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Abstract This paper applies the variational approach developed in part I of this work
[22] to a singular limit of reaction–diffusion–advection equations which arise in combustion
modeling. We first establish existence, uniqueness, monotonicity, asymptotic decay, and the
associated free boundary problem for special traveling wave solutions which are minimizers
of the considered variational problem in the singular limit. We then show that the speed of
the minimizers of the approximating problems converges to the speed of the minimizer of
the singular limit. Also, after an appropriate translation the minimizers of the approximating
problems converge strongly on compacts to the minimizer of the singular limit. In addition,
we obtain matching upper and lower bounds for the speed of the minimizers in the singular
limit in terms of a certain area-type functional for small curvatures of the free boundary. The
conclusions of the analysis are illustrated by a number of numerical examples.

AMS Classification Numbers 35R35 · 35J60 · 35J20

1 Introduction

This paper continues the analysis of propagation phenomena for gradient reaction–diffusion–
advection equations from a variational point of view [22]. Here we will treat an important
special case arising in combustion modeling which leads to a singular limit and can be refor-
mulated as a free boundary problem. We refer the reader to Sect. 2 for a review of the physical
background of the problem.
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522 C. B. Muratov, M. Novaga

For 0 < ε � 1, consider the equation

∂uε
∂t

+ v · ∇uε = �uε + fε(uε), uε
∣
∣
∂�±= 0, ν · ∇uε

∣
∣
∂�0

= 0, (1.1)

in � = � × R ⊂ R
n , where � ⊂ R

n−1 is a bounded domain with boundary of class C2

(not necessarily simply connected). As before [22], uε = uε(x, t) ∈ R, and x = (y, z) ∈ �
denotes a point with coordinates y ∈ � on the cylinder cross-section and z ∈ R along the
axis. Furthermore, ∂�±,0 = ∂�±,0 ×R, with ∂� being the union of disjoint portions ∂�±,0
corresponding to the inlets, the outlets, and the impermeable walls, respectively, and v is a
transverse potential flow:

v = (−∇yϕ, 0), ϕ ∈ C1,γ (�) (1.2)

for some γ ∈ (0, 1). For the nonlinearity fε, we assume:

(H4) The function fε(u) = ε−1g
( 1−u
ε

)

, where g ∈ C0(R) has the following properties:

g ≥ 0, supp(g) = [0, 1], g ∈ C1,γ ([0, 1]),
1∫

0

g(u)du = 1. (1.3)

This assumption implies that fε(u) → δ(u − 1−) as ε → 0 and leads to the sharp reaction
zone limit, the main subject of this paper.

It is not difficult to see that under hypothesis (H4) the results of [22] apply to (1.1) for any
ε < 1. In particular, under hypothesis (H3) of [22] one gets existence of the traveling wave
solutions, i.e. solutions of (1.1) in the form uε(x, t) = ūε(y, z − ct), where ūε satisfies

�ūε + c
∂ ūε
∂z

+ ∇yϕ · ∇y ūε + fε(ūε) = 0, ūε
∣
∣
∂�±= 0, ν · ∇ūε

∣
∣
∂�0

= 0 (1.4)

with speed c = c†
ε , which are minimizers of the functional


εc[u] =
∫

�

ecz+ϕ(y)
(

1

2
|∇u|2 + Vε(u)

)

dx, Vε(u) = −
u∫

0

fε(s) ds. (1.5)

where u ∈ H1
c (�) (see [22, Definition 2.1]). Moreover, for ε ∈ (0, 1)we have d fε(0)/du ≡ 0,

hence the equilibrium u = 0 is a stable solution of (1.1) and ν0 ≥ 0, where

ν0 = min
ψ∈H1(�)
ψ |∂�±=0

R(ψ), R(ψ) =
∫

�
eϕ(y)|∇yψ |2dy
∫

�
eϕ(y)ψ2dy

. (1.6)

So, by [22, Theorem 3.9] existence of solutions of (1.4) is guaranteed if and only if

inf
v∈H1(�)
v|∂�±=0

Eε[v] < 0, (1.7)

where

Eε[v] =
∫

�

eϕ(y)
(

1

2
|∇yv|2 + Vε(v)

)

dy. (1.8)

Also, by [22, Theorem 5.9], the speed c†
ε is the propagation speed of the solutions uε of the

initial value problem for (1.1) for a broad class of front-like initial data.
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Front propagation in infinite cylinders. II. The sharp reaction zone limit 523

Rigorous studies of this type of problems go back to the works of Berestycki and the
co-workers [5–7]. In particular, the question of the limit behavior of the traveling wave
solutions of (1.1) as ε → 0 in cylinders was first analyzed by Berestycki, Caffarelli and
Nirenberg in [4], who proved convergence of the solutions of equations of the type of (1.4)
on a sequence εn → 0 to a solution of the free boundary problem of Sect. 3. The studies of
the singular limit itself go back to the works of Alt and Caffarelli [2], and more recently to
the works by Weiss [27] and Caffarelli et al. [11] (see also [10,25]). The approximations in
(H4) for the singular reaction term were also used to establish existence of solutions of the
free boundary problem in cylinders with Neumann boundary conditions in the presence of a
shear flow [4].

Here we revisit the problem of existence of traveling wave solutions and propagation
phenomena for (1.1) from a variational point of view by studying the minimizers of the
functional in (1.5). As we showed in part I of this work [22], these solutions are of special
significance for the propagation phenomena governed by (1.1) with front-like initial data
and, therefore, allow us to give a sharp characterization of the propagation velocity (in the
sense of the average velocity of the leading edge [21,22]) for a wide class of initial data. Our
variational method becomes especially powerful in the sharp reaction zone limit of (1.4),
since one can pass to the limit directly in (1.5) to obtain a free boundary problem that has
been investigated earlier for this kind of problems [2,4,25].

Using our variational approach, we are able to obtain existence, uniqueness, monotonicity,
and asymptotic decay ahead of the front for the minimizers of the limiting functional, see
Theorem 3.1. The results of Sect. 3 generalize the work of Alt and Caffarelli [2] to the case of
transverse potential flows and infinite cylinders. The latter aspect of our analysis is novel and
is related to what was done in [19,22] to overcome the lack of compactness associated with
the translational symmetry in the considered problem. We also obtained a novel variational
formulation, a kind of an area functional, which gives an upper bound for the propagation
speed of the traveling waves, see Theorem 4.2. Importantly, together with a suitable choice
of a trial function, this novel variational formulation also provides a matching lower bound
for the propagation speed in the limit of vanishing front curvature, Theorem 4.3, thus giving
a rigorous justification to the Markstein model of a flame front [20]. This formulation for the
case of an attached flame is also related to the functional introduced by Joulin [17].

We also prove convergence of the minimizers of the approximating problems in (1.4) to
the minimizers of the limit problem. Our convergence analysis of Theorems 5.1 and 5.3 is
a counterpart of that of Berestycki et al. [4]. Note that our analysis treats a more general
class of boundary conditions and a transverse potential flow, instead of a shear axial flow.
Moreover, our limit is a full limit as ε → 0 and not a limit on a sequence εn → 0, as in [4].
We also obtained explicit estimates on the propagation speed for the regularized problem in
terms of that of the free boundary. Let us point out that our approach is substantially different
from that of [4], in view of our a priori existence results for the free boundary problem.
Instead of constructing solutions of the free boundary problem as a limit of solutions of the
approximating problems, we first establish existence of solutions in the singular limit and
then show that the solutions of the approximating problems are close to the limit solution.

We conclude by demonstrating that in practice our variational formulations can give very
good numerical estimates for the propagation speed in combustion problems, see the numer-
ical results and the estimates in Sect. 6.

This paper is organized as follows. In Sect. 2, we introduce a modeling setup which leads
to the singular limit arising in combustion problems. In Sect. 3 we prove existence of trav-
eling wave solutions for the free boundary problem arising in the sharp reaction zone limit
which are minimizers of 
0

c . In Sect. 4 we introduce the area-type functional and establish
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524 C. B. Muratov, M. Novaga

a number of results about the upper and lower bounds for the propagation speed. Then, in
Sect. 5 we prove convergence of the minimizers for the regularizing approximations to the
minimizer of the free boundary problem in the sharp reaction zone limit. Finally, in Sect. 6,
we illustrate our findings with a few numerical examples. For notation and various auxiliary
results, see part I of this work [22].

2 Model

In this section we give the physical motivation for a particular modeling setup that leads to the
problem analyzed in this paper. We note that, although the derivation is done in the context
of a thermodiffusional model of combustion [9,14,28], similar modeling is applicable in a
wider context, in particular, in the case of chemical reactions in gel reactors (see e.g., [8]).

Let us recall briefly the thermodiffusional model of laminar flames. Let n = n(x, t) be
the fuel concentration and T = T (x, t) the temperature of the gas mixture. The governing
equations of this model take the following form:

∂n

∂t
+ v · ∇n = D�n − ν̄0ne−Ea/T , (2.1)

cρ

(
∂T

∂t
+ v · ∇T

)

= κ�T + ν̄0nEe−Ea/T . (2.2)

Here, v is the velocity field of the imposed advective flow; D is the fuel diffusion coefficient;
c, ρ, κ are the specific heat, density, and heat conductance of the mixture, respectively; ν̄0

is the frequency parameter, E is the reaction heat, and Ea is the activation energy (we use
energy units to measure temperature).

