, that the
the nucleation droplet in our system. Note that the radius ofPOt always as lower Iree energy. .

the nucleation dropleR, <R, and is bounded for a, in Let us_con5|der nupleatlon in the renormahz_ed model of
contrast to systems with first-order phase transitions. This i$€¢- !l D in more detail. Depending on the cooling rate, sev-

a distinctive property of systems with long-range Coulomberal situgtions are possiblg. When the cooling rate is very
interactions small (with the characteristic time scale much longer than

According to Eq.(43), for & close to s, the free energy Toue)» the system will have enough time to equilibrate and

cost of the nucleation droplet igpart from a weak logarith- will get fiI.Iet-j W_ith spots. I_f the cooling rate is such that its
mic dependende characteristic time scale is comparabler., the system

will enter into the aging regime. Notice that these phenom-
AF grop™ e Bs>1. (82  ena will occur only in a narrow range of temperatures at
which 5~ & .
The situation will change qualitatively whea> é.,,
Note that in three dimensions the same arguments giv@hen the temperature falls below the value at which the spot
AFgropce #*>1 also. Since this free energy barrier is high, becomes unstable with respect to a morphological instability.
the arguments of nucleation theory apply here. In this case a single nucleation event will produce a spot
In the narrow range o0b,< <4y, a nucleation event which will further develop into a more complex extended
will result in the formation of a stable spot whose free energypattern, filling up the whole systefsee Sec. V B The time
is higher than that of the homogeneous phase. Therefore, ktale of this process is. and is much shorter thaf,, S0,
this situation the spot itself will be metastable and will decayif the cooling rate is sufficiently fast, only a single nucleation
back into the homogeneous phase. However, whismotin  event is enough to create a pattern that will fill the entire
the immediate vicinity o, the free energy barrier the spot system. This will also be the case in the mean-field model of
has to overcome to decay will also scale as in 83), SO Sec. Il B. Finally, if the cooling rate is very fast, the system
such spots will be long-lived metastable states that can b@ill not have enough time to nucleate even a single domain,
excited by thermal fluctuations. Therefore, the thermody-so it will enter the region in which the homogeneous state of
namic equilibrium state of the system for these parameters ighe system is unstable. In that case a pattern consisting of
a rarefied gas of noninteracting spots. In this situation thelomains whose characteristic size is comparable with the
spots will play the role ofjuasiparticles correlation length will form spontaneously and then evolve
When & exceedsd,, the spot becomes thermodynami- toward equilibrium via coarseningee Sec. V €
cally more favorable than the homogeneous phase.dgor If small local inhomogeneities exist in the system, they
<0<, the spots with radiu® are stable, so a nucleation can work as nucleation centers. One could, for example, have
event will result in the formation of a single stable spot. This, gjightly nonuniform distribution of across the system. If
is another distinctive feature of nucleation in our system:neir amplitude and size are not very large, the nucleation
sufficiently close tod, a single nucleation event will resultin - eyents will produce stable spots that will be pinned to the
the formation of only one spot. However, in order for the |ocations of these inhomogeneities. If, on the other hand, the
system to come to the equilibrium, it has to become filledympjitude and size of these inhomogeneities are large
with spots, so the transition from the metastable homogeanough, the spots that nucleate at their locations may be
neous phase to the equilibrium multidomain pattern requiregnstable with respect to the morphological instabilities, so

many nucleation events. Thecifé events will occur on an exhey can work as nucleation centers for spatially extended
tremely long time scale~e®*" o> 7., wherec=1 is a patterns.

constant and is the characteristic system relaxation time.

Dynamically, this phenomenon can be identified agng
[70]. B. Growth of complex patterns

According to Eq.(49), as the temperature decreases, and As was discussed in Sec. V A, typically a spot that forms
therefore¢ and§ increase, the radius of the nucleation drop-as a result of a nucleation event will be unstable with respect
let gets smaller(in scaled units while the radius of the to deformations of its shape. After such a spot is formed, it
stable spot becomes larger, sofat &;, the spot with radius  will start to grow into a more complex pattern on the time
R will become unstable with respect to the morphologicalscale of 7<7,,. Therefore, in the process of growth of
instability (see Sec. IV ¢ In this case the nucleation sce- such a spot thermal fluctuations become unimportant. A typi-
nario will change. Instead of a single spot, a more complexal evolution of a pattern in this situation is shown in Fig. 7,
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t=0

FIG. 7. Formation of a complex pattern as the result of instabil-
ity of a spot. Results of the numerical solution of E§1) with €
=0.025 andg¢= —0.6, with no-flux boundary conditions. The sys-
tem is 40x 460.

