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Abstract: We study layered solutions in a one-dimensional version of the scalar Ginzburg-Landau
equation that involves a mixture of a second spatial derivative and a fractional half-derivative, together
with a periodically modulated nonlinearity. This equation appears as the Euler-Lagrange equation
of a suitably renormalized fractional Ginzburg-Landau energy with a double-well potential that is

multiplied by a 1-periodically varying nonnegative factor g(x) with fol éﬁdx < oo. A priori this energy
is not bounded below due to the presence of a nonlocal term in the energy. Nevertheless, through a
careful analysis of a minimizing sequence we prove existence of global energy minimizers that connect
the two wells at infinity. These minimizers are shown to be the classical solutions of the associated

nonlocal Ginzburg-Landau type equation.
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1. Introduction

In this paper, we consider minimization of the following nonlocal energy functional:
a 72
Jw):== | [W|"dx+ | g(x)W(u)dx
2 Jr R
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Here a, B are positive constants, g (x) is a 1-periodic (a general period T > 0 can be treated similarly)
nonnegative function whose reciprocal satisfies the following integrability assumption

1
1

The fixed function n € C* (R) satisfies [n| < 1, p(x) = I forx > 1, n(x) = =1 forx < -1, W(u) is a
double well potential satisfying

Ww)>0ifu#=+l, WEH=W (=x1)=0 and W”(x1)>0. (1.3)

Formally, for u € C?

loc

(R) N L*(R) the Euler-Lagrange equation associated with (1.1) is

d2 2
—au”" +Bl-——| u+g(x)Ww) =0 x €R, (1.4)
dx?
where 1
d* \? 1 -
(——2) u(x) = lim — 22, (1.5)
dx 0T Jppyze (X —y)
We are mainly interested in solutions of (1.4) that satisfy
lim u(x) = £1, (1.6)

we call such solutions layered solutions.
Equation (1.4) is a special case of the more general equation

—aAu+B(=A)’u+gx)Ww) =0 x€eR", (1.7)
where0 < s < 1. Forue C 120c (R™) N L™ (R") the operator (—A)* is the fractional Laplacian defined by

u¥)-u@), ux) —ul)

=C,lim
n+2s n.s n+2s
e20 Jpeyize [x =yl

b

(=AY’ u(x):=C,P.V. f
R |x =yl
where C, ; i1s a normalization constant to guarantee that the Fourier symbol of the resulting operator is
|§|2S , see e.g., [25], Section 3 for more details.
When g (x) = y is a constant, (1.7) reduces to

—ahu+B(-A u+yW (u)=0  xeR" (1.8)

This type of equation has attracted a lot of attention over the last twenty years (see e.g., [17, 25—
28,47,49, 53, 64]). In particular, the structure of layered solutions in the case § = 0 (Allen-Cahn)
or @ = 0 (fractional Allen-Cahn) is well understood at present. Here a layered solution of (1.8) is
a bounded solution which is monotone in one direction. When S = 0, De Giorgi conjecture posits
that the level sets of such a layered solution are hyperplanes for n < 8. De Giorgi’s initial conjecture
was for W (u) = }T(l — u?)?. This conjecture was proved for any C? function W(u) satisfying (1.3) by
Ghoussoub and Gui [42] when n = 2. When n = 3, Ambrosio and Cabré [10] proved the conjecture
for a large class of W(u) which includes the original De Giorgi’s choice. Later, Alberti, Ambrosio and
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Cabré [2] extended their results to cover all C? function W(u) with the properties specified in (1.3).
Under the additional assumption of anti-symmetry of solutions, Ghoussoub and Gui [43] established
the De Giorgi conjecture for n = 4, 5. Further developments on the conjecture can be found in [12].
De Giorgi conjecture was completely solved by Savin [60, 61] for 4 < n < 8 under the additional
assumption lim, _,.. u(x) = +1. For dimensions n > 9, a counter-example was constructed by Del
Pino, Kowalczyk and Wei [31]. A weaker version of the De Gigorgi conjecture, known as Gibbons
conjecture, replaced monotonicity assumption by the stronger condition

lim_u(x) = 1 uniformly for (x;,--+,x,-1) € R (1.9)
Gibbons conjecture was proved in all dimensions [12, 13,40].

De Giorgi’s conjecture has also been extended to the fractional Allen-Cahn case. The fractional De
Giorgi conjecture was proved in [25-27, 63] for the case n = 2,5 € (0, 1), and in [22,23] forn = 3
and s > % Under additional limit conditions, fractional De Giorgi conjecture was proved for n = 3 and
S € (O, %) by Dipierro, Serra and Valdinoci in [37] and by Savinin [62] for4 <n < 8and s € [%, 1). The

limit condition is removed in [34] forn = 3 and s € (0, %) Recently, Figalli and Serra [41] solved the
De Giorgi conjecture for half-Laplacian when n = 4 (such a result is not known for the classical case
s = 1). Based on all these results, when g (x) is a constant, solutions to (1.8) satisfying (1.6) reduces
to the unique one-dimensional solution (modulo translation) which is monotone and the problem is
essentially one-dimensional.

When g (x) is not constant, but rather periodic, the continuous translational symmetry of layered
solutions of (1.7) is broken and the structure of the set of solutions is much more complex. When
B = 0, the nonautonomous Allen-Cahn equation

—Au+ W, (x,u)=0 xeR" (1.10)

with
W(x+k,u)=W(x,u) Yk eZ"

has been studied extensively over the last three decades. Equation (1.10) is a special case of a model
problem initiated by Moser [48] for developing a PDE version of Aubry-Mather theory of monotone
twist maps (see [11, 14, 15, 57, 58] for related work). A different motivation is to view (1.10) as a
model for phase transitions. When n = 1 and subject to homogeneous Neumann boundary conditions
on the interval of x € (0, 1), the following results have been proved for (1.10) for various choices
of the potential term W(x, u). Angenent, Mallet-Paret and Peletier [1] gave a complete classification
of all stable equilibrium solutions to (1.10) for W,(x,u) = —u(l —u)(u — a(x)). Existence and
stability of equilibrium solutions with a single transiton layer is proved in [44] for a general class
of W, (x,u) = —f (x,u), with f satisfying f(x,0) = f(x,1) = 0 and f (x + k,u) = f (x,u) for some
k > 0. Nakashima [50] proved existence of stable solutions with multiple transition layers for the
case W,(x,u) = (u —a(x)) (u — b(x)) (u— c(x)). Existence and stability of multilayered solutions were
provided in [51] for W,(x,u) = h? (x) f (u). Nakashima and Tanaka [52] studied the one-dimensional
case with a general potential W(x, u) and obtained existence of solutions with clustering layers. For
higher dimensions and the special case of

—Au+ax)W (u)=0 x=(x;, - ,x,) €R", (1.11)
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Alessio, Jeanjean and Montecchiari [5] proved existence of infinitely many solutions which are distinct
up to periodic translations and satisfy lim,, _,.. # (X1, X2) = +b uniformly in x, for the case n = 2 when
a (xy, x,) is a positive, even, periodic function in xy, x,, and W(u) is a double well potential vanishing at
u = +b for some b > 0. For the same equation, Alessio and Montecchiari [7] showed existence of brake
orbits type solutions, and Alessio, Gui and Montecchiari [3] proved existence and asymptotic behavior
of saddle solutions. When a(x;, x,) depends only on one variable, existence of two-dimensional
solutions was proved by Alessio and Montecchiari [4], and existence of infinitely many solutions can be
found in [6,66]. Alessio and Montecchiari [8] proved existence of infinitely many solutions verifying
lim,, 5.0 u (X1, X2, x3) = %1 uniformly in (x,, x3) for n = 3 and a = a(x;). For results on solutions
to (1.10) for n = 2 with general potentials, see the papers by Rabinowitz and Stredulinsky [55, 56].
Existence of various (multi-layer, mountain pass or higher topological complexity) solutions to (1.11)
for general n was obtained in a series of papers by Byeon and Rabinowitz [18-21]. A review on
existence results for (1.10) is given in [54] (see book [59] for a more thorough review on extensions of
Moser-Bangert theory).

An extensive discussion on moving front solutions for time-dependent inhomogeneous Allen-Cahn
equation can also be found in the literature. For example, Xin [65] considered propagating front
solutions (which include stationary layered solutions) for

u,=Viy(ax)Voau) + b (x) - Viu + f (u) (1.12)

when a(x), b(x) are periodic and f(u) is bistable. Keener [46] studied propagation of waves in periodic
media for the following model:

ut:uxx+(1 + g (%))f(u)—au (1.13)

where g(x) is a 1-periodic function and obtained a nearly complete picture of propagation in periodic
medium. In particular, his results show how wave front shape changes when the medium becomes more
and more nonuniform, and how propagation failure occurs when the medium becomes sufficiently
nonuniform. Pinning and de-pinning phenomena for front propagation in heterogenous media was
discussed in [38]. Existence and qualitative properties of pulsating travelling wave solutions is proved
in [33] for equation

U = (a(%)u) + (). (1.14)
where a(x) and f(x, u) are 1-periodic in x.

Studies of layered solution in the fractional case when g (x) is not constant caught less attention.
Existence of layered solutions to

2 S
(—%) u+g@X)Wu) =0 xeR (1.15)

was obtained in [45] for s € [%, 1) when g > 0 is an even, periodic function and W’ (1) is odd. Another
related work is [39], where the authors studied existence of multi-layered solution to the following
equation:

da>\
2s 2\ _
& (__dxz) u+g(x)u(1—u)—() x€eR, (1.16)
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when g (x) is not constant and s € (%, 1). Existence of heteroclinic orbits was proved in [9] for equation
(-M u+geWw =0 xeR, se(i1), (1.17)

in each of the three cases of g, namely, g (asymptotically) periodic, g coercive and g satisfying
Rabinowitz’s condition. For a more general nonlocal operator in the form

Lu(x) = PV. f [u(x) — u(y)] K(x — y)dy (1.18)
R
where
6o O
WX[OJO] (X) < K(X) < |x|1+25 for some @0 > 6y > 0 and ro > 0, (119)

heteroclinic orbits were constructed for s € (% 1] in [35] (see also [30]) and for s € (}L %] in a later
work [36] for the nonlocal equation

Lu+ gx)Wu) =0 x€R (1.20)

with an oscillatory g.

The mixed case, with local and nonlocal operators ( @ # 0 and 8 # 0), has gained attention in
the last years at least in the autonomous case. For example, layered solutions of Allen-Cahn type
equations in the form of a sum of fractional Laplacians of different orders was addressed in [24].
Systematic study on regularity and maximum principles for mixed local and nonlocal operators in
the form £ = —A + (=A)® has recently been developed in [16]. The work in the current paper is
partly motivated by a recent work by the authors [29] where we considered the following renormalized
nonlocal Ginzburg-Landau energy

E.(u) = fszlu’lzdx+fW(u)dx
R

R
W@ -u®)’ @ (x)—U(Y))z]
- dydx. 1.21
+fRfR[ (x—y)? G-y |7 (2D

We proved existence, regularity, monotonicity and uniqueness (up to translation) of the minimizer of
E. (1) in A. Moreover, as € — 0 we recovered the solution in [53] as the global minimizer (unique up
to translations) of

2 2
Eo(u):fW(u)dx+ff[(u(x)_u(2y)) _ @ -no) ]dydx. (1.22)
R R JR (x=y) (x—y)

The proof of existence and uniqueness of minimizers in [29] relies on an essential observation that
a minimizer of £, among all functions satisfying u —n € Wé’z (1) on any sufficiently large fixed interval
I is monotone. Such conclusion follows from the key assumption that (1.21) is translation invariant.
For model (1.1) with only discrete translation invariance, this argument fails and we need to seek a new
method. The main difficulty to prove the existence of minimizer of (1.1) lies in two parts. Firstly, since
n¢ H :(R), itis nota priori clear that J (u) is bounded from below on A. Secondly, the energy bound
does not necessarily imply the boundedness of « in a suitable Sobolev space in general. Therefore, we
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cannot a priori apply the direct method of calculus of variations to obtain a minimizer. To show that J
is bounded from below on A, we divide the real line into the regions where u is close to +1 and where
u is away from +1. By carefully matching the contributions from each region, all negative parts of the
potential infinite energy are cancelled out.

To prove the existence of a minimizer, our main idea is as follows. Given an arbitrary minimizing
sequence {u, }, we replace this sequence by another sequence {u,,} constructed via reflecting the negative
parts of u, outside suitable regions. Taking into account our energy estimates from the lower bound
argument, we can carefully choose the region where we apply the reflection to u, so that the energy
J (u,) differs only slightly from J (u,). The sequence {u,} satisfies |u, (x) + sgn(x)| > ¢ > 0 outside
a uniformly bounded interval. For such a sequence, boundedness of energy implies boundedness of
i, —n in H' (R). From this and a lower semicontinuity argument, we obtain a limit function which
attains a minimum of J (u) in A.