The portion ∂�+ corresponds to the fuel inlet (v ·ν|∂�+ < 0), hence the fuel concentration
there will be high and temperature low; the portion ∂�− corresponds to the products outlet
(v · ν|∂�− > 0), hence the fuel concentration there will be low and temperature high:

T (y, z, t)
∣
∣
∂�±= T±(y), n(y, z, t)

∣
∣
∂�±= n±(y). (2.3)

On the other hand, the portion ∂�0 is impermeable (ν · v|∂�0 = 0):

ν · ∇T (y, z, t)
∣
∣
∂�0

= 0, ν · ∇n(y, z, t)
∣
∣
∂�0

= 0. (2.4)

A simple illustrative example of the system’s geometry would be a pair of coaxial per-
forated pipes, then the reactor � is the space between the pipes, see Fig. 1a. The interior
pipe carries cold fuel, with (constant) temperature T = T+ and fuel concentration n = n0,
which then enters the reactor, the products (or unburned fuel) escape through the wall of
the outer pipe which is in contact with inert gas mixture on the outside, with T = T− and
n = 0. Or consider an isolated pipe with two smaller pipes inside, one supplying the fuel
and the second used as the exhaust, in this case there are no-flux boundary conditions on the
outermost pipe, see Fig. 1b. It is also natural to assume in such a setup that the advective flow
is incompressible, in this case ϕ is harmonic in �. Let us note that the problems of ignition
in a slit burner [24] and propagation of an edge flame [12,18,26] fall naturally within our
framework.

After an appropriate rescaling (2.1) and (2.2) can be written in the following dimensionless
form

nt + v · ∇n = Le−1�n − ne−a/T , (2.5)

Tt + v · ∇T = �T + ne−a/T , (2.6)
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n , T

T

n , TT

(a) (b)

Fig. 1 An illustration of a physical setup leading to (1.1)

where we introduced dimensionless parameters

Le = κ

cρD
, a = cρEa

En0
, (2.7)

where n0 is the characteristic fuel density. As usual, when Le = 1, we can add up these
equation to eliminate one of the variables. Denoting w = T + n and assuming a steady state
for w, we find that w = w(y) and satisfies

v · ∇w = �w, w
∣
∣
∂�±= T± + n±, ν · ∇w∣∣

∂�0
= 0. (2.8)

Substituting the solution of this equation back into (2.5) and introducing u defined as

u(y, z, t) = T (y, z, t)− T0(y), (2.9)

where T0 = T0(y) is a solution of

�T0 − v · ∇T0 + (w − T0)e
−a/T0 = 0, T0

∣
∣
∂�±= T±, ν · ∇T0

∣
∣
∂�0

= 0, (2.10)

we obtain (1.1), where f is the (generally, y-dependent) combustion-type nonlinearity

f (u, y) = (w(y)− T0(y)− u)e−a/(T0(y)+u) − (w(y)− T0(y))e
−a/T0(y). (2.11)

The sharp reaction zone limit of ε → 0 in (1.1) arises due to the specific Arrhenius
nature of the nonlinearity in combustion at large activation energy, in which the dimension-
less parameter a � 1 [9,14,28]. To see this, assume first that the quantities in (2.8) are
T+ = T− = 0 (for simplicity, we do not consider the effect of finite temperature of the cold
gas) and n+ = n− = 1, so both the inlet and the exhaust are maintained at the same fuel
concentrations. These boundary conditions immediately imply that w = 1 and T0 = 0 in
� (we define the Arrhenius factor to be zero at u = 0). So, f (u) = (1 − u)e−a/u and is
independent of y.

To proceed, let us set ε = a−1, so that ε � 1, and introduce

fε(u) = Cε−2(1 − u)e−ε−1(1−u)(1+(1−u)/u), (2.12)
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with

C = 2ε4

ε(ε + 1)− (2ε + 1)e
1
ε �
(

0, 1
ε

) , lim
ε→0

C(ε) = 1, (2.13)

where �(a, z) is the incomplete Gamma-function. With these definitions we have

1∫

0

fε(u)du = 1. (2.14)

We also note that fε(u) is an extremely rapidly decaying function of u. Therefore, unless
u is very close to 1, for realistic values of ε � 1 the value of fε(u) may be so small that
the physical assumptions used to derive (1.1) are no longer valid. This motivates a common
physical approximation used in the combustion models to truncate the function fε at some
u = u∗ < 1, called the “ignition temperature”, and set fε(u) ≡ 0 for all u ∈ [0, u∗]. To
be consistent with (2.12) and (2.14), one chooses 1 − u∗ = O(ε). We note that the latter
assumption turns out to be rather crucial for the analysis of regularity of the solutions in the
limit ε → 0 [4]. Finally, let us do a rescaling

x → a
√

Cea/2 x, t → Ca2ea t, (2.15)

which leads to (1.1) together with hypothesis (H4).
Naturally, the dimension of physical interest is n = 3. Also, a problem on a two-dimen-

sional strip is of special physical importance (our numerical examples will be from this
category). And, of course, the case of a purely reaction–diffusion equation (ϕ = 0) with
either Dirichlet or Neumann boundary conditions is included in our formulation.

3 Singular limit

In this section, we consider the singular limit of (1.4) as ε → 0, when fε approaches a delta-
function concentrated at u = 1. We note that in general it is difficult to assign a meaning to
(1.1) or (1.4) with such a singular nonlinearity. Nevertheless, due to the localized character of
the reaction it is possible to give a satisfactory interpretation for these equations in terms of
a free boundary problem in which the reaction zone is described as a surface (in the physical
case of n = 3) separating the so-called “preheat zone” from the “products” in combustion
terminology [2,4,25].

On the other hand, it is possible to pass to the limit of fε(u) → δ(u − 1−) directly in
(1.5). Introducing

V0(u) =
{

0 u < 1,

−1 u ≥ 1,
(3.1)

we see that Vε → V0 pointwise as ε → 0. We note that V0 defined in this way is lower
semicontinuous, making further variational analysis of the problem possible.

Replacing Vε with V0 in (1.5), we introduce the functional


0
c[u] =

∫

�

ecz+ϕ(y)
(

1

2
|∇u|2 + V0(u)

)

dx . (3.2)
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The results of [22] motivate us to analyze the minimizers of (3.2). Our main result here
is a characterization of the uniformly translating solutions of the free boundary problem
associated with (1.1) with the minimizers of (3.2). As in [22, Theorem 3.9], existence of
the minimizers can be established in terms of the auxiliary functional E0[v], defined for all
v ∈ H1(�) that vanish on ∂�±, which for V = V0 can be written simply as

E0[v] = 1

2

∫

{v<1}
eϕ(y)|∇v|2 dy −

∫

{v≥1}
eϕ(y) dy. (3.3)

We point out that a functional of this kind has been considered in [2]. Later, in Sect. 5, we
prove that these minimizers are in fact limits of the corresponding approximation problems
in (1.4).

Here is our main result concerning the minimizers of 
0
c .

Theorem 3.1 Let n ≤ 3, and assume that there exists c > 0 and u ∈ H1
c (�), u �≡ 0, such

that 
0
c [u] ≤ 0. Then:

(i) There exists a unique constant c† ≥ c and ū ∈ H1
c†(�) ∩ W 1,∞(�), ū �≡ 0, such that

ū is a minimizer of 
0
c† . Moreover, 0 < ū ≤ 1 in �, and if

ω− = {x ∈ � : ū(x) < 1}, ω+ = {x ∈ � : ū(x) = 1}, (3.4)

then the set ω+ is non-empty, and ū is a classical solution of

�ū + c†ūz + ∇yϕ · ∇ū = 0, ū
∣
∣
∂�±= 0, ν · ∇ū

∣
∣
∂�0

= 0, (3.5)

in ω−.
(ii) The function ū(y, z) is unique (up to translations), is strictly decreasing in z in ω−,

and limz→+∞ ū(·, z) = 0 in C1(�).
(iii) ū(y, z) = a0ψ0(y)e−λ+(c†,ν0)z + O(e−λz), with some a0 > 0 and λ > λ+(c†, ν0),

uniformly in C1(�× [R,+∞)) as R → +∞, where ψ0 > 0 is a minimizer of R in
(1.6) and

λ+(c, ν) = c + √
c2 + 4ν

2
. (3.6)

(iv) The free boundary ∂ω± = ∂ω− ∩ ∂ω+ is bounded from the right and has regularity
C1,α , for some α > 0. Moreover ū ∈ C1,α(ω−), and the following boundary condition
holds:

ū |∂ω± = 1, ν · ∇ū |∂ω± = −√
2, (3.7)

where ν is the normal to ∂ω± pointing into ω−.
(v) limz→−∞ ū(·, z) = v uniformly in �, where v > 0 is a critical point of E0 such that

E0[v] < 0. In particular, letting ωR = ω+ ∩ {z = R} and

ω0 =
⋃

R∈R

ωR ⊆ �, (3.8)

we have ∂ωR → ∂ω0 in the Hausdorff sense as R → −∞, ∂ω0 is of class C1,α , for
some α > 0, and ∂ω± is a graph of a function h ∈ BVloc(ω0).
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Proof of Part (i)

Existence of a minimizer, uniqueness of c†, and the fact that ū(x) ∈ [0, 1] for all x ∈ �

follow from the same arguments as in [22, Theorem 3.3], Part (i). The only difference is in
the proof of the inclusion ū ∈ W 1,∞(�). The latter follows from the fact that ū is a minimizer
of 
0

c† , reasoning as in [2, Corollary 3.3] (see also [4, Theorem 3.1]).