=580 1=1900 1=3400 phology is that of the stripe. Nevertheless, for larger values

'l P m P of § the spot morphology starts to compete with the stripe
Q morphology. This is because for largeinterfaces will tend
.1 ° l to split, so the forming labyrinthine pattern will becordis-
connected57]. When the value oé is decreased, one should
-ﬂ find coexistence of both spot and stripe morphologies in the

patterns formed as a result of the destabilization of a spot
(Fig. 7). So all the processes associated with the dynamics of
the interfaces, fission, elongation, tip splitting, fingering, and
wriggling [7], should generally be important for the evolu-
tion of a single unstable spot.

which shows the result of the numerical solution of E&fl)
in this parameter regime. At long times, the system evolves
to a disordered metastable equilibrium pattern. If the system is quenched deeply into the region in which
The evolution of unstable localized patterns within thethe homogeneous phase is unstable, at first a small-scale
framework of Eq.(81) and the corresponding interfacial dy- multidomain pattern will form. Since the effect of the long-
namics problem was studied in detail[45,56,57. The so- range interaction can be seen only on the length sBale
lution of the interfacial dynamics equation shows that for=e 2° initially the long-range interaction will be negli-
sufficiently large 8 the morphological instability of a spot gible. Therefore, immediately following the quench the pat-
will always lead to self-replication of spof§6]. As a result tern will undergo transientoarsening Note that in systems
of the instability, the spot grows more and more distortedWith nonconserved order parameter this transient coarsening
until at some point the interfaces touch, what leads to theénay proceed at arbitrarp, since the long-range interaction
pinch-off and splitting(fission of one domain into two. The ensures the conservation of the total amount of the order
daughter domains move away from each other, and the prggarameter. For example, in the case of 84) the interfaces
cess of splitting repeats itself. This self-replication processf the domains will be driven by curvature subject to global
will continue until the whole system is filled with the multi- coupling, so the characteristic radius of the domains will
domain patterri56,57. obey the standart!’? law independently of the volume frac-
Note that these results hold in the asymptotic lirait tion [37,71,72. As a result, the characteristic size of the do-
—0, in which Rg~e ?P<e 1, so the screening effects mains will grow until it becomes comparable with the equi-
may be ignored. On the other hand, for reasonably small buibrium size of Eq.(14). Then the long-range interaction will
finite e the effective interaction may get truncated at dis-stabilize the pattern, so at some point the coarsening will
tances comparable to the sizes of the spots. In particular, &&comearrested(see als$26,73). This scenario is observed
the spots move away from each other after splitting, the inin experiments on thin diblock copolymer filni4]. Note
teraction between the distant portions of their interfaces mayhat this coarsening can be viewed as a consequence of the
get screened, so the spots will remain connected 8fyipe  repumping instability discussed in Secs. Il B and IV D.
as they move apaiisee Fig. 7,t=580). For §;,< 5= &3 When the temperature in the mean-field model from Sec.

(the latter corresponds to the value &fat which the spot || B is slowly lowered, so that the value df| becomes

becomes unstable with respect to the-3 modg the tips on lower than|$c|, the homogeneous state becomes unstable

both sides of the stripe will be stable, so as a result of thg,,, respect to fluctuations with wavelengih- e~ 2 (see
destabilization a spot will transform into a stripe spanningg.. | B. Thus, at the threshold of the instability domain

the system. Note that according to E§3), this can happen pattern with characteristic size A will start to form[2,57].

only whené> &, , when the stripe is energetically favorable. ; - P .
According to Eqs(54) and(65), for not very small values of ;rles?zgomalns will still be smaller than the equilibrium size

. . he i ili ill be foll i
e it may be possible to havé,,~ 6, . Note that for these € ™ so the instability will be followed by coarsening,

. . - ; just as in the case of the renormalized model and in the
values of§ the newly grown stripe will destabilize with re- _ —
spect to wriggling and fill up the entire space of the system.”“"J"’m'f“?Id model not plose .W’C' . .
The results of the simulations of E1) displaying tran-