Our main result is the following existence and regularity theorem.

Theorem 1.1. Let a, 8 be positive constants. Assume g € C*(R) is a nonnegative 1-periodic function
which satisfies (1.2), n € C* (R) is a given function satisfying In| < 1,n(x) = 1 for x > 1, n(x) = -1
for x < —1, W (u) is a double well potential satisfying (1.3). Then there exists a minimizer uy of J (u)
over A. Moreover, uy € C22 (R) N L*(R) and satisfies the Euler-Lagrange equation

d2 2
— aug + g (x) W (uo) +ﬁ(—ﬁ) o = 0, (1.23)
and the condition at infinity
lim uy(x) = +1. (1.24)

1

Here the fractional operator (—j—;)j is defined by (1.5).

Remark 1.2. Part of the motivation for our choice of the assumptions on g is to study layer solutions in
excitable media. Keener [46] introduced a model for calcium release in cardiac cells where the release
sites are discrete, resulting in a production term that may degenerate in space. Here we consider a
medium exhibiting bistability locally away from a suitable measure zero set, with one possible choice
of g satisfying (1.2) being g(x) = (1 + cos(2mx))!/*.

Remark 1.3. When g(x) = 1, the authors proved in [29] the monotonicity and uniqueness (up to
translation) of minimizers u, of J(u) for each a > 0. In addition, when @ — 0, the unique miminzer
with u,(0) = 0 converges to a global minimizer of J(u) with a = 0. The proof relies crucially on the
translational invariance of J(u) when g is constant and does not extend to the periodic case studied
here. In contrast, for g periodic it is not at all clear whether a layer solution exhibits monotonicity or
uniqueness (up to discrete translation).

Remark 1.4. When a = 0, our argument can still be used to establish that the energy J(u) is bounded
from below. It is not clear, though, which function space is a suitable choice for carrying out the
minimization in this case. Indeed, for a > 0 our argument uses the continuous representative of an
H'(R) function. If @ = 0, however, one can no longer conclude a priori that the weak limit of the
minimizing sequence remains in H'(R). When a — 0, it would be interesting to know whether the
layer minimizers u, we constructed for a > 0 converge to a function that minimizes J(u) with @ = 0 in
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some sense. In contrast to our earlier results in [29], due to the lack of monotonicity we were not able
to derive uniform L*(R) bounds on u, — n, and it is not clear how to pass to the limit.

We prove Theorem 1.1 in three steps. We first check that J («) is bounded from below. Let
_ 2 _ 2
F(u) := fg(x) W (u(x))dx + Eff[(” W -ul) @ =n6) ]dydx. (1.25)
Ar — 2 — 2
R rJrl  (x-Y) (x—y)

We show that F is bounded from below in Section 2. In the second step, we construct a global
minimizer of J in A in Section 3. Regularity is treated in Section 4 and follows from a bootstrap

1
argument, since uy = vy + 1 with vy € H' (R). However, a priori it is not clear whether (—(j’—xzz)§ Uy €
L*(R), and we handle this term separately when deriving the Euler-Lagrange equation.

We note that our result and the variational approach are also closely related to those in [36]. There,
Dipierro, Patrizi and Valdinoci prove existence of heteroclinic orbits for (1.20) and (1.21) in the case
a = 0 as follows. Given @, 8 € (0, 1], they considered a constrained double obstacle minimization of a
perturbed renormalized energy with an additional penalization term in the following form

Log(w) = %leu’(x)lzdx+§leu(x)—n(x)lzdx+ng(x)W(u(x))dx (1.26)

1
1 f f [(u () —u@)’ - @& -7 (y))z] K(x —y)dydx. (1.27)
R JR

The authors showed that the constrained minimizer becomes an unconstrained minimizer when the
obstacles are far apart [36, Proposition 10.1]. The existence of heteoclinic orbits for (1.20) is obtained
by first letting @ — 0 and then sending 8 to zero. Our renormalized energy in this paper corresponds
to 8 = 0 in their setting and requires a much more delicate analysis of the tail behavior of the members
of minimizing sequences.

2. Lower bound on J (1)

Let J (u), F (u) be defined by (1.1) and (1.25). We shall prove the following lower bound in this
section.

Proposition 2.1. There exists a positive constant C independent of u such that F (u) > —C for any u
€ A.

Remark 2.2. The proof of the lower bound of F can be simplified if g(x) is a positive periodic function.
In this case, we have g(x) > ag > 0 for all x. Thus for any u € A,

2 2
Fu) 2 Fo(u) = f aoW(w)dx + f f [W(x)—u(zyn UG PN
R R JR (x=y) (x—y)

and lower bound on F follows directly from the results in [29] since

F(u) 2 Fo(u) = Fo(up) > —C,

where uy is the global minimizer of F obtained in [29]. The main difference in the argument employed
in this paper is, therefore, to allow for a degeneracy in the energy occurring on a set of measure zero.

The lower bound on J (u) follows directly from Proposition 2.1.
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2.1. Overview

First we observe that replacing u by =1 whenever |u| > 1, the energy is only getting smaller.
Here for the nonlocal term, a direct calculation shows (u(x) — u(y))> > (fi(x) — ii(y))> where fi(x) =
max{min(u(x), 1), —1}). Without loss of generality, we shall assume |u (x)| < 1 on R throughout the

paper. Moreover, the following Lemma can be proved by the same argument as in the proof of Lemma
2.2 from [29].

Lemma 2.3. Given u € A, there exists a sequence u, € A such that u,—n € C;* (R) and J (u,) — J (u)
as n — oo,

We introduce the following subset of ‘A:
Ay :={ueA:ulx)|<1onRand u —n is compactly supported in R}.

Letting

_ 2 _ 2
f(x,y):::iﬂ[(”(x) w) () n(y))]’

(x—y)? (x—y)?
we can write F (1) as

(o)

00 00 -1 —1
+ f f f(x,y)dydx + f f f(x,y)dydx
+2f f f(x, y)dydx+2f f f(x,y)dydx
+2f f f(x,y)dydx +f f f(x,y)dydx. 2.1

Direct calculation shows that the integrals

00 1 2 —1 1 2
f (n(x) - n(zy)) dydx, f (n(x) - 77(2y)) dydx, f ") -’ dydx
1Jar (x=y) o J1 (x=y) ada (x-y)

are all bounded. To show F (u) is bounded from below, the question reduces to showing that

o oo -1 1 o
f f f(x,y)dydx + f f f(x,y)dydx + 2 f f f(x,y)dydx
1 1 —00 J—oo 1 —o0

oo -1
+ f g (x) W(u)dx + f g () W(wydx > —-C, (2.2)
1 —00

00 —1 1
Fw = f g (x) W(u)dx + f g(x) W(u)dx + f g (x) W(u)dx
1 - -1

for some C > 0 independent of u € HAj. Since n ¢ H'?(R), the term flw [ : £ (x,y)dydx could
potentially be negative infinity. In particular, if we choose a sequence u,, (x) which oscillates between 1
and —1 on intervals which get larger and larger, it is not clear that we can have a uniform lower bound
on the left-hand side in (2.2) . Our idea is the following: if |u| stays away from 1 on a big portion of R,
the term

00 -1
f g(x)W(u)dx+f g(x) W (u)dx
1 —00

Mathematics in Engineering Volume 5, Issue 5, 1-52.



would dominate

o —1
]; f f(x,y)dydx.

On the other hand, if |u| ~ 1 on R and u oscillates between 1 and —1, the sum

o ) 2 —1 —1 2
f (M(X)_M(Zy)) dydx+f (M(X)—M(zy)) dydx+2f ) -u@)’ dydx
1 Ji (x—y) o Joo  (x—) DJe -y

would approach infinity at the same order as

f T @ -1
——— —dydx,
1 Jwe (k=)

thus eventually cancelling out the potential negative infinite energy. In both cases, we obtain a finite
lower bound on F (u) .

To explain our ideas more precisely, recall that u — n € H' (R) and has compact support for every
u € Ay. By Sobolev embedding theorem, u — 1 and, therefore, u are continuous. Given any ¢ > 0, we
define the following decomposition of (—co, —1] U [1, o) with respect to u:

I; == {x>1:-1<u(x)<-1+4},
Iy = {x>1:1-6<u(x) <1},
Hij = {(x=1:-1+d<u(x)<1-4}, (2.3)
and
Iy = {x<-1:-1<u(x)<-1+4},
II; = {x<-1:1-6<u(x) <1},
iy = {x<-1:-1+6<u(x)<1-4}. 2.4)

Under these notations, we observe I{, 115, I11] and I1I; are all bounded sets. We show that there
exists a constant C = C(6, g, 5, W) > 0 and independent of u € A, such that

00 —1
f f f(x,y)dydx + i f gW (u)dx + i f g)W (u)dx
1
f f ——dydx - f f ———dydx - C, (2.5)
;r(x— y)? i Ji; (x y)

fff(xy)dydﬂf f f(xy)dydx+;fmg(x)W(u)dx
1
1
= Wu)d dd dd 2.6
+2I W ) dox = ffﬂ(x y) Yars v[ﬁL m(x— y) yax 26)

> —C.

and
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Throughout the paper, we will use C to represent a generic constant independent of u € A, and
depending only on 9, g, 8 and W, which might change from line to line. A lower bound in (2.2) follows
from (2.5) and (2.6) .

Since
fff(x,y)dydmf f £ (x,y)dydx
f f (u(X)—u(y)) f f w(x) - u®y)’ W)= 1O i
(x—y) (x—y)

the proof of (2.6) reduces to the following main technical inequalities:

N _ (u(x)—u(v)) ff B lf“’
J = dydx — ——dvd - w d
‘W ff i [ [ ey [ sowwa
> 2.7)
I <u<x>—u(y)> f f B 1 f“
J = dydx — —dvyd — w d
o (1) f (x—y)* g 1 Jirz w(x —y)? YaxXTy oo W () dx
> (2.8)

The proof of (2.7) and (2.8) uses a contradiction argument. We prove one bound, the other one can
be proved similarly. Assume J; (u,) — —oo for some sequence (u,). Representing the decomposition
of (—oo, —1] U [1, o0) with respect to u, by adding index n in (2.3) and (2.4), decompose I; I5, and
II5, into union of disjoint intervals. We can estimate

2
f (uy, (x)—unz(y)) dydx (2.9)
= Jirr (x=y)
and
f i (2.10)
i, I, (x=y)? ’ |

in terms of summation of integral over those intervals. In particular, J; (1,) — —oo implies Ign Cc[1,R,]
where R, — oo and (2.10) goes to infinity at most logarithmically in R,. If |u,| is bounded away from 1
on a large portion of [1, co0), then the term flw W (u,) dominates (2.10). If u, ~ —1 on a large portion
of [1, 00), then (2.9) would approach infinity at the same logarithmic order as (2.10) . In either case, we
can always conclude that J; (u,) is bounded from below, a contradiction.

2.2. F (u) is bounded from below on A,

We prove Proposition 2.1 in several steps.

2.2.1. Preliminaries

We first state the following lemma.
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Lemma 2.4. Given u € Ay, , the following bounds hold:

1 2
fg(x)W(u)dst, ff("(x) "(y))dd <4k @11)

(x—y)
f RUCEI v < 21 1E. f Md vdx <271 (2.12)
CJa ey o Jor o (r-y)

Proof. The bounds in (2.11) are straightforward. By the definition of 1, we have
ol 2 1 2
- -1
1 J-1 (x=Yy) a4 l=x
The second inequality in (2.12) follows from a similar argument. O

Lemma 2.4 implies that the terms involving integration on [—1, 1] in (2.1) are all bounded from
below. The boundedness of F (1) from below would then follow from the following lemma.

Lemma 2.5. There exists a constant C = C(6, 8,8, W) > 0 such that for all u € Ay, the following
lower bound holds:

o oo -1 1 o
f f f(x,y)dydx + f f f(x,y)dydx + 2 f f f(x,y)dydx
1 1 —00 J—oo 1 —o0

= -1
+f g(X)W(u)dX+f g(x) W(u)dx > —C.
1 —00

Lemma 2.5 is proved in two steps. Under decompositions (2.3) and (2.4), we can write

(o} _1
f\ffmw@m
1 —00
JﬂjiﬂndeX+j fLﬂxdeX+j f £ (ry) dydx
[; Ig Ig 1 (; [; 11[(;

+jﬁffmw@w+f fmeM+f £ (e y) dydx
. i Jur it Jur;

f f (x,y)dydx + f f(x,y)dydx + f f(x,y)dydx. (2.13)
mry Ji; iy Ji;

ur: Jii
The following lower bound will be used in the proof of Lemma 2.5.