Let us rewrite the functional 
0
c as


0
c [ū] = 1

2

∫

ω−

ecz+ϕ(y)|∇ū|2dx −
∫

ω+

ecz+ϕ(y)dx . (3.9)

In view of [22, Lemma 2.2], if ω+ = ∅, then 
0
c† [ū] ≥ 0 and 
0

c† [ū] = 0 if and only if
ū = 0, contradicting the existence of a nontrivial minimizer. Hence ω+ �= ∅.

Since V0 = 0 in ω−, the Gateaux derivative Dφ
0
c† [ū] exists and is equal to zero for

all test functions φ vanishing on ω+. So ū solves the Euler-Lagrange equation for 
0
c† with

V0 = 0 in ω−, which is precisely equation (3.5). Then, by the Strong Maximum Principle,
we have ū > 0 in ω− and, therefore, in the whole of �.

Proof of Part (ii)

Uniqueness, monotonicity and uniform decay of ū follow reasoning as in [22, Theorem
3.3], Parts (ii) and (v). We only point out a few modifications of the arguments above. Let-
ting ū1, ū2 be as in Part (ii) of [22, Theorem 3.3], for a given translation a > 0, we have

c† [ū1] = 
c† [ū2] = 0, hence ū1, ū2 are non-trivial minimizers of 
0

c† . It follows that the
difference w = ū2 − ū1 ≥ 0 solves the equation

�w + c†wz + ∇yϕ · ∇yw = 0 in the set {ū2 < 1} . (3.10)

It follows that either w = 0 or w > 0 in {ū2 < 1}. The first possibility would imply that
ū is independent of z and, hence, is zero, which is impossible. So, w > 0, implying that
ū(y, z − a) > ū(y, z) for all (y, z) such that ū2(y, z) < 1. In view of the arbitrariness of
a > 0, this implies that ū is strictly monotone decreasing in ω−.

Similarly, let ū3 and ū4 be as in Part (v) of [22, Theorem 3.3], with ū3(x∗) = ū4(x∗) < 1.
Then, since w = ū4 − ū3 satisfies (3.10) in the set {ū4 < 1}, with w ≥ 0 on the boundary of
{ū4 = 1}, from the Strong Maximum Principle we conclude that w ≡ 0 (hence also on the
boundary). Then, by monotonicity of the minimizers, ū3 and ū4 coincide in all of �.

Proof of Part (iii)

This is just a particular case of [22, Theorem 3.3], Part (iii), with f ≡ 0 for z large enough.
Notice that in this case λ+(c†, ν0) ≥ c†.

Proof of Part (iv)

Notice first that ∂ω± is bounded from the right since ū(·, z) → 0 uniformly, by Part (ii). The
fact that ū ∈ C1,α(ω−) and ∂ω± is of class C1,α , for some α > 0, follows from [2,11]. Here
we use that n ≤ 3, since otherwise the boundary set ∂ω± could contain singular points [13].
Indeed, reasoning as in the proof of [23, Theorem 1.2], we have that ∂ω± is uniformly of
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class C1,α , in the sense that there exists ρ,C > 0 such that ∂ω± ∩ Bρ(x) is contained in the
graph (along some direction) of a function with C1,α-norm bounded by C , for all x ∈ ∂ω±.

The free boundary condition in (3.7) is also obtained in [2]. For reader’s convenience we
present the argument here. The first condition follows from the definition of ∂ω± and the
continuity of ū established in Part (i). Let us prove the second condition in (3.7). Fix ε > 0
and a function ρ ∈ C1,α(∂ω±). We perturb ∂ω± by displacing each point of ∂ω± by ερ ≤ 0
along ν, where ν is the normal to ∂ω± pointing intoω−. In order to preserve the first boundary
condition in (3.7), we also perturb the function ū by adding to it εφ, where the function φ
satisfies the same boundary conditions as ū on ∂� and solves in ω− the following boundary
value problem:

�φ + cφz + ∇yϕ · ∇yφ = 0, φ
∣
∣
∂ω±= −(ν · ∇ū) ρ + o(ε). (3.11)

The derivative of 
0
c with respect to ε becomes

0 = d
0
c[ū]

dε
= −1

2

∫

∂ω±

ecz+ϕ(y)|∇ū|2ρ dHn−1

−
∫

∂ω±

ecz+ϕ(y)ρ dHn−1 +
∫

ω−

ecz+ϕ(y)∇ū · ∇φ dx . (3.12)

Integrating by parts and noting that on ∂ω± we have ν · ∇ū = −|∇ū|, after some algebra we
obtain

0 = d
0
c[ū]

dε
= 1

2

∫

∂ω±

ecz+ϕ(y) (|∇ū|2 − 2
)

ρ dHn−1. (3.13)

Therefore, the following condition defines the location of the free boundary ∂ω±:

|∇ū| = √
2 on ∂ω±. (3.14)

In view of the fact that ū decreases along ν, we obtain the statement.

Proof of Part (v)

The existence of a function v ∈ W 1,∞(�), such that limz→−∞ ū(·, z) = v > 0 uniformly in
�, follows from the Lipschitz continuity and monotonicity of ū, proved in Parts (i) and (ii)
respectively. Notice also that v ≡ 1 in ω0.

SinceωR ⊆ ω0 for all R ∈ R and |ω0\ωR | → 0, as R → −∞, the Hausdorff convergence
of ∂ωR to ∂ω0 follows from the fact that ∂ωR are uniformly of class C1,α , independently of
R, as stated in the proof of Part (iv). It then follows that ∂ω0 is also of class C1,α .

We now show that the function v̄(y, z) = v(y) is a minimizer for 
0
c on �, with respect

to perturbations with bounded support. Indeed, letting a, b, R ∈ R, with a < b, the func-
tion ū R(y, z) = ū(y, z − R) is a minimizer for 
0

c restricted to �a,b = � × (a, b), with
respect to perturbations vanishing on ∂�a,b \ (∂�0 × (a, b)

)

. Since ‖ū R − v̄‖L∞(�a,b) → 0
as R → −∞, it follows that v̄ is also a minimizer for 
0

c restricted to �a,b, with respect
to such perturbations. In particular, since ū R satisfies equation (3.5) in

(

� \ ω0
) × R, we

obtain that v solves the linear equation (3.15) in {v < 1}. In particular v ∈ (0, 1) in � \ ω0,
by Strong Maximum Principle. Moreover, arguing as in Part (iv), we get that v satisfies the
boundary condition (3.16). Equations (3.15) and (3.16) imply that v is a critical point of E0.
The inequality E0[v] < 0 follows as in [22, Theorem 3.3], Part (ii).
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Finally, since ∂ω± has locally finite perimeter in� (being of class C1,α) and ū is monotone
in the z-direction, we have that ∂ω± is a graph of a function h ∈ BVloc(ω0). ��

Notice that, while Theorem 3.1 covers the physically relevant case n ≤ 3, most of its
statements can be extended to arbitrary dimensions. The only difficulty in n ≥ 4 is the lack
of complete regularity theory for the free boundary ∂ω± [2,13]. It is currently known that
the free boundary is regular, out of possibly a closed singular set S± ⊂ ∂ω± of Hausdorff
dimension at most n − 4 [27]. We note that, since in our case, the free boundary is a graph
in the z-direction, we expect that the singular set be always empty, independently of the
dimension [11,27].

Remark 3.2 The set ω0 in Part (v) of Theorem 3.1 is the set on which v = 1, and

�yv + ∇yϕ · ∇yv = 0, v|∂�± = 0, ν · ∇yv|∂�0 = 0 (3.15)

in �\ω0, and the free boundary conditions

v|∂ω0\∂� = 1, ν · ∇yv|∂ω0\∂� = −√
2, (3.16)

where ν is the normal to ∂ω0 pointing outside ω0.

Arguing as in [22, Theorem 3.9], we obtain the following necessary and sufficient condi-
tion for the considered problem to have minimizers:

Corollary 3.3 Minimizers of 
0
c exist if and only if

inf
v∈H1(�)
v|∂�±=0

E0[v] < 0. (3.17)

We note that, conversely, existence of a solution of the free boundary problem in Theo-
rem 3.1 implies existence of minimizers of
0

c . Indeed, if uc is a solution of the free boundary
problem, it satisfies (1.4) with fε set to zero in ω−, and by the arguments at the beginning of
Sect. 3 of [22], we have uc ∈ H1

c (�). So, repeating the arguments in the proof of Theorem 3.1,
we conclude that uc is a critical point of 
0

c . This, in turn, implies that 
0
c [uc] = 0, and so

uc can be used as a trial function in the assumptions of Theorem 3.1. Thus, non-existence
of minimizers in Corollary 3.3 implies non-existence of solutions of the free boundary prob-
lem as well. Let us also point out that the statement in part (v) of Theorem 3.1 includes the
possibility that the free boundary has “vertical” portions (i.e. those with ν · ẑ = 0). However,
one would expect that generally ∂ω± does not have any such portions and thus is a graph of
a C1,α

loc (ω0) function.
Note that in the case � = R we recover the classical result of combustion theory [9,28]

ū(z) =
{

e−√
2z, z > 0,

1, z ≤ 0.
(3.18)

which is the minimizer with speed c† = √
2. We note that by the same arguments as in

[22, Proposition 3.4], this is also the minimizer in the case of purely Neumann boundary
conditions (i.e. ∂�± = ∅) and is the fastest variational traveling wave irrespectively of the
choices of ϕ, �, and the boundary conditions.