Furthermore, the stripe segments with the highest curvature . A .
may become unstable with respect to fingefi&d]. This is sient coarsening are presented in Fig. 8. In_aII these simula-
what we see in the numerical simulations of Egfl) in this  tions the initial conditions were taken as= ¢ plus small
parameter range. Whes= 8., the tips of a stripe growing random noise. One can see that the morphology of the pat-
as a result of a splitting event can further destabilize withtern is determined by the volume fraction of the positive
respect to then=3 mode, which will result in tip splitting domains. Whenrb=0 the pattern that forms at the end of the
and the formation of éabyrinthinepattern. Note that similar simulation is a bicontinuous domain pattern similar to pat-
results were obtained in the case of reaction-diffusion systerns forming in the process of Ostwald ripening after the
tems with weak activator-inhibitor couplifg?5]. critical quench[41]. When there is a small asymmetry be-
From the arguments above it is possible to conclude thatween the positive and negative domajifgy. 8(b)], the pat-
following a nucleation event at not very far fromé;, and  tern at the end of the simulation looks like a collection of
for not very small values o€, the dominating pattern mor- disconnected spots and stripes of different shapes and sizes.

C. Coarsening and disorder
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FIG. 8. Coarsening of the do-
main patterns at different values
of ¢: =0 (a), p=—0.2 (b), ¢
=—0.5(c). Results of the numeri-
cal simulations of Eq(81) with
€=0.025 and periodic boundary
conditions. The system is 400
X 460.

When the asymmetry between the positive and negative daninimize the free energy. Thus, a typical pattern that should
mains is strondFig. 8c)], only the spot morphology sur- form as a result of a fast quench must be disordered.
vives, and in the end the pattern is made of a polydisperse Once metastable equilibrium is achieved, the patterns will
mixture of spots. evolve by thermally activated processes. Indeed, in order for
Let us emphasize that the patterns that form at the end & pattern with lower free energy to form, some of the do-
the simulations of Fig. 8 do not change in time, that is, theymains may have to disappear and some may have to be cre-
are metastable. Each of these patterns is completely disoated, since the topology of different metastable domain pat-
dered, and isn no wayclose to the perfectly ordered patterns terns is not generally the same. This requires overcoming
that are expected to be the global minimizers of the fredarge free energy barrierAF<e~ 23 Once again, on the
energy. In the absence of noise the shape of the pattern titne scaler,,~€*" the system will enter the aging regime.
long times is determined only by the random initial condi- To mimic this situation, we performed a numerical simula-
tions. Numerical analysis of E¢81) shows that by changing tion of Eq.(81) with a special initial condition in the form of
the random seed which determines the initial condition at tha metastable hexagonal pattern with a single bigger spot in
start of the simulation one will get totally different meta- the centefFig. 9). As time goes on, the pattern tries to adjust
stable patterns in the end, so the system is in fact very sene accommodate a defect it is presented with. Let us empha-
sitive to the initial conditions. This also suggests that, insize that, according to Fig. 9, the defembpagatesto dis-
addition to the ordered equilibrium patterns, there exist @ances much larger than the characteristic size of the do-
huge number of irregular metastable patterns which locallynains. In the end, the pattern becomes completely

FIG. 9. The effect of a large-
scale fluctuation on a hexagonal
pattern. Result of the numerical
solution of Eg. (81) with e
=0.025, ¢=—0.2, and periodic
boundary conditions. The system
is 400X 460.
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disordered, with no traces of the original hexagonal orderingtemperature is lowered, since there is no repumping instabil-
Let us now ask a different question. Suppose that we ality in this case. This means that a metastable lamellar pattern

ready have an equilibrium domain pattern in the systemis more likely to survive after a slowbut fast compared with

What happens if at some moment the temperature of the,,) critical quench.

system is raised or lowered? This question is related to what

happens if the system is gradually cooled below the transi-

tion temperature. Suppose the system is initially occupied by

the lowest-energy hexagonal patt¢ana given temperature In this work we have presented an energetic approach to
When the temperature of the system is lowered, the values @he study of inhomogeneous statpatterns in systems with

€ and| ¢| will decrease, so this pattern will no longer corre- competing short-range attractive and long-range repulsive
spond to the equilibrium pattern. To see this, let us writeCoulomb interactions. Our approach becomes universal for
down the length scales in EQL6) in the original(unscalel  systems with weak Coulomb interaction in the vicinity of the
variables. Using the mean-field scalipd2] and the defini- microphase separation transition, thus allowing us to treat a
tion of € from Eg. (6), for example, we obtain variety of physical situations which involve competing Cou-
lomb interactions.

By the very definition of domain patterns, the width of the
domain wall should be much smaller than the characteristic

R~a 7Y L~a Y3712 (83)  size of an individual domain. This requires that the Coulomb
interaction be sufficiently weak in order for these patterns to
One can see from here that if the temperature is abruptlipe feasible. On the other hand, one can take advantage of this
lowered the equilibrium siz&R will increase. At the same and study these patterns in the asymptotic limit of infinitely
time, thephysicalsize of the pattern will remain the same, so weak Coulomb interaction. This poses a challenge, however,
the relative size of the pattern will decrease with respect t@ince this interaction is a singular perturbation to the short-
the new value oR. range interaction.