Lemma 2.6. Let A C [1,00) and B C (—o0,—1]. Assume either A or B is bounded, then there exists a
constant C = C(B, g) > 0 such that for all u € Ay, the following bounds hold:

fff(x,y)dydxz—sfg(l—u)zdx—sfg(l+u)2d —g, (2.14)
AJB A B €
fff(x,y)dydxz—sfg(1+u)2dx—sfg(l—u)zdy—g (2.15)
A JB A B €
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Proof. We only show how to obtain (2.14), as the other inequality follows by a similar argument. Since
(n(x) = n(y))*> =4 for x € A and y € B, we have

B | (u(x) - u(y))* — _ B | x) —uly) - 2)* + 4(u(x) — u(y) - 2)
4n (x—y)? T4 (x —y)?

By (1.2) and periodicity of g(x), we conclude

00 -1
f S f S N
I g(X)(x + 1)2 g(x)(1 — x)?

- fo 5" Z(ml)z a 210

Sy =

Hence we deduce

f [ s aas
[ff(u(X)—u(y) 2) dx—4f (1—u(X)) dydx _4f (1+u()12))dydx]
4n (x—y)’ B (x—y)’ B (x—y)
(u(x) —u(y) - 2) fl—u(x) f1+u(Y) ]
— -4 -4
2
Eff(u(x)—u(yl—Z) a’ydx—sfg(l—u)zdx—efg(l+u)2dy—£,
T JaJs (x—-y) A B &

where we applied Holder’s inequality and (2.16) in the last line. Notice that when either A or B
2
is bounded, the integral fA fB %dydx is finite for any u € Ay, justifying the spliting of the

integrals in the calculation above. O

\%

The first step to prove Lemma 2.5 is the following Lemma.

Lemma 2.7. Forany 0 < 6 < 1, there exists a constant C = C(9, g, 3, W) such that for all u € A

00 -1
f f f(x, y)dydx+if g(x)W(u)dx+£1Lf gx)W (u)dx
1
sdyd sdydx - C
fj;n(x y) YT L*Ln(x y) YT

Proof. Recall that I}, II3, I1I5 and I1I] are all bounded sets. By estimate (2.14) in Lemma 2.6, we

have c
f ff(x,y)dydxz—sf g(l—u)zdx—sfg(1+u)2dy——, (2.17)
1 Ji; 1y Iy 2
2 2 c
f f(x,y)dydxz—sf g1l —u dx—sf gl +u)ydy——, (2.18)
i Jur; I 1i; &
2 2 c
f f(xy)dydx>—8f g1 —u dx—sfg(1+u) dy — —, (2.19)
ur: Ji; 1r; I; €
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and
C
f f(x,y)dydxz—ef g(l—u)zdx—ef g(1+u)2d - —. (2.20)
ur Ju; 1t 1y €

Here for (2.17) we used the fact that the integral fm f _ f(x,y)dydx can be written as a sum of integrals
s é

of the form fA fB f (x,y)dydx, where either A or B is bounded when u € A,.
By estimate (2.15) from Lemma 2.6, we have

f f(x,y)dydx > —Ef g(1 +u)2dx—8f g(1 —u)zdy—g, (2.21)
rr Jiiy I 115 &
2 2 c
f f(x,y)dydxz—sfg(l+u) dx—gf gl —u)ydy——, (2.22)
I Jiig It 1y €
and c
f f(x,y)dydxz—sf g(1+u)2dx—8f g(1—u)’dy—-=. (2.23)
1ur; Jii; 1r; 1 €

Summing up (2.17) — (2.23) yields

1 ™ 1 (!

f f F Gy dydr+ fl LW (W dx + f cCOW (1) dy
C
dvd dvdx — —
ffzﬂ(x y)yx fmfnﬂ(x y)yx €

—2gf g (1 +u)? dx—28f g1 —u)? dx—sf g(l—u)zdy—sf g (1 +u)’dx
ITUI VI HF OIS VI iy it

1 1 1
+— f gx)W (uw)dx + - f gxX)W w)dx + = f gx)W (u) dx.
4 ury 4 HFully 4 HIFUIIT

Recall that W (1) = W’ (x1) =0, W (1) > O for |u| < 1 and W” (£1) > 0. Picking 6 < 1, we have the
following estimates

W (u (x)) = %W” (= (1 =0x) + 6@ ux) (1 +u?> iW" (-1 +u)? forxel; UI;, (2.24)

W(u(x)) = lW” (IT=-0(x)+8(x)ulx) (1 - u) iW” (O (1 - u)2 for x € II{ U Iy, (2.25)
Since

W (u(x)) > m}n{sW(u) for x € 1115 U 111,

the conclusion follows by taking & = mln( 1 miny<j—s W (u) Lw” (-1, % Lw~ (1)) O

32
The second step to prove Lemma 2.5 is the following Lemma.

Lemma 2.8. There exists a constant C = C(6, g, 8, W) > 0 such that for all u € Ay we have

00 00 —1 —1 00 —1
f f +f f f(x,y)dydx + % f gxX)W (u)dx + % f gx)W (u)dx
1 1 —0 —0 1 —o0
2B f f 2B
- —dydx - ——dyd
fz;ﬁﬂ(x—y)z e 1 11(;71()c—y)2 Y
-C
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Lemma 2.7 and Lemma 2.8 imply Lemma 2.5.

2.2.2. Proof of Lemma 2.8

Decompositions and some basic estimates The proof of Lemma 2.8 is rather long and technical.
First we decompose each set into intervals. By our assumption, for any given ¢ € (0, 1), there exists
R; (u) > 0 and R, (1) > O such that

u(x) =1 forall x > R, (u) (2.26)

and
u(x)=-1 forall x < —R, (u). 2.27)

It follows that /11 and I11; are open subsets of (1, R (1)) and (=R, (1), —1) respectively. By the
structure theorem of open sets in R and choosing u to be the continuous representative, there exist
indices N*, and positive numbers «}, 57 such that we can write /17 and /115 as unions of disjoint
open intervals in the following form.

N* N~
HIE 0 (LR ) =] (ef.8), 11 0 (R ), =1) = |_J(-5;,-a;). (2.28)
i=1 j=1

Without loss of generality, we can assume N* are finite and @; < 8; < @11 < By for all i. In fact,
recall that u — i in Hé (R), write R = max(R;(u), R,(u)), we can obtain an approximation u#; in C*(R)
that is equal to i for |x| > R + 1 and arbitrarily close to u in H'(R). Taking a linear interpolant u,
of u; over a sufficiently fine partition X of [-1 — R, 1 + R], we get a function that is arbitrarily close
to u; in W°(R). Finally, shifting the values of the function u, at the (finitely many) points of X by
arbitrarily small amounts if necessary, we get a function us that is arbitrarily close to u, in WH*(R)
and u} is non-zero a.e. in R. Hence on every interval of the partition X there is at most one point
at which |us| = 1 — 6. From this, we conclude that each interval of the partition X intersects /1] (or
I11y) at most once. Relabling if necessary, we thus find finitely many disjoint intervals (ay, 8x) (merge

(ks Bi) U (ps1, i) IntO (g, Brs1) If B = agy1) where
—1+4+06 <u(x) <1—06oneach (o, Br).

Renaming our endpoints we find disjoint intervals [a; b;] , [c jd j] C [1,R;(u)] and indices K, L such
that

K
17 = laibi] (2.29)
i=1
and
L
11; = J[esaj] (2.30)
j=1
with

-1 <u(x)<-1+6 onlj,

l1-6<u(x)<lonll;,
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15

and
—-1+6<u(x)<1-=6 on [1I,R (w]\( VIIL)=III.

Here by a slight abuse of notation, we denote [c;d;] = [c;, ), and if a; = 1 we replace [ay, b;] by
(1,b] in (2.29), or if ¢; = 1, replace [c1,d;] by (1,d,] in (2.30). Similarly we write /I; and I as
unions of disjoint intervals. For the rest of the paper, we write
Iw = U [abi], I} (u) = UL [c Ak 2.31)
Iy ) = UL |-bi—a|. 1I; u) = U, |-d;. =5} (2.32)
with the understanding that [ d cL] = (—o0,—c7| and [—bl,—ﬁl] = [—'151,—1) if a; = 1, or
[—dl, —cl] = [—dl, —1) if ¢, = 1. Note that in this form, all a;, b; c;,d;, zz‘,.,Z,-, 'c'J,;i; are greater or

equal to 1.
We first state some basic estimates.

Lemma 2.9. The following estimates hold:

1 K i+ d b +
f f _dydx = In ]—[ 4 bt (2.33)
Jdi (x—y) i a,+c]

™~

i /:1
K L
ff L gyax=m|][]] b"_df-a"_cj (2.34)
i Jir (x—y) i1 el ai—d; bi—c;
A
ff L gyax=m|[[[[22% 49 (2.35)
I JIg (X—y) i=1 j=1 Cli—dj bi—Cj
K L ~—~ -
ff L pyax=m|]] (Gt bire) (2.36)
it Ji; (x—y) izl jo1 bitd; 4t

Proof. By (2.31) and (2.32), we have

1 K L K L bi 1 1
dydx f f sdydx = f [ — — ~]dx
j;gflg(x—y)z Z‘Z‘ g (x— y) ZZ a \**tC¢  x+d;
K L ~ = K L = ~
b; + b,-+d- i+d; bi+c;
ZZ(ln G J]:ln(l—[na . ,Cf]
a; +¢; : : _ bi+d; @i+Ccj

i=1 j=1

(2.34), (2.35) and (2.36) are proved similarly. O

An immediate corollary of Lemmas 2.9 is the following.

Corollary 2.10. We have the following bounds.

1 In2 lf?] > by
——dydx < = , 2.37
LL(x_y)Z Y {anI;—’f lfC1<bK ( )
1 In2 if ¢ > bg
f f sdydx<{ 5 fa>be (2.38)
i Ji; (x—y) anﬁ if i <bg
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Proof.
I & o
dydx = f f dydx
j;;f;é(x—y)z ;; ai J-d; (x—y)
bk 72‘-1 1
< f f sdydx
ai —ar ()C - y)
— In bK+El ) Cll+dz
a) + ¢ b[( + dz
< In (bK +£1)
a) + ¢
If?] > b[(, _
fj + bK < 2’
Cc1+ a;
1f?1 < bK,
c1+bx  2bg
= <—,
c1+ a; aj
so (2.37) follows. The estimate (2.38) follows from a similar argument. O

The following estimate on the potential term is important for the lower bound estimate.

Lemma 2.11. Given any € € (0, 1), there exists a positive constant T = 1(g, g) such that

fw gX)W(u(x))dx = (1 - s)|IIij| |1|n}n(S W(u) + f g(xX)W(u(x)dx (2.39)
1 == [ruIr
-1
f gX)W(u(x))dx > (1 - eI |r|n}n6 W(u) + f g(x)W(u(x)dx (2.40)
—o0 ul<1- I;UIly

Proof. By (2.16). the zero level set of g Ey = {x € [0,1] : g(x) = 0} has measure zero. In particular,
given any € > 0, we can find an open set U, of (0, 1) which covers Ej and |U,| < &. Let O, =
U™, {U, + n}, then since g(x) is continuous and positive on [1, c0)\O,, there exists T = 7(g, £) > 0 such
that g(x) > 7 on [1, )\ O, therefore

fl )W (u(x))dx

f W (u(x))dx + f W (u(x)dx
III‘;r

oI

\%

T(l—a)|111i||1|1<1}r_16W(u)+ f g(X)W(u(x)dx.

oI
(2.40) can be proved similarly. m|

Remark 2.12. Fix an € = gy and write y = 1(&y, g)(1—&y), we can write the lower bounds (2.39)—(2.40)
as

foo gx)W(u(x))dx > leIIfl lrln}né W(u) + f g(x)W(u(x)dx (2.41)
1 usl= [rulry
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-1
f g(x)W(u(x))de)/IIIIfIlrlrgr_lé W(u) + f ()W (u(x)dx (2.42)

Ig Ullg

(o)

Asume [, II5 are written as unions of intervals in the form (2.31) and (2.32) . Let U, [a;, b;] C I}
and U’j’.’=1 [Cj’d{l c 11, Ul’.‘zl[ b;, aj C Iy and U;f’zl[ dj, ]] C II;. If dj = oo, we write [cj,d]] =
[Cj, 00) and [_dj, —Fj] = (—OO,FJ-] if d; = co. Assume also

O<a1<by<ay<---<b,_1<a,<b,<ci<di<c,<---<d,

and
O<a <b<ay<---<az<by<c<d <cy<---<d.

We have the following estimates.

constants C = C(6, g, 8, W) and y = y(g) such that the following estimates hold for any u € A,.