Remark 3.4 Using simple test functions, one can show that the condition in (3.17) of Corol-
lary 3.3 is satisfied whenever � contains a ball of radius R big enough.
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4 Area-type functional

Throughout this section we always assume that n ≥ 2. We will now derive an area-type
functional which can be used to obtain suitable bounds for the propagation speed of the
minimizer. Integrating the first term in (3.9) by parts and the second term of (3.9) in z, and
using (3.5) and (3.14), we obtain


0
c† [ū] =

∫

∂ω±

ec†z+ϕ(y)
( |∇ū|

2
− ν · ẑ

c†

)

dHn−1 = 0, (4.1)

where the gradient is evaluated on theω− side of ∂ω±. Then, making use of the free boundary
conditions (3.14), we find

�c†(∂ω±) = 
0
c† [ū] = 0, (4.2)

where we introduced an area-type functional

�c(∂ω±) =
∫

∂ω±

ecz+ϕ(y)
(

1√
2

− ν · ẑ

c

)

dHn−1, (4.3)

where ẑ is the unit vector along the z-axis pointing to the right. It follows that, if the functional

0

c has a minimizer, then inf �c ≤ 0 for all 0 < c ≤ c†. Therefore, if one can show that
for some c we have �c > 0 for every surface contained in ω0 × R, then this automatically
implies that c† < c.

Notice that the first term in (4.3) is an area term, whereas the second is a volume term,
which is of lower order with respect to the first one. In particular, from the regularity theory
for minimal surfaces (see [1,16]), it follows that any minimizer of �c is sufficiently smooth
out of a closed singular set of zero Hn−1-measure.

Before undertaking a more detailed analysis, let us make several general remarks regard-
ing the functional �c. First, it is clear from (4.3) that c† ≤ √

2 independently of ϕ. Indeed,
in (4.3) ν · ẑ ≤ 1 so the integrand is strictly positive for all c >

√
2. On the other hand, the

upper bound c = √
2 is achieved only if the front is planar, hence, only when ∂�± = ∅. In

this case ū depends only on the z-variable and is given explicitly by (3.18).
We now proceed with the analysis of (4.3). For ζ ∈ BV (ω0), we define

�c[ζ ] =
∫

ω0

eϕ(y)

⎛

⎝

√

c2ζ 2 + |∇yζ |2
2

− ζ

⎞

⎠ dy. (4.4)

Notice that there is a standard way to define the functional (4.4) on the whole of BV (ω0)

(see [3, Sect. 5.5]), as the lower semicontinuous relaxation of the same functional restricted
to H1(�), with Dirichlet boundary conditions on ∂ω0 \ ∂�0. In particular, the functional�c

takes into account possible jumps of ζ inside ω0 and on ∂ω0 \ ∂�0.
A simple calculation shows that, if ζ > 0, we have

�c

(

� 1
c log ζ

)

= 1

c
�c[ζ ], (4.5)

where �h denotes the graph z = h(y) for any h ∈ BV (ω0). In fact, there is a one-to-one
correspondence between the functions on which �c is defined and the hypersurfaces in the
domain of definition of�c. Therefore, in the following we will be using these two area-type
functionals interchangeably.
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Notice that �c is a one-homogeneous, convex, lower semicontinuous functional on
BV (ω0). Moreover, its gradient term corresponds to an anisotropic perimeter of the sub-
graph of ζ . Reasoning as in [16], it is possible to prove that ζ̄ is (locally) of class C2,α in the
open set where ζ̄ > 0. We observe that any minimizer ζ̄ may be discontinuous (and jump to
zero) on the boundary of such set.

The above arguments apply when the minimizer ζ̄ exists, this, of course, may not happen
for all c > 0. In fact, the following statement holds.

Proposition 4.1 Assume that (3.17) holds. Then, there exists a unique value of c = c�, for
which �c admits a non-trivial minimizer ζ̄ ∈ BV (ω0), with ζ̄ ≥ 0 in ω0. Furthermore,
�c� [ζ̄ ] = 0.

Proof To construct a minimizer of �c, we consider the following constrained variational
problem

minimize �c[ζ ] subject to ζ ≥ 0 ,
∫

ω0

eϕ(y)ζ dy = 1. (4.6)

Indeed, letting ζn be a minimizing sequence, we have ‖ζn‖BV (ω0) ≤ C for some C > 0,
hence there exists a function ζc such that, up to a subsequence, ζn ⇀ ζc weakly in BV (ω0).
In particular ζn → ζc strongly in L1(ω0), and so ζc satisfies the constraints. Since �c is
a lower-semicontinuous functional on BV (ω0) [3], we get that ζc is a minimizer for the
problem.

For shorthand we set µc = �c[ζc]. Theorem 3.1, (4.2) and (4.5) imply that

inf
{

�c† [ζ ] : ζ ∈ BV (ω0), ζ ≥ 0
}

≤ 0, (4.7)

hence µc† ≤ 0. Moreover, from the discussion preceding (4.5), we have µc > 0 for all
c >

√
2. Furthermore, µc is an increasing function of c, hence µc < 0, for all c ∈ [0, c†).

Indeed, �c′ [ζc] < �c[ζc] for any 0 ≤ c′ < c, due to the monotonicity of the integrand in
(4.4). Also, since ζc′ is a minimizer of �c′ , we have

µc′ = �c′ [ζc′ ] ≤ �c′ [ζc] < �c[ζc] = µc. (4.8)

Furthermore, by Mean Value Theorem applied pointwise to the integrand, with some c̃(y) ∈
(c′, c), we obtain

µc′ − µc ≥ −c − c′
√

2

∫

ω0

eϕ(y)
c̃ζ 2

c′
√

c̃2ζ 2
c′ + |∇yζc′ |2

dy ≥ −c − c′
√

2
. (4.9)

So, c �→ µc is continuous, and hence there exists a unique value of c = c� such thatµc� = 0.
We now claim that ζ̄ = ζc� is a minimizer of �c� in the absence of the constraint. This

follows from the fact that, for all ζ ∈ BV (ω0), ζ ≥ 0, ζ �≡ 0, we have

�c[ζ ] = a�c[ζ/a], a =
∫

ω0

eϕ(y)ζ dy > 0. (4.10)

Hence, �c� ≥ 0, and ζ̄ is a global minimizer of �c� . Moreover, if c < c�, then by (4.10)
inf �c ≤ aµc → −∞ as a → ∞, and so the minimizer of�c does not exist. If, on the other
hand, c > c�, then �c[ζ ] = a�c[ζ/a] ≥ aµc, so that the only minimizer is the trivial one.
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We note that in general the support of ζ̄ (or even ω0) does not have to be connected.
However, on all connected portions of supp(ζ̄ ) the functional �c� must evaluate to zero,
since otherwise it can be decreased by setting ζ̄ to zero in the one where it is positive. But
this means that one can always choose a minimizer ζ̄ whose support is connected.

Let us now summarize the arguments leading from (4.3) and (4.5) to Proposition 4.1 in
the following result:

Proposition 4.2 Under the assumptions of Theorem 3.1, we have

c† ≤ c�, (4.11)

where c� is defined in Proposition 4.1.

Note that in the absence of information about the minimizers of E0 it is still possible to
use the functional�c to obtain a sufficient condition for non-existence of minimizers for
0

c .
Allowing the domain of the functions ζ to be the whole of �, we obtain that the condition

inf
ζ∈BV (�)
ζ≥0

�0[ζ ] = 0, (4.12)

guarantees non-existence of minimizers for 
0
c with any c > 0 in view of the monotonicity

of �c with respect to �.
Let us point out that the minimizers of �c or, equivalently, of �c satisfy the Euler–Lag-

range equation which reduces to the classical Markstein model of the dynamics of flame
fronts [20]. This fact, for a thin flame in a potential flow was first noticed by Joulin [17], who
introduced a functional which is essentially equivalent to�c. To see this, let us compute the
first variation of �c(�) with respect to infinitesimal displacements δρ of � along the unit
normal vector ν pointing to the right. After simple manipulations, we arrive at

δ�c(�)

= 1√
2

∫

�

ecz+ϕ(y) (cν · ẑ + ν · ∇yϕ + (n − 1)H − √
2
)

δρ dHn−1, (4.13)

where H is the mean curvature of �, positive if � is convex towards z = −∞. Therefore, if
� is a minimizer of �c� , it satisfies the Euler–Lagrange equation

ν · (c� ẑ + ∇yϕ) = √
2 − (n − 1)H. (4.14)

This is precisely the steady version of the Markstein equation, once it is realized that the
term on the left is the normal velocity of the front relative to the flow. So, what we proved
in Proposition 4.2 gives a rigorous justification for the Markstein model as giving a strict
upper bound for the propagation speed of the flame front in the considered setup. On the
other hand, the physical assumptions behind the Markstein model rely on the smallness of
the front curvature and the flow variation compared to the width of the preheat zone [20].
Under this assumption, we can show that the minimizers of �c or, equivalently, of �c also
give a matching lower bound for c† which coincides with c� in the limit of vanishing front
curvature and advection velocity gradient. For clarity, we demonstrate this point under a
simplifying assumption on the geometry of �.