If the temperature drop is sufficiently small, the pattern We have performed an asymptotic analysis of the free
will remain metastablésee Sec. IV ). However, when the energy in the limit of vanishingly small strength of the Cou-
temperature falls below a certain critical temperature, thdomb interaction €—0). Our main finding is that in this
pattern will becomeainstablewith respect to repumpin@ec.  limit the energetics of the patterns are described by the loca-
IV D). The repumping will lead to the collapse of a fraction tions of the domain interfaces. In fact, an important hierarchy
of the domains and growth of the rest, so effectively this will of length scales appears in the sys{diq. (16)]. Our second
be equivalent to an increase of the characteristic interdomaimajor observation is that the characteristic size of the do-
distance. The resulting pattern will again be metastablemains in a stable domain pattern has to scale &§. This is
Note, however, that it will necessarily become disordereddifferent from similar estimates based on the properties of
since randomness is involved in the destabilization of theglobal minimizers of the free energy18,35,43,58,6R What
hexagonal pattern. When the temperature gets lower, thee showed in Sec. Il B in general and Secs. IV C and IV D
metastable pattern will again destabilize, and produce a ne¥or particular patterns is that, unless this scaling is obeyed,
metastable pattern with a greater characteristic domain sizéhe pattern cannot belacal minimizer and thus thermody-
This process will go on. Thus we will have a stepwise relax-namically stable.
ation process creating disordered patterns. A similar effect In our analysis, the starting point was the mean-field free
will be realized if one takes a hexagonal pattern as the initiaenergy functional from Eq(1). We chose to perform our
condition and gradually raises the temperature. At some maosalculations using Eq(5) for two reasons. First, this is a
ment the pattern will become unstable with respect to theiniversal functional that is obtained in the vicinity of the
asymmetric deformations, so domains of complex shapemiicrophase separation transition and therefore may be ap-
will start to form, thus effectively making the distance be- plied to a variety of systems. Second, using this functional
tween the patterns smaller. Such a metastable domain pattenre could obtain very explicit results, making our presenta-
will further destabilize at higher temperature. These conclution more tractable. It is not difficult to see that all our cal-
sions are confirmed by numerical simulations of Egl)  culations can be extended to the more general functional
[48]. Note that these arguments imply that disordered patfrom Eq.(1). The only difference is that in the case of K.
terns will form even as a result of a slawut fast compared the “positive” and “negative” domains may have asymmet-
to 7hue) quench below the transition temperature. All thisric linear response coefficienks. instead of a singl& in the
indicates that disorder is an intrinsic state of the systems witlsase of Eq(5). Nevertheless, in the case of H4) we can
long-range competing interactions. This is also seen in exehoosex= k. f+ k_(1—f), wheref is the volume fraction
perimenty7,74-74. of the “positive” domains(similar ideas were used {60]).

Similarly, when one starts with a lamellar pattern andindeed, sincec is responsible for screening, we can average
raises the temperature, the pattern will become unstable witthe response of the order parameter on the scale of the do-
respect to wriggling(see Sec. IV . If the temperature is mains, which is much smaller than the screening leg¢c.
further increased, corrugation instability and fingering will Il B). The new definition of also takes into account that to
follow. Notice that, in contrast to hexagonal patterns, theleading order the(locally) averaged value of the volume
lamellar pattern will always remain metastable when thefraction f is independent of space. The latter can be easily