B ff (”(X)—M(y)) IIL lfoo
ZJZ; (x—y) I Ié_ﬂ(x_y)zdydx"'ét 1 g)W (u) dx

Lemma 2.13. Assume |c; —b,| > 1, '?1 —Zﬁ‘ > 1 forall i and j. For 6 < 1, there exist positive

BN, Ci—a di-bi B 2bg 7min|u|§1—6 W (u)
> = 1 —=In I - C. 243
& ch-—bi di-a © a 4 | 5| (2.43)
i=1 j=1 J J
n m —a; («/ _ 1
E Zf~ f~ (e (x) u(y)) f f dydx+ f gxX)W (u)dx
an i=1 j=1 Y ~bi Y-d; (x — y) 1y Jirg 7T(x y)
L& T=bi di-G 2bg ueizs W
> By S St dma By B, Y W e (2.44)
niLH cj-a di—b T a 4

Proof. We prove (2.43), (2.44) follows from a similar argument. By Corollary 2.10, Remark 2.12 and
(2.24 — 2.25),

sz f (u(x) —u(y)’ W@ =uON oy _ff dydx+1f g(X)W (u) dx
=1 j=1 (x—y)° i Ji we—y)? 4Ji

B U +1+1-u(y)-2)>*-
- sz f (x—y) “av

=1 j=1

1 00
sdyd ~dyd
+ZZ fﬂ(x y) yax — ffﬂ(x y yx+4‘fl‘ g(X)W (u) dx

=1]] Cj

B x '"f (u(x)+1) dydx __sz (l—u(y))
(x—y)?

M

o1 o1 Ya Jo (0 »? i=1 j=1 ¢
ﬁ L Ci—a; dj—bi IB ’)/min|u|31_5W(bt) lf
+= 1 : -= — |+ I+ - W (u)d
T4 Z . Cj—bi dj—(,li 7T al 4 | 6| 4 I;U”‘;rg(X) (u) *
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\%

=

n bi m 1
= <u(x>+1>Z( - )x——Zf (1—u<y>>2( b
i—1 Yai =X ,' y—d;
ﬁ 2 & Ci—a dj—b' ﬁ bK ym1n|u|§1_5W(u) +
+;;;ln( 5 _al)—;l (2a1) ; 1274
W"( D g(1+uydx+ ”( ) g (1 —u)dx
W//( 1) fb, 2 e f
ZZI s e - i 1)2 e
W”(l) fd 482 & ff’f 1
1- dy — —d
Z:] g (1 —u(y))*dy 2W”(1)Z " y
ﬁ ShN di—b\ p bx\ yming< s W), |
Al dma) - am ) T
1( )£8(1+u) dx + Ié ) H;g(l—u)zdx
B j—a di=b\ B bx\ yming<-s W), .
7_1'i Z ( al)—;ln(Za—l)+ 4 |III(§|—C

The last two steps follow from

and

Mathematics in Engineering

Zf (u(x)+1)2( x)dx
. n i m 2
g;ﬁlg(x)(u(x)+l)2dx+2—2f (x) [Z(cj x)) dx

J=1

e Ly (1
2fp g(x0) (u(x) + 1) dx+2—;j; g(x)(cl—x)zdx

€ (u (x) 1)2d i bn;d
2f];g(x) u(x)+ x+26 3 2 — 27 X

. 1 (5] 1 b1
S e ([ [ )

€ 1 1 21
dx+— | —d —
2f5<a>7(zc)(bt(zc)+ ) X+ e X 2

IA

IA

€ 2004 €
2flt;g(x)(u(x)+l) d)c+2‘E

m i n 1
1= —
Zf( u(y));(y_a

1
—|d
)
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C
< gL;g@)(l—u(y))zdwz—g-

Proof of the main technical lemma Observe that

fff(x,y)ddef f f(x,y)dydx

_ f (u(X)—u(y))dd +_f f (u(x)—u(y))
(X )’) o0 (x y)

_ f (u(x) —u (y)) f (u(x)—u (y))

(x=y) (x—y)
f (u(x)—u(y))dd +_f (u(X)—u(y))
ar Jury - (x = y)? (x —y)?
f (u(X)—u(y))dd +_ W@ -u) dydx
15 J1Ii; (x - y) w1z J; (x— y)
f (u(x) - u(y)) W) = u)” iy +_f (M(X)—M(y)) dydx
(x—y)? ur (x—y)?

ff (M(X)—M(Zy))dd +_ff (M(X)—M(Y))ddx
urr (x—=y) (x—y)?

5 2
f (u(x)—u (2y)) dydx + = f (u(x)—u (Zy)) dydx, (2.45)
i (x—y) i (x=y)

Lemma 2.8 would follow from (2.45) and the following Lemma.
Lemma 2.14. There exists a constant C = C(9,v,8, W) > 0 such that

B (u(x) —u@)’ dydx LB (u () = u )’
4rn o (x— y)? 47T i  (x— ¥

1 00 1 -1 ﬁ ﬁ
1 1 dx — — P dvdx- ———dvyd
+4j1‘ g(x)W(u)dx+4Ioo W (u) dx L]I;ﬂ(x_y)z yax Lg L;n(x—y)z Y

> —-C

dydx

Lemma 2.14 is a direct corollary of the following Lemma.

Lemma 2.15. There exists a constant C = C(6,y,8, W) > 0 such that for all u € A, the following
bounds hold:

(Ll (X) —u (y)) f f ﬂ 1 foo
dydx — — D dydx + — W () d _c
f ()C y) * rJdrm (.X' _ y)2 yax+ 4 1 g(X) u)ydx >

(2.46)
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f (u(x)—u(y)) ff dydx+1f gOWw)dx > -C.
(x—y)° iy Jir; 7T(X »? 4

(2.47)

Proof. We prove (2.46), as the proof of (2.47) is similar. We argue by contradiction and let

. W) —uyy [[=2 [
J : dydx — ——dvyd — W) d
F ) = f e [ [ iy [ sowwar

We show that
Jg- (un) - —0

implies
an

L _
lim nsgg 1222 b =1 (2.48)
On the other hand, (2.48) and a diagonal argument would imply J; (u,) is bounded from below, a
contradiction. We prove (2.48) in a series of steps. We will only explain the first three steps in detail.
The remaining steps can be proved similarly.

Assume (2.46) fails. Then there would exist a sequence {u,} such that J (u,) < —n. We denote the

decomposition of I3 (u,) and 115 (u,) as follows.
L = Uhla b"] 15, = Uiy ..

Uk
1?

I on

Here we have dzn = oo and cﬁn > b’}(n. We assume
(bn n )ﬁ][+ _ UL n—1 [ n dn]

K. €L, on = = 1 Gl

-1 .

(bt 1’ l)mllg = Uz ;" [CZ’dZ] fOI‘lZZ,---,Kn,

Step 1: J; (u,) — —oo implies there exists i} satisfying j| < i} < L, such that

C}.,i, a’

= lim sup bK = 1. (2.49)

K, n—oo

lim inf

n—oo

First we observe

o B U () =, () B 1
n > U ) = f fu s j; Lnﬂ(x_y)zdydx+4ﬁ g(OW () dx
b
f f ————dydx > B ln( )
I 7r(x y’

lim sup by = oco. (2.50)

n—oo

Therefore, J (u,) — —oo implies
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Case I: Assume that for a subsequence, ¢; —b% < 1 (without relabeling for simplicity of notations).
Then by Lemma 2.13,

-n > J5 (u,)

ﬁf%f‘” () =, O ‘ff B lf“’ W
- 4n ay, Jcp +l (X_)’)2 Y V) 7T(x—y)2 yx+4 1 8OW (uy) dx

-c; —1 b miny<;_s W
> B L= By (2 ) Y <19 (”)'b',;,c;ﬁ)mmgn —C
V4 b’}{n—cL 1 n al 4 no ’
] —ay miny<;_s W
= gln - ﬁ““y e w (B, et ) n g, | -
Ky
¢ —a;
> P % o
Vs b
Taking liminf on both sides, we have
lim inf T Ky =1
n—oo K, n—oo bKn

For the remaining cases, we shall always assume ¢j — by > 1. Also whenever we need to work on a
subsequence, we always use the original sequence for simplicity of notations.

Case II: Assume for a subsequence that there exists i} € { .+l - L, - 1} such that C?]’ —
b’}<n < 1. We also assume b’}<n - dy > 1 (otherwise (2.49) follows directly). Then by

b
ga,b(x):ax—blnxzb(l—ln—), for x > 0, (2.51)
a

and Lemma 2.13, we bound J7 (u,) as follows.

-n > J5(u,)

b’,'( 0o Kn _ 2
S ,3 (4 (x) = 4, ()’ dydx + L f f (u, (x) unz(Y)) dydx
o (x —y)? n NI, (x-=y)
f f dydx+ 1f gxX)W (u,)dx
1, Jis, 7r(x y)? 4
b () —w 0) f fﬁ:* Uhoe LI od
- g o (x—y) T—y?

dd Wnd
Lﬁﬂ(x ¥)? yx+4fl gXW (u,)dx

on on

a-ay g [d'z -y, dy + |5 en) g,

\Y
e
5
|

_ ann
-C
_ anKn
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ﬁ C?ll B a’;{” ﬁ n n +
> EIHTKH_7_'[ln(1+‘(bK",CL”)mIII§’n)
ming<;—s W (u
AL ()'@ﬁch)ﬂlﬂgl—C7
4 n n g
Copn — A,
> B B¢
n b
Taking liminf on both sides, we must have
1 f C?? li K, 1
iminf — = limsup — = 1.
b b

Case III: Assume no such i from case II exists, then we must have c’}n — b > 1. Thus
] n

-n > J5 (u,)

b 2 o0
Kn n — Up 1
> f (e, () — 2@)) dydx — f f deydx + = f gx)W (u,)dx
ay (e’}n, oo)nu;n (x-y) i, Jr, T(x—y) 4 J
S _ diy+ (o
S (1, (x) unz(y)) f f B dydx
a” c;f (x—y) ”(X—)’)
f f dydx + — f gx)W (u,)dx
L7 (x y) 4 Ji
B G p [k 4 (b, c3. ) 0101, | - b,
——HT—T——nn
= by, dy, — by, 4';,1, + (o cr) | - a,
B br;g, yming<-s W) ., +
(2] . (B, 1) n 1, | - €
ﬁ C’;rll - ai[l{" 18 n n ﬁ n n +
> 7—1_ In TKH - ; ln(cj.f - bKn) - 7—1_ 11'1(1 + I(bKn’CLn) N III(;’n )
yming<-s W) |,
+ y (b, et ) n 1, | - €
cl,—a’
> h m2it " _c
b b’;(n

The last step used (2.51) and (b'}( ,c’;.n) C (b’,; N ) N III; . Taking liminf on both sides of the equation
n 1 n n 9
above, we must have

. .fcﬁ . U _
imin = limsu =1.
b, P
Step 2: J; (u,) — —oco implies there exists #;, satisfying j; < i} < i such that
Ch Ay
lim inf =limsup — =1 (2.52)
" Pkt nooo by
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First we observe

-n > J§ (u,) > - ff dydx+lfmg(x)W(un)dx
I, JI;, 7r(x y) 4 J
S _éln(zﬁ)_élni_

n n
T a; T aK,,

Therefore, by Step 1 we have that J; (u,) — —oo implies

limsup by | = oo.
. b, 7K .
Case I: If lim 1nf,1_>oo an" - = = 0, then limsup,_,, cle = 1. In this case, then we can replace

(a?{n_ b 1) U (a’}g, b’}(n) by (a % 1> b’,;n) and repeat our argument in Step 1 as follows.