Proposition 4.3 Assume Theorem 3.1 holds, and, in addition, that �̄ = � 1
c log ζ̄ , where ζ̄ is a

minimizer of�c obtained in Proposition 4.1, has all principal curvatures bounded by ε > 0,
that dist(ω0, ∂�) = O(ε−1), and that |(∇y ⊗ ∇y)ϕ| ≤ Mε for some M > 0. Then

123



534 C. B. Muratov, M. Novaga

c† ≥ c� − C1ε
2 − C2 Mε, (4.15)

for some C1,2 > 0 independent of ε, when ε is small enough.

Proof We prove this statement by constructing an appropriate trial function for 
0
c from �̄,

based on the one-dimensional minimizer, see (3.18). Introduce the signed distance function

d(x) = ±dist(x, �̄), (4.16)

which is positive if x is to the right of �̄ and negative otherwise. We can then define a trial
function

u(x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1, d(x) ≤ 0,

e−√
2d(x), 0 < d(x) < d0 − 1,

e−√
2(d0−1)(d0 − d(x)), d0 − 1 ≤ d(x) < d0,

0, d(x) ≥ d0,

(4.17)

where we introduced a constant d0 such that 1 < d0 < dist(ω0, ∂�). Clearly, u lies in H1
c (�)

and satisfies the boundary conditions on ∂�.
Let us now evaluate 
0

c[u] for some c < c�. To proceed, observe that the second term in
(3.2) coincides with the second term in (4.3):

∫

�

ecz+ϕ(y)V0(u)dx = −1

c

∫

�̄

ecz+ϕ(y)ν · ẑ dHn−1, (4.18)

where, as before, ν is the unit normal vector to �̄ pointing to the right. So, it remains to eval-
uate the first integral in (3.2). Let us write this integral in curvilinear coordinates associated
with �̄, which is justified when d0 ≤ ε−1:

∫

�

ecz+ϕ(y)|∇u|2dx

=
∫

�̄

d0∫

0

ecz+ϕ(y)|∇u(x)|2
(

n−1
∏

i=1

(1 + ki (x
′)ρ)

)

dρ dHn−1(x ′). (4.19)

Here ki are the principal curvatures on �̄, assumed to be positive if the set enclosed by �̄ (i.e.
the set on the left of �̄) is convex, and x ′ is the projection of x on �̄, so that x = x ′ +ρν(x ′).
Now we estimate

∫

�

ecz+ϕ(y)|∇u|2dx

≤
∫

�̄

d0∫

0

ecz+ϕ(y)|∇u(x)|2(1 + (n − 1)H(x ′)ρ + Cε2ρ2) dρ dHn−1(x ′)

≤
∫

�̄

ecz′+ϕ(y′)
d0∫

0

ecρν·ẑ+ρν·∇ϕ(y′)+εC Mρ2

×|∇u(x)|2(1 + (n − 1)H(x ′)ρ + Cε2ρ2) dρ dHn−1(x ′)
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≤
∫

�̄

ecz′+ϕ(y′)
d0∫

0

e
√

2ρ+εC Mρ2 |∇u(x)|2(1 + Cε2ρ2) dρ dHn−1(x ′), (4.20)

where H(x ′) is the mean curvature of �̄ at x ′, and C denotes a generic positive constant. In
writing the last line in the estimate above we took into account the Euler–Lagrange equation
(4.14) for �̄ and the fact that e(c−c�)ρν·ẑ ≤ 1. Substituting the expression for u from (4.17)
and choosing d0 = K log ε−1, with K > 0 sufficiently large, we get

∫

�

ecz+ϕ(y)|∇u|2dx

≤ 2
∫

�̄

ecz′+ϕ(y′)
d0−1∫

0

e−√
2ρ+εC Mρ2

(1 + Cε2ρ2) dρ dHn−1(x ′)

+
∫

�̄

ecz′+ϕ(y′)
d0∫

d0−1

e
√

2(2−d0)+εC Md2
0 (1 + Cε2d2

0 ) dρ dHn−1(x ′)

≤ Cε2
∫

�̄

ecz′+ϕ(y′)dHn−1(x ′) (4.21)

+2
∫

�̄

ecz′+ϕ(y′)
d0−1∫

0

e−√
2ρ+εC Mρ2

dρ dHn−1(x ′)

≤ (C1ε
2 + C2 Mε)

∫

�̄

ecz′+ϕ(y′)dHn−1(x ′)

+2
∫

�̄

ecz′+ϕ(y′)
∞∫

0

e−√
2ρ dρ dHn−1(x ′).

Integrating the last term with respect to ρ, we finally obtain
∫

�

ecz+ϕ(y)|∇u|2dx ≤ √
2(1 + C1ε

2 + C2 Mε)
∫

�̄

ecz+ϕ(y)dHn−1. (4.22)

Now, observe that from (4.5), Proposition 4.1, and the monotonicity of �c with respect
to c it follows that

1√
2

∫

�̄

ecz+ϕ(y)dHn−1 ≤ 1

c�

∫

�̄

ecz+ϕ(y)ν · ẑ dHn−1, (4.23)

for all 0 < c ≤ c�. Combining this with the estimate in (4.22), we have


0
c [u] = 1

2

∫

�

ecz+ϕ(y)|∇u|2dx − 1

c

∫

�̄

ecz+ϕ(y)ν · ẑ dHn−1

≤ c − c� + C3ε
2 + C4 Mε

c
√

2

∫

�̄

ecz+ϕ(y)dHn−1 = 0, (4.24)
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if c = c� − C3ε
2 − C4 Mε. Therefore, u satisfies the assumptions of Theorem 3.1, and so

there exists a minimizer with speed c† ≥ c.

Let us make a few remarks about the result in Proposition 4.3 before concluding this
section. The main assumption of Proposition 4.3 was that of uniform smallness of the cur-
vature of �̄, which is at the heart of the idea of approximating the free boundary ∂ω± of the
minimizer of
0

c with that of�c and is, therefore, essential here. We note that the assumption
dist(ω0, ∂�) = O(ε−1) does not contradict the assumption on the curvature, and may even
be replaced by the weaker assumption dist(ω0, ∂�) � log ε−1 (see also Sect. 6). On the
other hand, as follows from evaluating (4.14) at a point where ν = ẑ, if the curvature of �̄
is uniformly O(ε), then the speed c� has an estimate c� = √

2 + O(ε) as well. But since
c� − c† = O(ε2) + O(Mε), the speed c� of the minimizer of �c captures, as it should,
the leading order curvature corrections to c† and so should give a good approximation for
the propagation velocity c† in practice. On the other hand, if �̄ is allowed to approach
∂�± (the cold boundaries), then the curvature will not be uniformly bounded near the bound-
ary, and the propagation speed can have an O(1) difference from c = √

2, the speed of the
planar front, or propagation failure may occur altogether.

We also note, that if |∇yϕ| � 1, we get into the situation of a weakly perturbed planar
front. Assuming that |∇yζ | � ζ and

√
2 − c � 1, Taylor-expanding (4.4) in |∇yζ |, and

introducing ψ = √
ζ , we obtain (up to an additive constant)

�c[ψ2] =
∫

ω0

eϕ(y)
(

|∇yψ |2 −
√

2 − c√
2

ψ2

)

dy + h.o.t. (4.25)

Thus, in this situation finding c� amounts to computing the smallest eigenvalue of the
Schrödinger-type operator generated by (4.25), which is easier to study than the minimizers
of (4.4).

5 Approximating problems

Now we study the question of how well the minimizers of (3.2) approximate the minimiz-
ers of (1.5) in the limit ε → 0. Our main results in this section are the estimates for the
wave velocity c†

ε of the approximating problem in terms of the speed c†
0 of the limit free

boundary problem and strong convergence of the (appropriately translated) minimizers of
the approximating problem to the minimizer of the limit problem.

Observe that by definition

Vε(u) ≤ V0(u), lim
ε→0

Vε(u) = V0(u), ∀u ∈ R. (5.1)

Therefore, under the assumption of existence of minimizers for the limit functional 
0
c in

(3.2) existence of minimizers for 
εc is guaranteed for all ε < 1. Indeed, by Corollary 3.3,
we have inf E0[v] < 0, and, from the first inequality in (5.1), that inf Eε[v] < 0 as well. So,
by [22, Theorem 3.9] the minimizer ūε of
εc exists and has all the properties guaranteed by
[22, Theorem 3.3].