VI. CONCLUSIONS

I~|7-|_1’2, AN~ V4
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seen from the analog of E¢36) obtained from Eq(1), if parable with the domain size R may propagate its action to
one integrates this equation over a closed volume of siza much larger distance L (see Fig. 9. It would seem natu-
e YP<<e1, uses the Gauss theorem, and takes into acral to expect that, even if the system is in the lowest-energy
count that¢ is nearly constant in the domains andy|  state, a sufficiently strong fluctuation will frustrate a region
~ IR~ €*3 (see Sec. I ¢ much larger than the size of such a fluctuation, which may
Let us point out that the interfacial representation of thelead to increase of the degree of disorder with time. In this
free energy given by Eq29) which we obtained from the sense systems with long-range competing Coulomb interac-
free energy functional in Eq(5) in the asymptotic limite ~ tions can be considered asructural glasseq30,37. We
—0 may in fact itself form a basis for studying the domain emphasize that _in these systems the disorder is self-induced.
patterns in systems with long-range Coulomb interactionsAS We showed in Sec. V C, these systems can age on very
provided that the driving force for the formation of these long time scales and exhibit complex relaxation phenomena
patterns is the competition of the Coulomb energy with theeven in the case when the equations of motion for the pat-
surface energysee, for examplg;12,15,39). In this formu-  terns are very simple. Note that in a recent paper Schmalian
lation our results can be applied to an even wider range oknd Wolynes came to similar conclusions on the basis of
systems, which may not generally possess a free enerd$€ir replica analysis of Eq5) treated as an effective Hamil-
functional, like the one in Eq.(5). For example, our tonian [36]. Their calculations suggest that the number of
asymptotic results should apply to ferromagnetic nearesthetastable states grows exponentially with the system’s vol-
neighbor Ising models frustrated by Coulomb interactionsime, leading to arideal glass transitionbelow the mi-
[30,32—34,36 We argued that in these systems thermal fluc.crophase separation transition temperature. Also note that
tuations should only renormalize the effective coupling con-Spin systems frustrated by Coulomb interactions have been
stant of the Coulomb interactions without qualitatively af- Proposed for studying glassy behavior in the supercooled
fecting the overall picturéSec. Il D). These predictions are liquids[79].
difficult to compare with recent Monte Carlo simulations
[33,34] because of the limitation of the latter on the system’s
size. Nevertheless, the result[@8] about the location of the

microphase separation transition, which gives-«*, with The author would like to acknowledge many valuable dis-
x=0.25-0.35, is not far from our prediction from Sec. Il D cussions with E. Demler, W. Klein, and V. V. Osipov. The
of 7.~ a%*°for the three-dimensional Ising model. Note that algebraic calculations of the paper benefited from the use of
we do not expect to find the avoided critical behavior dis-mMATHEMATICA 4.0 software.
cussed in the context of mean-spherical modiéR.

An interesting question arising in systems with long-range
competing interactions is the nature of the thermodynamic APPENDIX A: FREE ENERGY
ground state below the microphase separation transition tem-
perature. We emphasize that our stability analysis of stationi—nt
ary patterns only ad_dresses small—sc_ale thermal fluctuatlonﬁbm Eq. (24). Let us first show the derivation of E¢28)
so we are really talking aboutetastabilityof these patterns. from E :

: . g.(27). In view of Eq.(24), we have

At the same time, rare large-scale thermal fluctuations may
lead to nucleation or transitions between different metastable
patterns(see Secs. V A and V CIn this sense, if there are 1
enough metastable pattgrng, the global minimizer of the in- Fiong rangezzf d( g ) . (A1)
terfacial free energy, which is presumably a highly symmet-
ric periodic patterri18], has little to do with the thermody-
namic ground state of the system. According to Eq.(24) with ¢¢=*+1, we have

In fact, we see that the stationary metastable patterns that
form in one way or another are typically highly disordered
(Sec. V Q. Although the basic interaction between different o
domains is repulsion, the domains rarely arrange themselves y=—€e*(1+ ¢)f di%' G (x—x")
in a close-packed fashion. The reason for that is that, even
though the interaction between the domains is repulsive, the
range of this interaction, which is determined by the screen- +262j d%’ G (x—x), (A2)
ing lengthL~¢" ! is much greater than the characteristic f+
interdomain distanc®~ e~ %, So a single domain interacts
simultaneously with many other domains and not only withwhere the first integral is over the whole space. This integral
its nearest neighbors. Therefore, the optimization of the freés equal to 1/€«)?, according to Eq(25). Substituting this
energy becomes a collective problem, and a huge number dfack into Eq.(Al), after simple algebra we arrive at Eq.
disordered metastable states appears. Then, the configur@).
tional entropy of these metastable disordered states may Let us now derive Eq(29) from Eq.(28). Using Eq.(25)
overwhelm their energy disadvantalgt,78. and applying Gauss’s theorem, we calculate the long-range

Furthermore, a large-scale fluctuation whose size is conterm:

ACKNOWLEDGMENTS

Here we present the details of our manipulations of the
erfacial free energy from Eq29) and the effective fields
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2
ZEZJ d ddx’Ge(x—x’)=—zj d%d%’ (8D (x—x")+ VG (x—x"))
a.Jao, «“Ja,Ja,
2 d 2 dy,’ v ’
=— | d%+—]| d% ¢ dSn-VG(x—x")}
k“Ja, ko,