-n > J (u,)

brll(n—] _ _ 2
. B f f (14 (%) unz(y)) dydx+ 2 f f (14, (%) unz(y)) dydx
A J» " o)LL, (x—y) n NIy, (x=y)

f f dydx+ ! f‘” gx)W (u,)dx
1, VI, 7r(x y 4 J

Kn _ d +
5 f (un (%) unz(y)) f f B _dydx
a1 Je (x=y) m(x=y)
A, b b’ 1 0
f f dydx—§1n2 —/31 —n —f (W (u,) dx
o &, 7r(x ) b4 all Toody 4 J,
. ﬁ fb;l<” f (un (.X) Q})) d e fbn fdﬂ_,_( Cn m[[lgn ﬁ dydx
- A Ja & (x=y)> m(x—y)
C:ln -b B b" 1
BTt By ok By P +—f gCOW (u,) dxx
e al noody 40
B e g G b p (B dy + |(b, o) 0| - v,
z “hh—— = -—Ih = T
N T r =V dy+ | _pod )OI -
b" ~ n 1 00
P2 e _F ad +—f gOW (uy,) dx —
by al nooay 4 J
ch—al W — b
5 _lnln_m_éln_ﬂ_ém( b)) - 'Bln(1+‘(b”,{_l,a;’<)nlllgn)
m b m cll dy @ b/ " " ’
b’ miny<;_s W
B Koy y miny<i-s W (1) 1z, -
mooay 4 ’
Chy — ay _ ch =Dy _ b
S S ST
m b T Cp—ay m Ay
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Taking liminf on both sides, we get

n n
Lo Ci . Ak, -1
lim inf = lim sup = 1.
n n
K,—1 K1

Ui

bl
Case II: If lim mf,,_,oo i 7, K-l > (), There are three cases.
Cin -1

Case IL-i: If (b}, _,.a )mur+ = 0, then (b}, _,.a} ) C 111}

on’

-n > Ji (u,)

. B fb f (i (x)—un2<y>) dvdxs B f” f (it (x)—un;y))z
4 Jan n o)y, (x—y) (b o)z, (x=y)

S L

on

1 00
O y) dyd)H_ZI gx)W (u,)dx

anl b” " b’I‘(n an OIIIM
. B f AR f B dyd
Ty e (x—y)° m(x—y)
b';(n foo (un (x) —u, (y)) f Kn \f«d’;l+ b’;(n ﬂ][l(;n ﬂ dydx
a” cl’_ﬁ (x—y)2 ﬂ(X—y)2
l’l bl’l l 00
—’§ éln r[f +—f gx)W (u,) dx
T ay 4 ),
I [ vy | (b cn ) | - B
— n— .
- no— n - b n n a
T kit + (B )muﬁ ay
B Gk g (d-ak + (g en) | - b
—_— n—_ p— n .
mooCp b, omo | dy by, dy + ‘(b"Kn,czn) NI, | = dy
by _ b miny<;_s W (u
N AN AL T R AU N e
n al n aKn 4 ’
T — dy 1 —al
B, ‘i~ ,3 nt K. B 2B (
> —ln— - ———ln =Dy ) — —In(1+ (D% ,c} ﬂIII+)
n by 7T ch +1—b’1‘< ., 7 (c’l Kﬂ) Py ‘( K CL") on
i ming,<j— W
B 2, YD1 W) 1, | - ¢
noody 4 ’
B Cll _aK -1 n B n n 2ﬁ non +
> ~n o 41n (1 + (af, — by ) - —In (ch = bk,) - = ln(l + '(bKn,an) NI,
by miny<;_s W
ﬁ ’}/ u<i—s W (1) |IIIan _c
7r aKn 4
ch —ay n
> éln — K"]—éln f”—C,
Vs b Toay

dydx

)

(2.53)
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where we used (2.51) and the facts

(ax, = by, 1) < |11,

Taking liminf on both sides of (2.53), we conclude

(ch - b’,@n) < max(l, '(b’,@n,c’zn) N1,

)

n

Ca an _1
lim inf =lim sup —— = 1.
= Pk -1 n—eo bK -1
Case II-ii: If (b’}< »a Kn) N Ilgn # 0, there are two cases. If liminf,_,. a—'f = 1, then (2.52) follows

Kn-1
ch

directly. We therefore assume liminf, .., ——— > 1 for the remaining two cases.
Kn—1

Case IlI-ii-a: There exists i) € { Jy h+ 1, e, } such that cn b”K _; < 1. We assume b’}( L~

ay _; > 1 without loss of generality. Applying Corollary 2.10, Lemma 2.13 and (2.51), we bound
J; (uy,) as follows.

-n > Ji(u,)

b
> f f (u () = u, () dydx + B [Tr f (tn (x) = un () dydx
" iz, (x-y)y A Jar | Jor ez, (x-y)
1 (o)
f f a’ydx+ —f gx)W (u,) dx
I{‘;ﬂ I(;’l ﬂ(x y) 4 1
D ay, — K iy + Kn—1° aKn .
S f (un (x) an()’)) dydx f f B dydx
& (x—y) & m(x=y)
K n— K n— d” il -1 ﬁ III&,n '
f f (t () = 1 (1)) dydx f f B _dydx
% (x - y)? m(x=y)
_ by, 1 [
P2 K"nl By s oy —f gOW () dx
m al noodp 40,

. B, [ R I ks R 1] B (=i i+ (Vi) T =
mo o \ep+1=by_, ag —ag_, dy =D, dyy + ‘(b’;( a )ﬂ iy, | - day _,
B G p [(-dha A (B, ey ) g, | - b

J— n —_—_— - — n .
A I U Rk RS (PR Iab 1 BT
b by in<1-s W
Bt By O o Y W,
n a.  m o ay ’
Clp — Ay _ cl’.i,—a”_ a. —b.

> élnzn_’f"lﬁfln[ T T ¢ 1)_@111(1 +’(b’,;n_l,a',gn)m111gn)

T by T\~ by | ay, —dy _, 4
ﬁ n n + ﬁ br;(n
_;[ 11’1(1 + ‘(bKn’ CL,I) N III(;’n ) - 7_1' In g -C
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B 0 un Yy miny<i-s W ()
~~In (1+ch =t 1)+ . |1tz
Cz” — a" B an _ bn bn
é]n2—m+élnu —éln 5 _

n 7 n
T b T cp -by , w ayp

1

Taking liminf on both sides, by Step 1 and lim inf,_,, % > 0, we must have
Kn “Kn-1

Cr.il a’

.. i =1
lim inf —— = lim sup =1
n bn

K1 K1

Case II-i-b: No such i} exists, then we must have = by > 1. Applying Corollary 2.10,
2 n
Lemma 2.13 and (2.51) , we bound J (u,) as follows.

-n > Ji (u,)

2 b’,‘(n_1 _ 2
S f f (1t (x) — unz(y)) dydx + B f f (14, (x) unz(Y)) dydx
a )iz, (x—y) A g, I, o)y, (x =)

1<1“K
ﬁﬁ

on

1 00
dydx + = f gx)W (u,)dx
m(x—y) 4 J

K1 Kn — '11( _1s
. B f (it (x) unz(y)) f f B dyd
4r Gy Ve (x-y) m(x—y)
Bl o 3 (b e Yy,
B f (u (x) an()’)) dydx — f f B dydx
ay c['.ill (x—=y) ay. m(x—y)
bn B bn 1 00
P p B L f gOW (u,) dx
m al nooay 4 J;
B, [c".,,—a;n_l - 1) B, [~ iy + (v, o) 0 0L - B
- —in n ——In n n ’
T 7 by | ax —ax d - by a';.‘n + ‘(b’]; _.a )ﬁ I | —al |
2 ” > n
B Gk g [d-ai di (b, cq. ) g, | = b
- n _— n .
= b d’.ﬁ b n noon
T CGp=bgq T VK- di'; + '(bKn,an) NI, | —ay
by _ bl miny<;—s W (u
B2t By O o Y s W@,
n al moody 4 "
y —dy Cop—dyp | d =D _
> élnhn—+'§ln( I 1]_6111(1+‘(b"Kn_l,a7<n)nIII({n)
4 by T \C =Dy aK,, —dg. ) T
B . bg B " 0 yminy<i—s W) .
~n @ C-=ln (ch = b1 ) + 7 iy,
C”n - at = a — b n
> P2 T B Tk By Pk
b by T Ch- bK o, mooay
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Taking liminf on both sides, we must have

c" n

L. b ) g 1

lim inf = limsup —— = 1.
n bn
K1 K1

Step 3: J; (u,) — —oo implies there exists § satisfying j; < i} < i such that
i dy o
= lim sup —— b =1 (2.54)

K,-2 n—eo YK, -2

lim inf

n—oo

First we observe

-n > J5 (u,)

= @ff (”(x)_”(y))dd ff dydx+1fg(x)W(un)dx
: Jir, (x y) I, 7r(x y) 1

> f f ————dydx
1, ﬂ(x )’
b b

> Lnfpl) Ly By

n a nody  omody

Therefore
limsup by _, = o0
Case I: liminf % = 0. This implies

, -2
liminf — = 1. (2.55)

In this case, we can replace (a’;(n_z, b’,‘(n_z) U (a’}(n 1> b’}{n 1) U (a’}(n, b”Kn) by (a’,‘(n_Z, b’,;n), and repeat our
argument in step 1.
We estimate J (u,) as follows.

-n > J5 (u,)

bl;(n—z Kn —_ 2
> E f (un (X) Uy (y)) d L2 f f (un (X) an()’)) dydx
4n dy (b o)l (x—y)* r )i, (x—y)
Pk ( (x) — u, (1)) f f f‘”
dydx — — P yax s W () d
dy. f oo)mngn (x—y)2 Y r Jr, 7r(x—y)2 yax+ 4 ), gLOW (uy) dx

f f(un (x)—unzcy)) f f B £ iy
¢ (x=y n(x-y)

n
in
i
1

A= 18
- ———dydx — —dydx + = gx)W (u,) dx
fb;_z L m(x— y)z r, Ji, mx— y)2 4 J

i

v
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B, c;; —ay , p [dr-al | e0) 0y - by,
p— n _— e — n .
h - b d, - b n n n
n o 7| G ay (b ) i, -
in =Dk, b min
_'§1 ‘n——'gln2 ‘ wpngn _
T ayp T al 4 '

By (2.55), we are back to the situation in Step 1 with (a’;(n, b’,’() replaced by (a’;(n_Q, b’,’() and we conclude

n

" an n
liminf — = limsup = lim sup — 1.
Ky Kn bK,l 2
Case II: liminf % > 0 and lim inf % = 0. This implies
l -2 1 -2
Cl aK 1
lim sup z—n =1. (2.56)
l bK -2

In this case, we replace (a'}(n_z, b’,@n_z)u(a’,‘(n_l, b’,‘(n_l) by (a’,‘(n_z, b’,‘(n_l) and repeat our argument in step 2.
We bound J; (u,) as follows.

-n > J§ (u,)

b2 — D,-1
s B f (14 () unz(y)) dydix + B f (t () = 1 (1))’ dydx
4n m,  (x=y) 4n 11y (x =)

@)~ s O f f i 1 fw
dydx - ———dydx + 5 W () d
a Jdm, Gt o w (=) yaxtg ), sLOW ) dx

f f (un (x)—unz(y)) dydx f f _ B ayax
1,0 c oo (x—y) by, JIIEN c c>o 7T(x y)

>
ﬁ o (i (x) —u, () f f f
dyd ———dyd W) d
ay I, (x —y)? T  Jr 7T(x y)? yax+ - 4 ), gOW (u,) dx
b b
> f f (I/tn (x) = unz()’)) dydx + 2 f (u, (x) — u, (y)) dydx
H50\ein (x =) 115, (x— y)

1 © ﬁ 12 bK -2
dydx + - gOW (u,)dx — — ln —_—
1, Jr;, 7T(x y) 4 J, C,g_a

on Kn—l

By (2.56), we are back to the case of step 2 with (a?{n_l, b"K”_l) replaced by (a’}(n_z, bl}(n—1) and we can
conclude

C’_il n n

o . K- K,—2

lim inf = lim sup = limsup — = 1.
n bﬂ
K,—1 K -1 K2

b n

"
Case III: lim inf K" b,f” > 0 and lim inf KT > 0. We discuss several cases.
t Kpn-2 ; -2
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Case III-i: (bj,’( e 1) N H;ﬂ = (. Then (b;’( e 1) c III('{n. We also assume
. . b" +1
liminf,_,. K’;T,;’ > 0.
11 Kn—1
We have
-n > Ji (u,,)
5 P2 f (un (x)—unz(y)) dydx + L Pin-2 f (up (x) — unz(y)) dydx
dy n vy OIS, (x-y) n )N, (x=y
Kn 2 Ku 2
f f (1t (x) — 2()’)) dydx+ 2 B f f (1t (x) — an(y)) dydx
s oo i, (x—) ey, (x=y)
1 00
f f 2dydx+—f gOW (u,) dx
i, Ji, m(x—y) 4 i
Vi (k, 2 (AU ay, )OI |
5 f (uy (x) — unz(y)) dydx f f B _dydx
Tr (x—y) m(x—y)
2 R (|
f (un (x) — unz()’)) dydx — f f B _dydx
& (x—y) m(x=y)
k=1~ ay, 2 K i+ Pk, -1 “K
f f U 0=t O f f“ /_f(x Wdydx
Tan '.‘ (x-y) @ :
b by b 1
Bk By, —al - By, S +-f g(OW () dx
n al 7T aK"_l Tooay 4 J;
_ B, (c —d “'fa‘bk—z] g, (%% dy+|(b ) iy - vy
2 n —=1In
- P bﬂ n - n dn - bn n ' n n
mo\ep=bg , dag —ay ,) « K,—2 di;+'(bK”_1,aKn)ﬁIIIgn dy
n n n n n n n n + n
+/_31n[ o —ay aKn_bKn_1+1)_é dy aKulldl.;+|(bKn71, V| - v
+1-b no—al dyf, b n n a’
4 C Ko—1 ag —dg 4 4 # VK1 di;+|(bKn - a )ﬁIII+ ay
B G p h-dk g (di-ah d;’n+|<b’;<n,c2n)mlllg —v
~In —In—————-=1In
T Ci,ll bKn ) T C,, bKn 1 T dt” bK ) dn |(b’11( , L)ﬂIII+ 111(”72
bn n bﬂ . _ W
—Elnz K,an éln f l_éln%_c+W|m§u
P g a dy | 7 " k
T oo b” B 7r b’,‘( 5 a’I;n _a';q,—z bs b’}< > agl —a’;("_l
ﬂ C:ly[’ - aK 1 n zﬁ 1 +
+;IHW—;IH( b 1+1)——1n(1+|(bK l,ak)ﬂllldn)
" ;
by _ b ming<;_s W
_Eln(1+|(b;,c;)mu;,,)_éln%_éln%_mww
T neom " Toag 7w % 4 "
ch—ay _ Cn—a"_ a. —bt ag —by +1
4 by > T \Cu— by ,) = Ci7_bKn—2 4 zl bK,l 1
n bl‘l
Lk By Tt ¢
moody  omoody
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Taking liminf on both sides, we get

n

Ch
lim inf - =
b
o | ) g
If liminf,_, % = 0, then limsup, ., w5%—
,1 Kn—-1 i" n

ax,
= limsup b
K,-2

K2,

1. We can modify the argument above by

replacing (a’,’(n_ by _1) U (a’}(n, b”K) by (a’}(n_l,b’;{n) and same conclusion follows.