We now show that the speed c†
0 is in fact the limiting speed of the minimizers ūε for the

approximating problems.
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Theorem 5.1 Under the assumption of Corollary 3.3, let c†
0 and c†

ε be the speeds of the
minimizers of 
0

c and 
εc, respectively. Then we have

c†
0 ≤ c†

ε ≤ c†
0 + 32ε

c†
0

, 0 < ε <
1

2
. (5.2)

Proof Since Vε ≤ V0, we immediately conclude the lower bound in (5.2). Let us now prove

the upper bound. It is easy to see that by the assumptions on fε we have Vε(u) ≥ V0

(
u

1−ε
)

.

Let us introduce ũ(y, z) = 1
1−εu

(

y,
c†

0
c z

)

. Then, clearly for any u ∈ H1
c (�) we have

ũ ∈ H1
c†

0

(�). So, evaluating 
εc on u, we get


εc[u] ≥
∫

�

ecz+ϕ(y)
{

u2
z

2
+ |∇yu|2

2
+ V0

(
u

1 − ε

)}

dx

≥
(

c†
0

c

)
∫

�

ec†
0z+ϕ(y)

⎧

⎨

⎩
(1 − ε)2

|∇y ũ|2
2

+ (1 − ε)2

(

c

c†
0

)2
u2

z

2
+ V0(ũ)

⎫

⎬

⎭
dx

≥ (1 − ε)2

(

c†
0

c

)⎛

⎝
0
c†

0
[ũ]

+
∫

�

ec†
0z+ϕ(y)

⎧

⎨

⎩

c2 − c†
0

2

2c†
0

2 ũ2
z + 2ε − ε2

(1 − ε)2
V0(ũ)

⎫

⎬

⎭
dx

⎞

⎠ . (5.3)

Now, using the fact that V0(u) ≥ −u2, the Poincaré inequality from [22, Lemma 2.2], and
that by definition of c†

0 we have 
0
c†

0

[ũ] ≥ 0 for all ũ ∈ H1
c†

0

(�), we can proceed to estimate

the last line in the inequality above as


εc[u] ≥ (1 − ε)2

(

c†
0

c

)
∫

�

ec†
0z+ϕ(y)

⎛

⎝
c2 − c†

0
2

8
− 2ε

(1 − ε)2

⎞

⎠ ũ2 dx . (5.4)

Then, from this inequality it follows that 
εc[u] ≥ δ
∫

�
ecz+ϕ(y)u2 dx , with some δ > 0, if

ε < 1
2 and c > c†

0 + 32ε
c†

0

, so only trivial minimizers exist for these values of c. In view of

this, we have the second inequality in (5.2).

Let us recall the following uniform gradient estimate for both the minimizers ūε of 
εc
and the minimizer ū0 of the limit functional 
0

c , which were obtained in [4, Theorem 3.1]
(see also [10, Chap. 1]).

Proposition 5.2 There exists a constant C > 0 independent of ε such that

‖ūε‖W 1,∞(�) ≤ C, ‖ū0‖W 1,∞(�) ≤ C. (5.5)

With the help of these estimates, we are now ready to prove our convergence result for
the sequence of minimizers 
εc of the approximating problem to a minimizer of 
0

c .
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Theorem 5.3 There exists a translation aε ∈ R, such that if uε(y, z) = ūε(y, z − aε), then
we have

uε → u0 ∈ C0,1(�) in H1
c†

0
(�), (5.6)

as ε → 0, and

0

c†
0
[u0] = 0, u0 �≡ 0. (5.7)

The convergence is also uniform on compact subsets of �.

Proof Let ε < 1
2 , and observe that we have supx∈� ūε(x) >

1
2 , since otherwise Vε(ūε) ≡ 0

and so 
ε
c†
ε

[uε] > 0, which contradicts the fact that uε is a minimizer of 
ε
c†
ε

. Recalling

also that ūε(·, z) → 0 uniformly as z → +∞, we can choose aε ∈ R such that, by letting
uε(y, z) = ūε(y, z − aε), we have

max
y∈�

uε(y, 0) = 1

2
and uε(y, z) ≤ 1

2
, ∀(y, z) ∈ �× [0,+∞). (5.8)

Now, notice that by Proposition 5.2 and the Arzelà–Ascoli Theorem the functions uε converge
(on a sequence of ε → 0) uniformly on compact subsets of � to a function u0 ∈ C0,1(�),
which satisfies (5.8) (hence, in particular, u0 �≡ 0). Moreover, from [22, Lemma 2.3] and
Proposition 5.1 we know that c†

ε ≥ c†
0 and

uε ∈ H1
c†

0
(�), ∀ε > 0. (5.9)

Let us show that uε are also equibounded in H1
c†
ε

(�), and, as a consequence, in H1
c†

0

(�) as

well. Thanks to [22, Lemma 2.2], it is enough to prove that
∫

�

ec†
ε z+ϕ(y)|∇uε|2 dx ≤ C, (5.10)

for some constant C > 0 independent of ε. Since Vε(u) ≥ −1 for all u and, by construction,
Vε(uε(·, z)) = 0 for all z > 0, we have

0 = 
ε
c†
ε

[uε] = 1

2

∫

�

ec†
ε z+ϕ(y)|∇uε|2 dx +

0∫

−∞

∫

�

ec†
ε z+ϕ(y)Vε(uε) dydz

≥ 1

2

∫

�

ec†
ε z+ϕ(y)|∇uε|2 dx − M |�|

c†
ε

, (5.11)

for some M > 0, which proves the inequality in (5.10) with C = 2M |�|/c†
0. Now, to pass

to the norm in H1
c†

0

(�), we observe that

∫

�

ec†
0z+ϕ(y)|∇uε|2dx ≤

∞∫

0

∫

�

ec†
ε z+ϕ(y)|∇uε|2dydz

+
0∫

−∞

∫

�

ec†
0z+ϕ(y)|∇uε|2dydz

≤ C + M |�|
c†

0

|| |∇uε|2||L∞(�). (5.12)
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In view of the result in Proposition 5.2, we conclude that uε are equibounded in H1
c†

0

(�) also.

So, it follows that uε ⇀ u0 also weakly in H1
c†

0

(�).

Let us now prove that

0

c†
0
[u0] = 0. (5.13)

Since we already know that 
0
c†

0

[u] ≥ 0 for all u ∈ H1
c†

0

(�), in order to obtain (5.13) it is

enough to prove that


0
c†

0
[u0] ≤ lim

ε→0

ε

c†
ε

[uε] = 0. (5.14)

Recalling (5.8), for ε < 1
2 we can write

0 = 
ε
c†
ε

[uε] ≥
0∫

−∞

∫

�

|∇uε|2
2

e(c
†
ε−c†

0)zec†
0z+ϕ(y) dydz

+
+∞∫

0

∫

�

|∇uε|2
2

ec†
0z+ϕ(y) dydz

+
0∫

−∞

∫

�

Vε(uε)e
c†
ε z+ϕ(y) dydz. (5.15)

Now, when u0 < 1, by definition of Vε we have Vε(uε) → 0 = V0(u0). Since also Vε(uε) ≥
−1 = V0(u0) whenever u0 = 1, this implies that V0(u0) ≤ lim infε→0 Vε(uε) ≤ 0 in �.

Then, in view of ec†
ε z → ec†

0z by Proposition 5.1, it follows that

ec†
0z+ϕ(y)V0(u0) ≤ lim inf

ε→0
ec†
ε z+ϕ(y)Vε(uε) in �× (−∞, 0). (5.16)

Notice also that ec†
ε z+ϕ(y)Vε(uε) ≥ −ec†

0z+ϕ(y) ∈ L1(�× (−∞, 0)). By monotonicity of u0,
we have V0(u0) = Vε(uε) = 0 in �× (0,+∞). So, by Fatou’s Lemma we finally obtain

∫

�

V0(u0)e
c†

0z+ϕ(y) dx ≤ lim inf
ε→0

∫

�

Vε(uε)e
c†
ε z+ϕ(y) dx . (5.17)

Similarly, since e
c†
ε−c†

0
2 z → 1 in L2

c†
0

(

�× (−∞, 0)), and

∇uε ⇀ ∇u0 weakly in L2
c†

0

(

�× (0,+∞); R
n), (5.18)

we have

∇uεe
c†
ε−c†

0
2 z ⇀ ∇u0 weakly in L2

c†
0

(

�× (−∞, 0); R
n), (5.19)
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which implies

∫

�

|∇u0|2
2

ec†
0z+ϕ(y) dx ≤ lim inf

ε→0

+∞∫

0

∫

�

|∇uε|2
2

ec†
0z+ϕ(y) dydz

+ lim inf
ε→0

0∫

−∞

∫

�

|∇uε|2
2

e(c
†
ε−c†

0)zec†
0z+ϕ(y) dydz. (5.20)

Taking the lim inf in (5.15) and recalling (5.17) and (5.20), we get the equality (5.13). Finally,
in view of (5.8), we then obtain that u0 is a nontrivial minimizer of 
0

c .
Notice that by (5.13) the inequalities in (5.17) and (5.20) are in fact equalities, therefore

we also have uε → u0 strongly in H1
c†

0

(�), as ε → 0. Also, in view of the uniqueness of

the minimizer of 
0
c subject to (5.8) (recall that by Theorem 3.1 the minimizer u0 is strictly

decreasing whenever u0 < 1), the limit is a full limit and is not restricted to a sequence of
ε → 0.