2 .2 o
_ . _ dy, /v 7. v’
X3 § dS(N-X)— f}g dsfmd X'V’ {NG (x—x")}

2 s 2 - -
=médS(n-x)—FfﬁdSédS’(n'n’)GE(x—x’). (A3)

Let us now derive Eq39). Using Eq.(25), Eq.(A2), and p(X') 5
Eq. (2) to express thes function in terms ofG, we get X jg ds fo dz'[1-2H(x")z' +K(x")z'“]
1+¢ 2 nz—x'+n'z’
Y= — 2¢+;2J ddX/VZ{Ge(X_XI)_G(X_xl)} XG(X—nz—=x"+n'z"), (AB)
K [
1 E ) where we used the fact that with our definition of the sign of
_ + T the principal curvaturesi‘x=(1—k;z)(1—k,z)dzdS=(1
2 2 fﬁ dS{n"-V'(G.~G)}, (A4) —2Hz+Kz?)dzdSat a point distance away from the in-

terface. Retaining only the terms up to second order &md
where we applied Gauss'’s theorem. using Eq.(A2), we obtain
Now let us calculate the first and second variations of the
interfacial free energy. Lgi(x) be a normal displacement of
the interface at point on the interface, which is positive if AFong range™ — 2 % dS¢p+2 % dS Hyp?
the displacement is into the positive domain, and vice versa.

Note that according to our definitiop>0 corresponds to A=

chrinking of Y .. g n P + fﬁdsm.w)p%zezjgdsagds'
Up to second order ip, the change of the surface free , ,

energy AF ¢, is given by a well-known formulgsee, for XGx=x")p(X)p(x"), (A7)

example[80]):

where we expanded in a Taylor series irz. From this, and
oo - ) Eqg. (A5), we get
AFgy=—200 ¢ dS Hp+7 dS(|V.p[*+2Kp?),
(A5)
OF=—-2 ¢ dS(ogH+ ¢)p, (A8)
whereH andK are mean and Gaussian curvatures at a given

p_oint of th_e interface, _respectively, and denotes the gra- 5o the critical points must satisfy E(B8). Similarly, using
dient restricted to the interface. The mean curvature is pOS'Eq. (38) in Eq. (A7), we obtain

tive if the positive domain is convex. The change of the
long-range contributions to the free energy is given by the

integral over a thin layer of thicknegs over the interface. PF=0y 3€ dS(|V, p|?+2Kp?) + § ds[2(n- V)
According to Eq.(28), we have

2(1+ ¢ p(¥) —4goHA p?+4€? ff deg ds
AFlongrange:(K—zd’) 35 olsf0 dz(1-2Hz+Kz?) aoHyp
XG(X=x")p(X)p(X"), (A9)
o p(x) B 5
ae Sg deO dz(1-2Hz+Kz") which in view of Eq.(39) coincides with Eq(41).

X f d’' G (x—nz—x") APPENDIX B: OPTIMAL PERIODS OF HEXAGONAL AND
Q@ LAMELLAR PATTERNS

+2¢2 é dsfp(X)ddl—ZH(x)z+ K(x)Z2] Here, we give the Wigner-Seitz calculation of the periods
0 of hexagonal and lamellar patterns.
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1. Hexagonal pattern

We start with a hexagonal pattern. Consider E8) on a disk of radiu§€=31’4£p/\/27-r, with no-flux boundary condi-
tions. Neglecting the terna?«2y and using Eq(56), we write

d’y 1d
dTrw'FFd—lf‘l‘Ez{e(Rs_r)
— B(r—Rg)—2f+1}=0, (B1)

wherer is the radial coordinate ang{x) is the Heaviside step. The solution of this equation that satisfie€3Bpis given by

1 1
E.sz{(f—1)r2+732f(1—f)}— annflf*”% O<r=<Rq,

=9 1 1 (B2
Eez{frz—f2R2+fR2(In fR?2-2 Inr)}—EUOR’lf’l’Z, R<I<R.

where we took into account th:ﬁt=R§/R2. According to  s0, minimizing this expression with respectRowith fixedf,

Eq. (27) with ¢= =1 and Eq.(A2), the long-range contri- we obtain that the minimum is attained /At="R*, where
bution to the free energy can be computed as

(B5)

_ 20 3
F —(1—f)J z,bddx—fj d9x *_ 231/ 0
ong range a, Q. R € f TInf—1 .

Re R
=27r(1—f)f rz/f(r)dr—Zm‘f ro(r)dr.