Case IIlI-ii:
Case III-ii-a: There exists i; € { T3 B3+ 1,

n
K,-2 9K, -1

e

) N II(‘{H # (0. There are two cases.

= 1} such that

by , <1 (2.57)
We bound J; (u,) as follows.
-n > J5 (un)
- 2 - _ 2
S Y- f (U, (x) ”nz()))) dydx+ £ P f (uy (%) an(y)) dydx
dy IOy .y )OI, (x-y) By o WNIIY, x=y
K,, 2
f f (4 9 = ””z(y v f f — 2 dydx + f eOW (uy) dx
47T . e o), (x-y I, JI;, ﬂ(x y) 1
Kn2™ -1 2 K2 K2R -1
> f f (U (x) = unz(y)) dydx f f B _dydx
4n (x=y) & m(x—y)
b2 Kn 2 Kn2 0|0k 1*“1(,, nlllﬁn|
B f a0 =0 O f f P iyax
A g,y Je, (x=) RN m(x—y)
K,,-z 2 K”_, d + b”
* (up (x) — unz(y)) dydx f f B dydx
h (x=y) a, m(x—y)
b b b’
B 2——élnf—l—'§ln ,’f +—f gCOW (uy) dx
b/ al ay . 4
_ 8, ( o~ dy ] H s dy+ (CARTSN Tab 777 B/
a ‘i; —bg o+ I aK 17 l by, > dl” + |(b’}< 2"’1(,,—1) NI, | —dy
B [c’.f,—a”K_z “%‘b'z?,l—z] g (dh-di s d%+|(b;'( d )N -
- — —In
mo\cp—by , dy — ag > 4 di; bKn—Z d% + (b’;{ _a ) N IIIJr —dy
B G g (- A+ |(b';(n,c2n) N |-y,
e | v !
T C,l - Vs o n n + n
K,—2 i K,—2 di? + ‘(bKn )OIII dy
b b b iets W
BT By Tk By Ok o Yo WA
T al T ClK”_l T aK,, ’
Chp —dy _ a, , —b" Chy —ay _ Ch—dy 5 at —b"
> éln#-kéln( }If" L K2 - nK'lz]+'[_gl ( ! f”Z fn 11(,,—2)
4 by m \ag _—ag Con = bkn—z 4 c,, - bl( o g, —Adg 5
_g In(cf = by, o +1)— g ln(l + |(b or ) N ITI, ) - g ln(l + ‘(b’}(n_l,a’}(n) NI, )
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by _ bl miny,<j—s W
—’[—gln(l + ‘(b’}( ! )n[[[;n)—éln at —éln% _ 4 Y00t W) ||
v/ " " ’ T aK,,—l T aKn ’
C’-L—an72 a’ _b"7 a”f _bn7 b i17
> Bt k2 Bt ok T T Ok | By TR By TRt o (2.58)
T b"KFz g c;fll - b’l'(lﬁ2 C:f; - bl;(ﬂ m a"Kn n a"KFl
Taking liminf on both sides, we conclude
Cr.fl a’
.. ) K,-2
liminf —— = limsup —— = 1.
n bn
K,—2 Kn=2
Case III-ii-b: no such i satisfying (2.57) exists. Then we must have
c’}g —by ,>1 (2.59)

In this case, we can estimate J{ (u,) in the same way as case III-i with ¢/, replaced by c’}n and conclude
3 J3

c’ n

. A ) )

lim inf = lim sup =1.
n bn
K,—2 K2

Continuing this way, we conclude that J; (u,) — —oco implies

n an an
. Ko 1. K,-1 . 1
hmsupbn :hmsupbn—:--~:hmsupﬁ:1.
Kﬁ Kh_l 1

We now pick our subsequence as follows. Pick our first subsequence {u,} such that for its

decomposition
n

lanZ < 3 for all n.

Next we pick a subsequence of the chosen subsequence such that

n
g 1

b

n_l

1
< — for all n.

In

Continuing this way, we pick our final subsequence using a diagonal argument. For simplicity of
notations, we use the original sequence. For the final subsequence, we have for all n,

1 ap 1 ! ag 1 1 ag ;1

n < —’ n —_— < —’ PRI , n_ —, oo
n n n [
R ! m, 2

it then follows that

4 Eeal +di b+ T
ff—zdydx < 4ln1_[’ L. : !
I, (x =) LD+ dr a4+

IA

N
|'M

=
218

A

M

a contradiction to the assumption that J; (u,,) — —oo. O
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3. Existence of minimizer of J (i)

3.1. Overview

In this section, we prove the existence of a minimizer of J(u). Observe that in general the
boundedness of J (u,) does not imply the boundedness of v, = u, —nin H' (R). A priori it is not clear
whether we can obtain a suitable limit function from a minimizing sequence, using the direct method
of calculus of variations. On the other hand, for a sequence {u,} satisfying |u, (x) + sgn(x)| > ¢y > 0
outside a uniformly bounded interval, the boundedness of J (u,) implies the boundedness of {u, — 1}
in H' (R). Our main idea, therefore, is to show that we can replace a minimizing sequence {u,} by
another one {u,} which satisfies |u, (x) + sgn(x)| > ¢y > 0 for some constant ¢, outside a uniformly
bounded interval. The new sequence {u,} has uniformly bounded energy J (u,,), and {u, — n} is bounded
in H' (R). From this, we obtain a subsequence which weakly converges to a limit function v € A
that achieves the minimum energy in ‘A. To construct the replacement sequence {u,}, we use the
interval decompositions of u, from the previous section. We first construct u, by reflecting u, over
suitable regions. Keeping track of the energy contributions from each interval in the decomposition,
we show that we can choose our regions of reflection so that the energy difference between J (u,,)
and J (u,) is approaching zero as n — oo. Lastly, we define u, by a suitable translation of u, so
that |u, (x) + sgn(x)| > ¢o > 0 for some constant ¢y outside a uniformly bounded interval. By periodic
translation invariance of J and the above property of J (u,,) , we conclude that {u, } is another minimizing
sequence.

We first state a translation invariant lemma.

Lemma 3.1. Given any c € Z, let u. (x) = u(x + c), then J (u. (x)) = J (u(x)).

Proof. Since the first two terms are translation invariant for ¢ € Z, J(u.) = J(u) + D(n.,n7), where

M () =10 @) —n©)
D(n.n) = - dydx.
Ctes 1) fRfR( (x—y)* (x—y)?° yar

By Lemma 2.1 in [29], we have D (n.,n7) = 0 for any constant c. The conclusion of the Lemma then
follows. o

3.2. Existence of a minimizer

Let {u,} be a minimizing sequence. By Lemma 2.3, we may assume that u, — n is compactly
supported in R. By Lemma 3.1 and our assumption on the behavior of {u,} at infinity, after a suitable
translation by an integer there exists ¢, € [0, 1) such that u, (1 + ¢,) = 0 and

u,(x) <0forx<1+c¢,.

Throughout this section, we assume that on [1 + ¢,, ), u, has a decomposition
K,
15, = [ar v1] (3.1)

i=1
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and
L,

1, =\ J[ehay]. (32)

J=1

Here we understand d" = oo. Throughout this section, we fix 6 < 1 such that W" (u) > W” (1) when
(I1-u) <6and W” (u) > 1W”( 1) when 1 + u > 6. Since W (u) > 0 foru € (-1, 1) there exists
C;s > 0 such that

W(u)>Cs(1—u)* whenl+u>¢ (3.3)

and
W(u) > Cs(1 +u)*> whenl—u>6. (3.4)
3.2.1. CaseI: limsup by < o0

In this case, we prove the following proposition.

Proposition 3.2. Let 6 > 0 be such that W (u) satisfies (3.3) and (3.4). Let u, be a minimizing sequence
for J(u) in Ay with decompositions (3.1) and (3.2). If there exists a constant M > 1 such that b’}<n <M
for all n, then a subsequence of {u,} converges weakly to a minimizer uy of J (u) in ‘A.

Proof. Without loss of generality, we can assume |u,| < 1. Consider v, := u,, —n. Decomposition (3.1)
and our assumption imply
u,+1>o6forx>M 3.5

and
u,—1<-1forx<1+¢c,, c,€[0,1) (3.6)

We write J (i,,) in terms of v,, as follows:

a,, ,3 (U, (X) —u, ) (o (x)—ﬂ(y))z)
N - @ ) r _ dyd
J () fR[z i+ g W | dx+ £ fRf( o el (L
_ a,, B (Vp (X) = v, ()
- f |5 1l + g0 W | ax + £ fR v
B f f(vn(X) nON W =), -
2r (x—y)?
We have
ff(vn x)=v, ) (n(x )—U(Y))
(x—y)?
_ f f W (X) = v, () (7 (x) — 77()’)) x_sz f_l Wn (X) = v, () (7 (x) — 77(Y))
(x—y)? 1 (x—y)
_2f f V() =v, () (7 (%) - U(Y)) fl fl W () = v, ) (m (x )—U(Y))
(x )’ (x—y)?

—4fmvn(x)dx+4f Vn(Y) ff(vn(x) va () dydx
. ox+1 o L= (x—y)
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B f 'm0 -n0) f f(vn -0
1 Ja (x—y)? (x—y)?
B f_l 'm0 -0 f f 0 () =1, O f L () - n (5)?
o Ja (- (x—y) da (x—y)
) _ 2
> - f g2 (D dx — & f 80N 0 dy = = = C ) - 5 f f (V”(X ;’)’z(y)) dydx
1 -

f f WV (X) = vy (y)) f f (v () = vy (y)) (3.8)
(x—y)* (x—y)?

The last inequality in (3.8) follows from Holder inequality, (1.2) and bounds on

f e ()’ f ") -n(y)
—————dydx, ————dydx.
ro Jo1 (x—y)? 1oJa (e—y)

By (3.3), (3.4),(3.7) and (3.8), we have

00 —1
C > J(un)zf% u f gW(un)dx+f gW (u,) dx
1 —o0

- C
—zﬁe fl g e -2 f SO 0y = 52— C ()

f f vV, (X) = v, () dydx + - f f (v (X) = vy (y))
(x—y)’ (x—y)’
B f f (v () = v ) dydx+ 2 f f (Va (X) = Vi (y))

. Ji Ui (x—y)’ (x—y)
3ﬁf“fl(Vn(JC)—Vn(y))dd +_f f V(%) = v, () dydx
87 J1 Jo (x —y)? (x—y)?

2

_ 2
[oare £ [ [ (2 - ;;z(y’) dydx = C (M, 17l

From this, we conclude that v, is bounded in H' (R), and, hence, there exists a subsequence Vp, = VE
H'(R) and

f f (Vi (X) = v, ) (1 (X) =1 () J f f vx)—v(y) ) - Tl(y))
> ydx —
R JR (x—=y) R JR (x—y)

a

> u
AN

Here the convergence above follows from the identity

f f (Ve (X) = v, ) (7 (x) = 7 () dydx =2 f o () i n(x) —n(y) dydsx.
R JR

(X - y)2 &0 [x—y|>e |)C - y|2

the fact that
lim n(x) —n(y) n(y)

&-0 [x—yl>e |X )’|2

lies in L*(R) (see the discussion around (4.5) in Section 4) and the weak convergence of v,, in L*(R).
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Let up = v +n, then uy € A and

liminf J (u,)

o

lim inf —

1min {L [2

2

+£ ff (vn (x) = Vnz(Y)) B Z(Vn x)=v, () (772()6) -n (}’))] a’ydx}
4n Jr J= (x—y) (x—y)

@) ,p B v () —v(»)’
jRZI:E |u0| + g(x) W(MO)] dx + E L jR: Wdydx

ﬂff(V(X)—V(y))(n(X)—n(y))d
-—— > ydx
2n Jr Jr (x=y)

J(uo) .

’

u,

2 rg(OW <un>] dx

3.2.2. Case II: imsup by = o
We prove the following proposition.

Proposition 3.3. Iflim sup b’}(n = oo, we can find a new minimizing sequence {u,} and c, € [0, 1) such
that
u, <0 for x<l1+g,

and B
[1+C, 00) NI, = UK [a, b

1271
. —n
with limsup by < 0.