6 Numerical examples

In this section, we illustrate the applicability of our theory with a few numerical examples.
We will concentrate on the results of Sect. 3 as, on one hand, the sharp reaction zone limit is
important for combustion applications, and, on the other, because in this case both upper and
lower bounds for propagation speed of the minimizers are available, and so it is possible to
check how well they fit the propagation speed both for the limit problem and its regularizing
approximations.

For the sake of clarity, we will consider the simplest possible, yet non-trivial situation,
namely that of front propagation along a two-dimensional strip: � = (0, 2L) × R, where
L > 0, with Dirichlet boundary conditions. We note that in the case of a bistable nonlinearity
and ϕ = 0 existence of traveling waves on a strip with Dirichlet boundary conditions was
first proved by Gardner in [15].

Let us start by considering the minimizers in the sharp reaction zone limit in the absence
of flow, ϕ = 0. Here we only need to consider the problem on half of the domain: (0, L)×R,
due to the obvious symmetry of the solution with respect to the transformation y → 2L − y.
According to Corollary 3.3, the minimizers of 
0

c exist if and only if (3.17) holds. Here we
have explicitly, according to Remark 3.2,

v =
{√

2 y, 0 ≤ y ≤ L0,

1, L0 ≤ y ≤ L ,
(6.1)

where L0 = 1/
√

2, and E0[v] < 0 whenever

L >
√

2. (6.2)

So, the minimizers of
0
c exist if and only if the value of L is greater than this critical value.

Also note that for every L satisfying (6.2) the critical point of E0 is unique and is given by
(6.1). Therefore, a pair (c†, ū), where ū is a minimizer of 
0

c† is expected to be the only
(up to translations) traveling wave solution in the sharp reaction zone limit. In particular, the
speed of the wave is unique and is given by c† > 0.
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To obtain a lower bound for the propagation speed c†, we introduce a trial function
u = uλ,µ,l , where

uλ,µ,l(y, z) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1, l ≤ y ≤ L , z ≤ µ
λ
(y − L),

e−λz+µ(y−L), l ≤ y ≤ L , z ≥ µ
λ
(y − L),

y
l , 0 ≤ y ≤ l, z ≤ µ

λ
(l − L),

y
l e−λz+µ(l−L), 0 ≤ y ≤ l, z ≥ µ

λ
(l − L).

(6.3)

This function is characterized by 3 parameters, λ,µ, l. We must have 0 < l < L , as well
as 2λ > c in order for uλ,µ,l to lie in H1

c ((0, L) × R). Substituting this u into 
0
c , after

straightforward algebra we obtain


0
c [uλ,µ,l ] =

(

−1 + e
c(l−L)µ

λ

) (

λ2 + µ2
)

λ

2c(c − 2λ)µ

+
(

−1 + e
c(l−L)µ

λ

)

λ

c2µ
− e

c(l−L)µ
λ

(

l2λ2 + 3
)

6l(c − 2λ)
+ e

c(l−L)µ
λ

2cl
. (6.4)

With c > 0 and L >
√

2, this expression can be minimized numerically, and the sign of the
minimum be evaluated. Then, one can find the largest value of c for which this minimum still
remains reliably negative (to numerical precision). For example, when L = 5

2 and c = 0.925,
we found that
0

c [uλ,µ,l ] is minimized with λ � 1.237, µ � 0.5150, l � 0.8870 and attains
the value of � −1.15 × 10−3 < 0. The level curves of uλ,µ,l corresponding to these values
are shown in Fig. 2a. So, from Theorem 3.1 we conclude that c† ≥ 0.925. Of course, it is no
trouble at all to make this estimate completely rigorous, if need be.

Now we compute the upper bound c� for the minimizer above. For that, we need to find
a non-trivial minimizer ζ for the functional �c in (4.4), with ω0 = (L0, L), ζy(L) = 0, and
ζ(L0) = 0. In the case of a general potential ϕ(y), the Euler–Lagrange equation for �c is

d

dy

⎛

⎝
eϕ(y)ζy

√

c2ζ 2 + ζ 2
y

⎞

⎠ = eϕ(y)

⎛

⎝
c2ζ

√

c2ζ 2 + ζ 2
y

− √
2

⎞

⎠ . (6.5)

Actually, this equation can be solved in closed form in the special case when ϕ is a linear
function of y and, in particular, when ϕ = 0 (of course, this equation can also be straightfor-
wardly integrated numerically for arbitrary ϕ to any desired accuracy). However, since the
algebra becomes too messy in the case ϕ = αy with α �= 0, we will only analyze the case
ϕ = 0 explicitly, and will instead use a numerical solution of (6.5) in other cases.

When ϕ = 0, the first integral of (6.5) is

H = √
2 ζ − c2ζ 2

√

c2ζ 2 + ζ 2
y

. (6.6)

Also, given H , the value of the functional on the solution of (6.6) is

�c[ζ ] = 1√
2

⎛

⎜
⎝ζ(L0 + 0)+

L∫

L0

ζ 2
y dy

√

c2ζ 2 + ζ 2
y

− H(L − L0)

⎞

⎟
⎠ , (6.7)

where we took into account a jump discontinuity in ζ at y = L0. Now, note that in view of
(6.7), we will get �c[ζ ] > 0 unless ζ = 0 when H ≤ 0. Therefore, we need to consider
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Fig. 2 Comparison of the front profiles obtained from different approximations in the case ϕ = 0 and L = 5
2 .

a The level curves of the trial function uλ,µ,l for c = 0.925 and the parameters λ,µ, l obtained from mini-

mizing 
0
c [uλ,µ,l ]. b The curve minimizing �c with c = c�. c The level curves of the numerical solution of

(1.4) and (6.12) for ε = 0.2. Only the lower half of u is shown in all cases

only the case H > 0. In fact, because the right-hand side of (6.6) is a one-homogeneous
function of ζ and ζy , without the loss of generality we can set H = 1. Let us also recall that
the non-trivial minimizers exist only for c <

√
2.
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Solving (6.6) with H = 1, we obtain a first-order equation

dζ

dy
= cζ

√

(c2 − 2)ζ 2 + 2
√

2 ζ − 1√
2 ζ − 1

, L0 < y < L , (6.8)

which can be solved implicitly for y. After some tedious algebra, we find (up to an additive
constant)

y = 1

c

⎛

⎜
⎜
⎝

sin−1
((

2−c2)ζ−√
2

c

)

√

1 − c2

2

− sin−1

(√
2 ζ − 1

c ζ

)

⎞

⎟
⎟
⎠
, (6.9)

where

1√
2
< ζ <

1√
2 − c

. (6.10)

These limits are chosen from the requirements that dy/dζ = 0 and dy/dζ = ∞ at the
endpoints of the interval. Now, recalling that ζ = ecz , where z = h(y) is the function
whose graph is a minimizer of�c, see (4.5), we conclude that we have obtained a parametric
representation of this minimizer, once the value of c = c� is known.

Finally, to find the value of c�, we equate the total variation of y in (6.9) over the interval
in (6.10) to L − L0:

L − L0 =
π
(√

2 − √
2 − c2

)

+ 2
√

2 sin−1
(

c√
2

)

2c
√

2 − c2
(6.11)

The solution of this equation gives c�. We computed the value of c� for L = 5
2 numeri-

cally and found that c� � 1.010. Therefore, we conclude that for this value of L we have
0.925 ≤ c† ≤ 1.011. Thus, a variational characterization of the traveling wave solutions in
the sharp reaction zone limit allowed us to bracket the value of the wave speed within a 5%
accuracy, with a minimal computational effort. Also, the curve that minimizes�c in this case
is shown in Fig. 2b. Observe the similarity of the main characteristics of the two profiles in
Fig. 2a and b.

We now would like to compare these sharp reaction zone limit estimates with the numer-
ical solution of the approximating problem in (1.4). For the purposes of the numerics, we
chose the following form of g(u):

g(u) = 12u(1 − u)2. (6.12)

Fixing ε ∈ (0, 1), we obtain numerical approximations to the traveling wave solutions on
the strip (0, 2L)× R with Dirichlet boundary conditions by solving the corresponding par-
abolic PDE on a sufficiently large rectangle with a localized initial condition (using simple
explicit in time, centered in space, finite difference scheme) and waiting sufficient time for
an (approximate) traveling wave to form. We find, for example, that when ε = 0.2, the trav-
eling wave has a speed c†

ε � 1.095. The profile of the wave front for this value of ε is also
presented in Fig. 2c. Note, once again, the similarity between all three profiles in Fig. 2. We
also performed a series of simulation in the range 0.1 ≤ ε ≤ 0.5 and extrapolated the value of
c†
ε to ε = 0, finding c†

0 � 0.987, see Fig. 3, in agreement with the estimates obtained earlier
for the sharp reaction zone limit. We note that for ε < 0.2 all three estimates obtained by us
are within ∼10% of each other. In particular, the value of c�, corresponding to the Markstein
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1

1.1

1.2

1.3

Fig. 3 Dependence of c†
ε obtained from the numerical solution of (1.4) and (6.12) with ϕ = 0. The dots are

the results of the simulations, the curve is a fit using a quadratic polynomial c†
ε � 0.987 + 0.458ε+ 0.393ε2.