0 Rs Using the definition ofR in terms of £,, this equation is
(B3) rewritten as Eq(58).

Combining this with the surface energy,+—2moyRs and

using Eq.(B2), we get that the free energy per unit area is 2. Lamellar pattern
Fo 200f1’2+ R *f?
mR? R 2

(f—1—Inf), (B4) Similarly, for the lamellar pattern centeredxat 0 we get

1
2(f—1)x%+ Zezfz(l—f)ﬁz, 0=<x</LJ?2,

Y= 1 (B6)
€2 fx?— e f Lox+ 2 €Xf2(2—1)L2, LJ2<x<L/2,

where we used the fact that L£s/L,. Calculating the free 1. Hexagonal pattern
energy per unit length, we get We begin with the hexagonal pattern. We define
F 200 1, ,, ) 2
P _ 2R, 27 27 . o
£p l:p + 66 Epf (1-1)~. (B7) Ry (K)= = S 2 j dgof de’eme=im’e +ik-Rp,
n 0 0

Minimizing this expression with respect t6,, we obtain )
Eq. (60). XG(Ryt+r(e")—r(e)), (C1

APPENDIX C: STABILITY OF HEXAGONAL AND

wherer =(R<0sp,RSing) and the summation is over
LAMELLAR PATTERNS (¢)=(Rsc08pReSin¢)

the lattice:R,=n;a; +n,ay, wherealzécp(\/il) anda,
Here we present the details of our calculations of Eqs= %Cp(\/§,—1). Using the Fourier representation Gf.(x
(74) and(798). —x"), we obtain
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262R5 2m 2 I aime—im’ ¢’ 2 ik-Rp
Rmm/(k)Z ; o d(p o d(p e'me ¢ mm’(k) 46R2 e m
f dk’ e Ra=iK' [Ry+r(e') (o)) ©2 szwg_ﬂeiqmncoswﬁn)
(2m)? [k'|?+ e?k? 0 em
X fzwd_(peimwﬂq?zscos(qoﬁ)
2 0 2
:26 RS 2 fzwd¢J27d@'eim¢_im/¢/
o n Jo 0 XJZWdQD e im’ o' —iqRscos(e’ — 9)
ailk+k) - (1(9)=1(¢")) o 2m
: (C3)
2, 2.2 . o d
|k+Kn|*+ €k — 4R e|k~RnJ' qzj_eg’(z
n 0
wherev =L£733/2 is the area of the Wigner-Seitz céthe y 27d9 iR [cos9—9,)+i(m—m')o
sum is now over the reciprocal latticeand we took into 0 27re
account that,e'* k) Rn=(472/0) =, 6(k" —k—ky). o
We proceed: XM ™ I (qRe) I (ARs), (CH
whered, is the angle betweeR,, and thex axis. Calculating
2€*Rs 1 the integral overd, we obtain
R (K) = ——= 2
[k+Kp|?+ €2k

’ =42 ik-R,+i(m—m’)d
><J2 deeimetiktkn) r(e) R (K)=4e€ Rs; ek Ro+i(m=—m’)d,
0

v 27Td(p,e—imup’—i(|<+|<n)-r(<p’) J _2+_6272 m—m (A Ral)
2 XJm(qu)Jm’(qu)- (CG)
_ 2€"Rs E 1
T N | k+kKy 2+ €2k? In calculating R,y (K), to leading order ine one can
. neglect the tern&?«? in the denominator of E¢(75) or Eq.
Xf deime-+ilk+knlRecoste— i) (C6). Settinge to zero, we can calculate the diagonal ele-
mentsR,,,(k) for m=2. After some algebra
2
< dqorefim’(,a’7i\k+kn\RSCOS(¢'7ﬂk+kn) 262Rs
0 Rinm(k)= m (C7
8me’Rq el (m=m") Dk,

im
AL where we took into account that the integrals in EZg) all

vanish forR,#0. Thus, the diagonal elemen®, (k) are
+ky| Ro)i —m’Jm,(|k+ Kol Rs), (C4) independent ok and coincide with those of a single spot.