Proof. Let p! < a? be the biggest zero point of u, that lies to the left of a! and o > b be the smallest
zero of u, lying to the right of 5. Set

Ay ={x>1+c¢, u,(x) =0},

and
A, ={x>1+c, u,(x) <0},

n

We construct our replacement minimizing sequence {u,} in two cases.
n

Case I: There exists 0 < [ < K, such that limsup, Hl =y < 1 and lim sup,, G 1 for all

' bt by-i
i=0,1,---,1-1.
The main idea to construct a replacement minimizing sequence in this case is to show that we must

have lim sup, (a’11<,,—1 - b’f) < oo and limsup, % = 0. We then reflect the positive part of u, defined

on [1 + Cys p;’{n_l] to —u,. It can be shown that the energy of the resulting function differs from initial
minimizing sequence by a small amount, a suitable translation of this reflected minimizing sequence
satisfies the assumption in Proposition 3.2 and we can obtain a limit function from this replacement
minimizing sequence. To illustrate our main idea, we first assume / = 0.

an
K;
ko=,
Kn

Case I-i: limsup,

b
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By definition of p?, o7/, we have lim sup,, P — (. In this case, we consider the sequence {u,} defined

Ty
by
_ n +
T () = u,(x) xe€ [1 + c,,,p{<n] NA; . (3.9)
U, (x) otherwise
Then
4r (s () =y ) (@ () = )
— [J(uy) =T ()] = ff[ 20/ - 2y dydx
B r JR (x=y) (x—y)
_ g f f AL P
1+cn £k, ]ﬂAf; [l+cn Pk, ]ﬁA+ (x - y)
> -8 f b sdydx
I+cy, (x y)
—Cp
= —81n — (3.10)
—_ pKn
Since ;
. K,
limsup —= =0,
n Ok
(3.10) implies the subsequence of {u,} is also a minimizing sequence. Let s, = [0"}(”] be the

largest integer smaller than o . By periodic translation invariance of the energy, we define u, (x) =
U, (x+ s, —1). Then J (u,) = J (u,) and u, satisfies

u, (x) <O0forx < 1 +0) — sy,
and
U, (x) 2 —1+oforx>1+0% — s,

We conclude from Proposition 3.2 that %, is bounded in H' (R), and u, converges weakly to a
minimizer in (A.
Case I-ii: limsup, b"” =y < 1. Then we must have lim sup, (a [ b”) < oo and limsup,, b"l =

In this case, we prove that we essentially get back to the same situation as case I-1, with @ replaced by
ay
1°

By estimates in Section 2 (we use the same notations in this section)

+ ﬂ f (un (x) — Uy (}’))2 f f ﬁ 1 foo
Js (un) = o dydx — — L —dydx + ~ W (u,)d
s () 4r 15, I, (x —y)2 v 5 I, m(x —y)2 yax+ 4 ) W (uy) dx

o,
%, f‘” (1 () = 1, O)? %, f ] () = 1, ()
> dydx
at, Je (x =) d; (x =)
ff—ﬁ dd+1f COW (up) d
- yax + — 8x Up)ax
1, Jig, w(x=y)? 4
C:il - ann bl’l i ul<l-— W
L By % _éln( Kn)+7m“‘ll—15 (u)|111;n—éln(1+'(b'}(,oo)ﬂlllgn)—C
T Cﬁf—b';(n b1 all 4 - T " "

Mathematics in Engineering Volume 5, Issue 5, 1-52.



37

B, Cn~ 9, ymingasWe) o0 B,

> “In o C+ ; |1z, | - —In (ch - b%,) (3.11)
B 1n(1 +| (B c0) n 1113 )
T n ,n
Assuming lim supn b,, = v, (3.11) and the boundedness of J; (u,) imply |II | < C. We construct u,
as follows.
n +
7= @ xel[lvepg |04 (3.12)
u, (x) elsewhere

We first show that there does not exist an s such that limsup, (a’;(n -al +1) = A, < oo,

lim sup,, (a’}<n - bs) = oo,

n

Otherwise, letting #,, = Hl + ¢, p’,@n] NAS, Tt

|brar, | iy

s+1 on

, We can write

[J(un) J ()]

f f [wn ) =un () Wt () = )
(x—y)’ (x—y)’

= _8f f Mdydx
[1+cn o J0ar JR\(14cpl J0ar) (X =)

_ s f’" tn D tn 0) g f f“fn U @Dy O) 4
[1+cn. ol Jnas Joh (x—y)° [1+cn, Pl [N} J =00 (x —y)?

Kn

Uy (X) Uy ( ) 0—’1’(” Uy (.X) Uy )
o A Ty AR g
[1+cn ol |nas 1+Cn,ann]mAn (x=y) [1+cn. pl, [nass ot (x—y)

Kn

] dydx

> -8 f § f dydx -8 f fa IO FAN

i Jo (X — y) [1+enply J0as Jop, (X =)

00 b;‘(n

> -8 f ——dydx - 8[ f AL PN

iy (x y) 1]mH+ a,  (x—=y)

b+t Kn
> gl e Th f f 0=
e (X y)

K

pK+t

= —SInK”n—"n (3.13)
ok ~ Pk,
81— spm[ ek
+ - . - .
(1-81n Y s
Recall that "
t, p
" K (3.14)
Ok, ~— Pk, x, ~ Pk
bt —pr— bn _pn pn
LN . (3.15)
b — b b” — b by
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and
lim sup( -bi—t ) = limsup (a’}(n as,, +a,, —bi—
< Ag+|[b, a0, | < C.

Taking liminf on both sides of (3.13), we have

liminf [J (u,) — J (u,)] = oo,

t") (3.16)

S

contradicting the assumption that {u,} is a minimizing sequence and the fact that J is bounded from

below. Therefore we must have lim sup, (a’}(n - b’l') =ap < .

Next we show that lim sup,, bcf,l = 0. If lim sup,, b‘ff
Kn Kn

t,— Kk, < |I1I},] < C,

and

Px, — (1 +c,)— ‘[l + cn,p'}(n] NI,

=
I

_ '[1 + Cunpl, | NI,
ay —(1+c¢,)— (b} —dj).

IA

Therefore, we have

4
Eﬂ- [J (un) - J(I’Yn)]
(@t (X) =, ()

_ ff[(un ) =, (1)
r JR (x—y)° (x-y)°

= —8f f Ma’ydx
[1+cn o |nal JR\([1, 0, |0AY) (x=y)

] dydx

> 0and«k, := '[1 +cn,p’}<]

NI,

, then

00 1+Cn
_ g f f Uy (X) ty () dydx -8 f f Uy (X) Uy gy) dydx
1+c,l pK ﬁA+ o (X - y) [l+cn,p7(n]ﬂA; —00 (X - y)

Kn

Sf f un(x)ungy)dydx—Sf f " un(x)un(y) ydx
[1+en ol I J[1+en o oz (X =) [tren iy s Sy, (6= )
‘DKn 1
> -8 ~dydx - 8 f f 0 ) g
o ~tn Jo (X =) [1+enl |niry, I[i+enoy iz, (X =)
41‘ f%wmww
[1 n Py, ]mlﬁ ay. (x— y)2
p 1+cp+ky
> -8In n—K 8(1 -6 f
Tk, " Pk, e e ey (X = w
oy —pr +1,
= —8In—=__fo (3.17)
~ Pk,
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by —1—cy—ky ay —bi+di—-1-¢,

+8(1 - 06)°1 : :
( ) In b’;(n—l—c,, a’}(n—b'l'+a’1‘—1—cn—/<n
Since ;
lim sup i < lim sup n—Kn < 0o, (3.18)
n ~ Pk, n Ok, =Pk,
b" —1—cn—/<,1 al—1-c,+ay —Db
lim inf —= > 1 —limsup - >1-v>0, (3.19)
o by —1-c n by —1
and
dy bl +d}—1-c,—k, <ap+|III,| <C, (3.20)

taking liminf on both sides of (3.17), it follows from (3.18), (3.19) and (3.20) that
liminf (J (u,) — J (u,)) = o0

a contradiction.
Lastly we estimate the energy difference between u,, and u,,. We have

[J () = J ()]

_ f ”w @) —u, ) @ ()~ 0
(x =y (x—y)?

_ _g f f LACLIFNN
[1+enol [0ar JR\([1+eap) Jnar) (X — vy

_ _Sf f"" un(X)un(y)dd _Sf f”“" t () 4y ) 41
[tvenof, ot Jog,  (x =) [trenp, 0t I (x =)

Kn

y f [ w, ()1, §y> ivir-s [ [,
[1+capl, JnA+ [1+c,, o |nar (= y) [ 1+easpl, Jnat Joi (x=)

Kn

} dydx

> -8 f sdydx — f sdydx
1+cn Tk, (X y) ()C y)
-1-c,
> —8In_ —n 8l L ks (3.:21)
P Tk, ~ Pk,
Recalling that
71 n n al’l
< =v <1, limsup < lim sup =0,
Kn Kn K’l bKVl

and
lim sup (p’}( - 0"1’) < lim sup (a’}{n - b’f) =qg < 0o,

we conclude that
. ~ Pk, + Pk, — T
limsup ————— = 1,
n Ok, ~ Pk,
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n
R e s
no Ok — P

Thus by (3.21) we have that {u,} is also a minimizing sequence. Defining
Uy = Uy (X + 5, = 1),
where s, = [o”,’(n] is the largest integer smaller than o , then {u,} is a minimizing sequence satistying
u, (x) <0 forx<1+og —s,andu,(x) 2 -1+6 forx> 1+ —s,

Proposition 3.2 applies to u,, from which we can extract a converging subsequence to a minimizer
Ug € Ay.

n

Case I-iii: There exists / > 1 such that lim sup,, bKn L =1 for j =0,1,---,I-1 andlimsup, 7= < 1.
=J Kn-l1
Then we must have lim sup, (aK - b”) < oo and limsup,, 77— b,, =0.
n Kn—1
We construct u, as follows.
_ n +
7 = u,(x) xe [1 +cn,pl]ﬂAn (3.22)
u, (x) elsewhere

We also need

-1 bn br;( y
f sdydx <4l || | |+ 4m (2 : )
1, Ji;, (X » o 9k a

Jj=0 Kn—j

We can follow a similar argument in Case I-i and Case I-ii by replacing any estimates on [a’}q, b’,;n] in

(3.13), (3.21) and (3.17) by estimates on [ b

%, z] using u, = u, (x + s,, — 1), where s,,; = [0';’]
is the largest integer less than or equal to 0'1

K[’

Case II: No such [ exists, i.e., limsup, = b" = 1 for all j where limsup, b’} = co. Let [ be such that

limsup, by ;= oo forall j </and limsup, b" ; < 0. In this case, we will reﬂect the negative part of
u, to —u,, outs1de a big portion of (b’}( o aKn_l +1) N Ilgn. Following notations in section 2, we write
(b’;( l’aK l+1) N Ilgn = U] = [ ’]1" d;l]
First by
. B 1~
C > Ji(u,) >~- —2dde + = gx)W (u,) dx (3.23)
i, Ji, m(x—=y) 4
b & b" miny,<;—
> P (2—K; ’) - éln—; Al
by al Ea T4 4 ’
we conclude that
[y, < C.
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Case II-i: There exists j (/) € { T s = 1} such that
lim sup (d;.’(,) — c;?(,)) = o0 (3.24)
Let T, = |d%,.c; | N A;, M,y =T,y 0111}, | . We define
i (x) = —u,(x) x€ [d;‘(l), ] NA, .
U, (x) otherwise
Since
Uy ()71) _ Uy (Y2)
(x — )’1)2 T (- y2)2

forxeT,;,y € [c;(l)’d](l)] and y, € [bK o (1)] N A, together with (3.24) and the fact that

|[b'11<n—1’ ol

we conclude that

L.

It then follows that

Uy, (X) ty (y)

AT (x — y)

ch

g’r [ i) = J ()]

f f Uy, (X) (y)
dydx
Tpy JR\Ty, (x y)
f f 0 1y (X) ty (y)
Tui (x—y)’
g f f”ﬂ“ 1y, (X) (y)
TuJe,  (x— &

f fKnlun(x)un(Y)
Toi (x=y)
.8 f f 10 Uy (X) tty ()

f o f ’+dj<1>
+8 f f
T ol

(x—y)
M +d"

O
dn

I’l
O j(l)

IA

IA

—————dydx

IA

(x—y)’
-1

+ In
i=0

l’l
81n S

IA

Mathematics in Engineering

ddx+f f
nl

ddx+8f f
nl
————dydx +8f f
nl
ddx+8ff
Tna b, J(l)]mA

Uy, (x) Up (y)

O-K,,—i

<, < c,

i 1, (X) t, ()

————dydx
(x—y)’

<0.