Numerical solutions of (1.4) and the propagation speeds are obtained by solving the associated parabolic

problem in (1.1) on a rectangle (0, 5) × (0, 20) with the initial data u(y, z) = cosh−2( 1
2

√

(y − 5
2 )

2 + z2)

discretized on the 100×400 grid (except for ε = 0.1 when a 200×800 grid was used), with Dirichlet boundary
conditions everywhere except at z = 0, where Neumann boundary conditions are used

model of flame propagation [20], gives a very good approximation for the propagation speed
even in the presence of “heat loss” through the walls and curvature comparable to the “flame”
size.

Note that from the phase plane analysis it follows that the positive equilibrium of (1.4) is
unique for each ε < 1, thus, under non-degeneracy assumption there exists a unique traveling
wave solution for each ε ∈ (0, 1), which is the minimizer we found. Similarly, the results of
[22] apply for each ε ∈ (0, 1), and so propagation with speed c†

ε is guaranteed for the initial
data that approach vε as t → ∞ on compacts as t → ∞. In particular, the propagation speed
for the parabolic problem will tend to c† estimated in the first part of this section in the limit
ε → 0.

We conclude this section by presenting a few results for the case when ϕ �= 0. In particular,
for n = 2 an important special case is that of a linear function ϕ = αy, corresponding to a
divergence-free flow across the strip. We solved (1.4) numerically with α = 1, L = 5

2 , and
ε = 0.2, to find a propagation speed c†

ε = 0.698. The profile of the front in this case is also
shown in Fig. 4a. The value of c†

ε is compared with the numerical solution of (6.5) on the
domain ω0 = (log(1 + 1√

2
), 2L + log(1 − 1√

2
)). We obtained c� � 0.5776, which, once

again, is close to the value of c†
ε obtained earlier. Also, the profile of the corresponding mini-

mizer of�c is shown in Fig. 4b. Again, extrapolating the values of c†
ε obtained in the interval

0.1 ≤ ε ≤ 0.5 to ε = 0 as before, we obtained c† � 0.554 for the sharp reaction zone limit,
in agreement with the above upper estimate. To summarize, the value of c� approximates the
value of c† within 5%, despite the fact that the domain size is comparable with the minimal size
in (6.2) for which propagation is possible, and for which the curvature of the front is not small.

Finally, let us illustrate the assumptions of Proposition 4.3 with a numerical example with
L = 10 and ϕy = −2 cos

(πy
2L

)

. Since this expression is greater than
√

2 in absolute value
outside of the interval 5 ≤ y ≤ 15, the minimizer of �c cannot come closer than distance
L/2 � 1 to the boundary, as required by the assumptions of Proposition 4.3. Similarly, since
ϕy varies on the length scale of L , the minimizer of �c has curvature of order L−1. For this
choice of ϕ, this minimizer is shown in Fig. 5a. For comparison, Fig. 5b shows the numerical
solution of (1.4) with ε = 0.2. The value c†

ε � 1.13 found here is, again, in good agreement
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Fig. 4 Comparison of the front profiles for ϕ = y and L = 5
2 . a The level curves of the numerical solution

of (1.4) and (6.12) with ε = 0.2. b The curve minimizing �c with c = c�
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Fig. 5 Comparison of the front profiles for ϕy = −2 cos
(πy

2L

)

and L = 10. a The minimizer of �c for

c = c�. b The level curves of the numerical solution of (1.4) and (6.12) with ε = 0.2
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with c� � 1.016 found from solving (6.5) numerically. The corresponding extrapolated value
c† � 0.99 for ε = 0 limit is, once again, very close to the upper bound. We note that the
solution just analyzed is also related to the front solutions found in the edge flame problem
(see e.g. [26]), these will be studied in more detail elsewhere.

Acknowledgments The authors would like to acknowledge valuable discussions with J. Bechtold, P. Gor-
don, F. Hamel, H. Matano, and G. Orlandi. CBM was partially supported by the grant R01 GM076690 from
NIH. CBM would also like to acknowledge support by INDAM during his stay at the University of Pisa where
part of this work was done.

References

1. Almgren, F.J. Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems
with constraints. Mem. Am. Math. Soc. 4, viii+199 (1976)

2. Alt, H., Caffarelli, L.: Existence and regularity for a minimum problem with free boundary. J. Reine
Angew. Math. 325, 105–144 (1981)

3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems.
Number xviii in Oxford Mathematical Monographs. Clarendon Press, Oxford (2000)

4. Berestycki, H., Caffarelli, L., Nirenberg, L.: Uniform estimates for regularization of free boundary prob-
lems. In: Analysis and partial differential equations. Lecture Notes in Pure and Appl. Math., vol 122,
pp 567–619. Dekker, New York (1990)

5. Berestycki, H., Larrouturou, B., Lions, P.-L.: Multidimensional traveling wave solutions of a flame
propagation model. Arch. Rat. Mech. Anal. 111, 33–49 (1990)

6. Berestycki, H., Nicolaenko, B., Scheurer, B.: Traveling wave solutions to combustion models and their
singular limits. SIAM J. Math. Anal. 16, 1207–1242 (1985)

7. Berestycki, H., Nirenberg, L.: Traveling fronts in cylinders. Ann. Inst. H. Poincaré Anal. Non
Linéaire 9, 497–572 (1992)

8. Borckmans, P., Dewel, G., De Wit, A., Dulos, E., Boissonade, J., Gauffre, F., De Kepper, P.: Diffusive
instabilities and chemical reactions. Int. J. Bifurc. Chaos 12, 2307–2332 (2002)

9. Buckmaster, J.D., Ludford, G.S.S.: Theory of Laminar Flames. Cambridge University Press,
Cambridge (1982)

10. Caffarelli, L., Salsa, S.: A Geometric Approach to Free Boundary Problems, volume 68 of Graduate
Studies in Mathematics. American Mathematical Society, Providence (2005)

11. Caffarelli, L.A., Jerison, D., Kenig, C.E.: Global energy minimizers for free boundary problems and full
regularity in three dimensions. In: Noncompact problems at the intersection of geometry, analysis, and
topology. Contemp. Math., vol 350, pp 83–97. Amer. Math. Soc., Providence (2004)

12. Cha, M.S., Ronney, P.D.: Propagation rates of non-premixed edge-flames. Combust. Flame 146, 312–328
(2006)

13. De Silva, D., Jerison, D.: A singular energy minimizing free boundary. preprint
14. Fife, P.C.: Dynamics of Internal Layers and Diffusive Interfaces. Society for Industrial and Applied

Mathematics, Philadelphia (1988)
15. Gardner, R.: Existence of multidimensional traveling wave solutions of an initial-boundary value prob-

lem. J. Differ. Equat. 61, 335–379 (1986)
16. Giusti, E.: Minimal surfaces and functions of bounded variation, volume 80 of Monographs in Mathe-

matics. Birkhäuser, Basel (1984)
17. Joulin, G.: On a variational principle for thin premixed flames. Combust. Sci. Tech. 65, 313–316 (1989)
18. Liu, J.-B., Ronney, P.D.: Premixed edge-flames in spatially-varying straining flows. Combust. Sci.

Tech. 144, 21–46 (1999)
19. Lucia, M., Muratov, C.B., Novaga, M.: Existence of traveling wave solutions for Ginzburg–Landau-type

problems in infinite cylinders. CVGMT preprint, Scuola Normale Superiore, Pisa (2004)
20. Markstein, G.H.: Nonsteady Flame Propagation. Pergamon, New York (1964)
21. Muratov, C.B.: A global variational structure and propagation of disturbances in reaction–diffusion

systems of gradient type. Discrete Cont. Dyn. S. Ser. B 4, 867–892 (2004)
22. Muratov, C.B., Novaga, M.: Front propagation in infinite cylinders. I. A variational approach. Preprint
23. Petrosyan, A.: On the full regularity of the free boundary in a class of variational problems. preprint
24. Somers, L.M.T., De Goey, L.P.H.: Numerical study of a premixed flame on a slit burner. Combust. Sci.

Tech. 108, 121–132 (1995)

123



Front propagation in infinite cylinders. II. The sharp reaction zone limit 547

25. Vazquez, J.L.: The free boundary problem for the heat equation with fixed gradient condition. In: Free
boundary problems, theory and applications (Zakopane, 1995). Pitman Res. Notes Math. Ser., vol 363,
pp 277–302. Longman, Harlow (1996)

26. Vedarajan, T.G., Buckmaster, J.D., Ronney, P.D.: Two-dimensional failure waves and ignition fronts
in premixed combustion. In: Twenty-Seventh International Symposium on Combustion, pp 537–544
(1998)

27. Weiss, G.S.: Partial regularity for a minimum problem with free boundary. J. Geom. Anal. 9(2), 317–
326 (1999)

28. Zeldovich, Ya.B., Barenblatt, G.I., Librovich, V.B., Makhviladze, G.M.: The Mathematical Theory of
Combustion and Explosions. Consultants Bureau, New York (1985)

123


	Front propagation in infinite cylinders.II. The sharp reaction zone limit
	Abstract
	Introduction
	Model
	Singular limit
	Area-type functional
	Approximating problems
	Numerical examples
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