Caution, however, is necessary whéh<e. In this case

the kn=0 contribution to the sum in Eq75) will be singular

where we introduced the angi®, . between the vectok ~ form,m’=0,%1. Taking only the contribution df,=0, for

+k, and thex axis and used the mtegral representation oflk|<1 we obtain
the Bessel function. After a few algebraic manipulations, this

v N |k+ky| 2+ €2k?

equation can be converted to E5). Using the reciprocal 16me? R, 1
lattice  vectors  b;=27£,%(1/y3,1) and b, Ro oK)= 23 3 (C8)
=2mL,*(13,-1), sok —n1b1+ n,b,, this sum can be LoV3 \[k[*+ex

evaluated numerically by truncating the summation at suffi-

ciently large|ny| and|n,|. where we expanded the Bessel functions in a Taylor series
An alternative representation f&,,,y (k), which allows and retained only the leading term. Now, to calcuR{g(k)

us to explicitly calculate its diagonal elements, can be obfor k=0, note that if one formally sets=0 in Eq.(75) with

tained by performing the summation in real space, rathem=m’=1, one should get the result of E¢C7). On the

than over the reciprocal lattice. We rewrite EG2) as other hand, fok=0 the term withk,=0 does not contrib-
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ute, while for othek,, the terme?«? in Eq. (75) is a regular  (+]4€*G|+)=(—|4€’G|—)
perturbation and can be neglected. So to calcugtgk) in
the limit |k|—0, one has to subtract the—0 limit of the

"
—k|£ nHianﬁ
k,=0 term in Eq.(75) from Eq.(C7). As a result, we obtain 2 e °

n=—w

262
k-

262eik”£p( e2k£p_ 1)

= . . (C10
47752’]32 k(e(k+IkH)Cp_ 1)(ek£p_ elk”,Cp)
R11(0)=2€*Rs— H €9 4ng
(+]4€°G ] —)=(—4€’G|+)*
262 _
where we expanded the Bessel functions in a Taylor series Sl > e KL Lyl +iknL,
and retained only the leading term. K n==e
SinceRg (k) > |Rmny (K)| for m,m’ #0 and smallk|, the 2 2eiK|Lp—KLs
m=0 mode is the eigenfunction of the operaltoin Eq. (42 = "
for vanishing|k|. The analysis of Eq(74) with m=m’=0
andRg o(k) from Eq.(C8) shows that the hexagonal pattern @2KLs eklp
is stable with respect to the long-wave modulation of the X\ 2ot Tz ,
spots’ radii, as long a£, is large enough. er—ellte e —1
(C11)

where we introducedt= \/e’°x°+ k-, used the fact that the
Fourier transform of the Green’s functida, in the trans-
Let us now turn to the lamellar pattern. Calculate the maverse direction is given by expk|z—Zz'|)/2k, and summed
trix elements of 4°G (x—x’) between the right' +”) and  geometric series. After some algebra, thex2 matrix
left (“ —") walls of the stripe in the zeroth period for a given R(kj,k,) formed by these matrix elements can be trans-

2. Lamellar pattern

modulation: formed into the following form:
|
R(k K, )= 4€e2eklp sinhkZ,, SiNk(L,— L) ]+ e™*I“psinhk L
(pkeu)= k(1— 26"Crcosk L, + €Er) | SINHK(L,— L)1+ i%sinhkL sinhk£, '

(C12

This matrix can be easily diagonalized; after a few manipu—yt £p<£;§ to negative at./lp>£* , signifying an instability.
lations we arrive at Ec(79). Then, Eq.(80) is obtained by At the same time, the coefficient ¢f is positive for all
setting \p=—R_(0,0) and taking only the leading order g1

terms. Note that fok =0 or kj=/L, the fluctuations cor- | et ys now discuss the stability of the lamellar patterns in
responding to. . are symmetric and antisymmetric deforma- 5 dimension, which can be studied by looking at &&)

tions of stripes. . with k, =0. Settingk, =0 and expanding ir, after some
To obtain the energy of the long-wave distortions of thealgebra we obtain that to leading order

lamellar pattern, we expand E.8) with R_ into a series in
k; and k; and retain the terms up to quadratic kp and 5
fourth order ink, . Then, to leading order ia, we get 2e°Ly

= T 11— 2 _
_ 1—coskH£p[1 f+f°+f(1-f)cosk L,

Lo 22030 1, s —1-2f(1-f)(1—coskL,)]. (C14
)\_2§f (1_f) € L:pkH'i" O'O_gf (1—f) € L:p kl

It is not difficult to verify that according to this equation
[f2(1—f)2(1+2f—22) 2L 2]k4 , (c13 A _=0 for all values ofk, so the !amellar pattern is_always

stable regardless of the modulation vedtprin one dimen-

sion. This conclusion is applicable whendn'<( <€ *,

when the assumptions of the above equations are valid. Note
where we used’s/L,=f. One can see that &,= Ly given  that for £, outside this range the one dimensional lamellar
by Eq. (60) the coefficient oikf changes sign from positive patterns(strata may undergo a number of instabiliti€2].

1

" 360
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