U, (x) uy (y) ) Un G 1o
D cL (x - )’)
Uy (X) uy (y)
(x—y)’
Uy (X) u, ()

(x—y)

ﬂAJr

———dydx

L

————dydx

8
(x—y)
10 14y (x) 4y ()
(x—y)’

sdydx

f"";(,, —i
o

Kn—i

ddx+8f f
nl

K -1

- b

—i K,—1

———dydx

n

-0

]
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1.e., {u,} is also a minimizing sequence with B% = DY _, satisfying lim sup Enfn < 00,
Case Il-ii:

s n n

hmsup[ max 1(d/ - cj)] < oo,

n | Jasisi-
LetS, = { Ja+L -, j- 1}.We define S as follows.
S;={ieSo:di-c>c-d,}

There exists k = k(n) and indices p(1),---, p(k) € So, g(1),---,q(k) € Sy such that i € S if
p(s)<i<g(s)andi¢ S[ifg(s)<i<p(s+Dfors=1,---,k WewriteS; ={1,--- ,k}.
Case II-ii-1: There exists s < k such that

lim sup ii (d! = ) - oo.
" i=pls)
Let
This = [dZ(s), CZ,,] NA;
M, = |I,NT,,|.
We define
= {
Since
(c1.a)| > |(ar-), &4)| for p(9) < j< g o), VI (diyo ) € 1,

and

q(s)

lim sup Z (d! = c}) = oo, |1H+,n

n

<C,

i=p(s)
together with the observation that

u, (y1) > u, (y2)
(x=y)?  (x=y)
&).p(s) < j<q(s), and

u, (y1) > _ uy, (y2)
(X—Y1)2 (x—y2)2

forxe T,y € (Cﬁ,d;') » Y2 € (d;l 1€

q(s)
for x € Ty, y1 € U0 (c;%,d") vy € 1T} (by( i

f f 1y, (X) ty () 6 0 gy ) f f,u,,u)un(y) dyds
Tnis (A)]HA (x_y)Z This Vi (x y)2

b1 € j=p(s)

f ff un(x)un(y)d Jx
Tus Jar,  (x=y)°
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IA
e

Therefore

4
x 5 V@) =7 )]

_ f f Uy, (X) uy (y) ) Un G 1o
Thts YRNT s ()C y)
_ f f<f>un(x)un(y)dd +8f f un(x)un(y) dydx
Toss J- (x—y) Tse g Jnag (x =)
+8f f Uy (X) (y) dydx
T Jor (x =)

L

< f f b0 1y (X) (y) U0 Un ) 148 f f « u, (X) 2QV) dydx
n[ s - (x y nl s " (-x y)
Kn -1
< f f un(X)un(Y)d dx+8f f un(X)Mn(y) dydx
Tis & — ('x y Thps K lc(v) NAL ('x y)
+8f f “ 1ty (X) Uy Un () V) dydx
nla p(s) ('x y)
" -1 bt o
p(s) n,l,s q(s) 8 Kn-1 Kn—i 8
< f f sdydx + Zf f sdydx
—eo Jar (x—y)’ o S I, (=)
4(s)
+8f f Uy (X) Uy (y)d dx+8 f f Uy (X) Uy (y) dydx
nla K - ’,(Y)]mA7 (‘x y) ] p(s) nls " ('x y)
q(S)
f f Uy (X) Uy gy) dydx
Jj=p(s) Thus " (x y)
I)(?) .S q(V) Kn
< ———dydx + f f sdydx
f [ w0
M, +d  —c" R
S 8 ln }’l,l Yn Q(S) P(S) + 8 ln fn_l :n_l
o) = Epis w0 Pri-i T Tkl
- 0

Case II-ii-2:
q(s)
sup [hm sup Z (d! -t )] < 00,

" i=p(s)

We consider

i=p(a) i=1+g(a-1)

q(@) q(@)
s;:{aeslzzw—cz’w 2 (c:’—d?o}.

There exists m = m(n) < k and p,(1),q;(r) € S foreach r < m and 7 € N such that y € ST if
p@M<y<qg@andy¢STifq(r)<y<pi(r+1).LetS, ={l,--- ,m}
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Case II-ii-2-a: There exists 7 = 7 (n) such that

(™ q)

limsup > (d = cf) - . (3.25)

" y=pi(0) i=p(y)

Then we consider

i, (=4 " (x) xe€ [d&ql(ﬂ)’czn] nA~
u, (x) otherwise

Let Tn,l,q|(r) = [dn

n
a1 OK, ] nNA~. M

n
n,Lq1(7) '[dq(ql(f))’

Mn(yl) S un(yZ)
x-y)* (x=-y)

o",’(n] NA™N III(‘{n . Observe

forx € Ty 1 4,x)> Y1 € (c" d”) y, € (d7 1> C ) when p (p; (1)) < j < q(g;1 (1)) . The same inequality also

(q1() n
holds for x € Ty, y1 € UL (cj,d ).y2 € [by &, | N A Moreover, by (3.25),

< |z,

n
Hbm—z’ p(pl(r))] <G

and
q(q1(7)) n +
Vi=p(pr(0)) (dl 1€ ) C s,

we conclude that

f f ta ()12 ) 1@ f f ST
4 (x—y)° o (x—y)

Tnig oo <>) n j= p(m(r)) Tnigy

q(ql(r))
f f un(x)un(y) dydx < 0.
n o (x=y)

j=p(pi@) ¥ Tniay @

Therefore
dr
[J (W) = J (uy)]
_ f f Uy (X) uy, (y) dydx
Thigy YR\Tni1g,(0) (x — y)
_ f f\dq(tu(r)) u, (x)u, (y) U OV Un V) e 4 8 f f u, (x)u, gy) dydx
(x— y T gy (t) [dz(ql(ﬂ),czn]ﬁAf{ (x=y)
+8f f un(X)un(y) dydx
Toigy ) (x y)
< f f Bl 14y, (X) Uy, (y) Un D Un ) ot 8 f f oan) Uy (X) thy () U s O) o
Tpiay () =00 (x-y) n,qlm (x-y)
bl‘l
p(m(r))f "“11<T) q(ql(r))
< dydx+ f f dydx
f a Z (x - y)

9(q1(™)
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q(q1(7))
u, (x)u
8 f » (1) "(y)ddx+8 f f
nlq1(T) K,, I p( ()) ﬁA‘ (x y) B nlql(‘r)
q(q1(7))
7ty (X) t, ()
f f U208 dydx
j= p(mm) Ty Ja, (X =)
- I-1 B
< 8ln Mosgo * dq(‘ll(T)) Cppr () L3 o, — bk
" - Cn pn _ bn
9qi@) - "pp1 (@) i=0 Ki—i — VK,-1
- 0.

T 1, (X) t, ()
(x—y)*

—————dydx

Continuing this way if necessary, we can define the set §; inductively by each m € S,

pz(m) ‘Il(m) € Sz 1 such that any Pz(m) < p < QI(m) p € S, 1°

p€Si1\S; . Here
+ .
St =
gitm)  gqi-1(li) q(l) qi(m) qi-1(l;)
mes,;: -Z(dl"l—c?l)> Z
li=pi(m) li—1=pi-1(L;) h=p(h) li=pi(m) li-1=pi-1(l;)

By the definition of S;, we have |S;| < |S;.1] < --- < |So|. Since |III;fn|

lim sup (ar,‘(n_l " b’}( 1) oo, we would be able to find r, such that S, =S ,*n. Letu =
(=4 ) xe [dq(q.( @)’ € ] na,
u, (x) otherwise

if gg(m) < p < pi(m+1),

q(l)

Z (Czl d,_ )

h=p(l)

is uniformly bounded and

By a similar argument, we can show that {u,} is a minimizing sequence which is close to +1 away from

a uniformly bounded interval.

O

Proof of the first half of Theorem 1.1. Given a minimizing sequence {u,}, if limsup, by < oo we
obtain a minimizer by Proposition 3.2. If lim sup b} = oo, we obtain a new minimizing sequence {u,}

which satisfies lim sup E% < oo by Proposition 3.3, existence then follows from Proposition 3.2.

4. Regularity of the minimizers
Proof of the second half of Theorem 1.1.
Proposition 4.1. Any minimizer uy of J over Ais a C 23 (R) solution of
d2 %
—auy + g (x) W (up) +ﬁ(—ﬁ) up =0,

where we understand the fractional operator in the sense of (1.5).

Proof. Let vy = uy —n. We write J (1) in terms of v, as

. B
5fR ng<x)W(vO+n>dx+EfRfR
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+—

B f f (vo (x) = vo () (ﬂZ(X)—T](y)) dydx
27 Jr Jr (x=y)

Consider now variations v, = vy + £¢, where ¢ is any smooth compactly supported function. Since
1S a minimizer, we must have

d
0 = d—J(vs+77)

f(cm @ +gx)W (vo+ 1) ¢)dx

f f (VO (x)—vO ) (@ (x) - so(y))
(x—y)?

B f f(n(X) n() (e (x) =) dydx. 4.1
2 (x—y)’

D=

Since vy € H' (R), we can define ( dzz) vo via Fourier transform as (see e.g., [32] Proposition 3.3)

—

&\ _
(_E) vo () = €]V (§)

and write the second term in (4.1) (see [32] Remark 3.7) as

B ~ 2\3
ﬁff(vo (x) = vo () (SOZ(X) "D(y))dydx=ﬁf90(x) (—d_z) Vo (%)
T JR JR (-x_y) R dx

Since n € C* (R), for x > 1 take € < 1 such that

X ! X 2
f n(x)— n(y) dy = f n(x) - n(y) dy < ’ 42)
holze (X =) o (=) x—1
and for x < —1 take € < 1 such that
x)—n®) X) — ) 2
f 10 =n0),, :f =10, (4.3)
hoyze (X =) a0 (x=y)y? x+ 1
For —1 < x < 1, we can write
- 1 —y)-2
lim n (x) nz(y)dy _ _hmf n(x+y)+n(9; y) n(x)dy
20 Jpoyize (X =) 2650 Jyse y
_ 1fn(x+y)+n(x—y)—2n(X)d
2 Jr )’2 ’

where the last step follows from the fact that n € C* (R).

For each x € R we have
fﬂ(X+y)+n(x—y)—277(x)d‘ f f |f nx+y) +n(x—y) - 2n(x)
'y =+
R y?
8 +2 ||D277||Lm : (4.4)

y2

IA
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Combining (4.2), (4.3) and (4.4), we conclude that the function

nx) —-nQ)

lim >
hoyize (X =)

&e—0

dy (4.5)

belongs to L?(R). Thus the third term in (4.1) can be written as

f (n(x)—n ) (e (2X) - w(y))dydx _ hmff (n(x)—n ) (e (zx) - w(y))dydx
R JR (x=y) e20 JR Jryize (x=y)

= 2 f ¢ (x) lim Mdydx.
R

=0 Jpype (x— )

We now introduce the notation

2 \3 2 \1 _
( d ) Up ::( d ) vo+liml —n(x) n(y)dy,

where the fractional operator in the right-hand side is understood via Fourier transform. Since ¢ is
arbritrary, we conclude from (4.1) that u, satisfies the following equation in the distributional sense:

d2 %
—auj + g (x) W (1) +ﬁ(_ﬁ) ug = 0. (4.6)

1
Since |ug| < 1 and vy = 1 — 7 € H' (R), we have W' (ug) € L*(R) and (—<;) vy € L? (R). Thus (4.5)

1
implies that (—j—;)z uy € L? (R) . By elliptic estimates, we then conclude that uy € W>? (R).

Weakly differentiating (4.6) yields

7 ’ ’ 4 d2 %
—auy, + 8 () Wiup) + g ()W (up) uox + B\ === | tox =0
dx?

in the sense of distributions. Here we used the facts that

1 1
d dz 2 dZ 2
d_(_d_) VOZ(‘@) @7
and J ) )
< Jim f 1D =10 4 _ lim f TW-10),, (4.8)
dx &0 Ji e (x— ) &0 Jyze (X =)

which follow from the properties of Fourier transform of Sobolev functions and the following

calculation:
d hmf n(x)—n(y)dy
lx—ylze

dx =0 (x—y)
1 h) — -
T T TN
h—0 h -0 [x+h—y|ze (x+h- y) &0 lx—yl>& (x - y)
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= liml[limf nx+h) - U(Z+h) limf —U(X) ) )’]
h—0 h | -0 lx—zl>& (x - Z) 90 Jyize (X — )’)

-5 f NG+ —n-no+h+nG)
= lim- hm
[x— y|>€

10 h £=0 (x =)’
_ lim fim L[1G+ ) () ~ n(y+h)+n(y)] .
-0 |x—y|>e h—0 h ()C y)

— lim L f O -70),
= m — —_— y
0T Jyize (x—y)°

The same arguments as in the case of (4.5) can be used to prove that the function

lim L f ') -n O , dy
lx—ylze

=0T (X y)

belongs to L*(R) as well. Define

2 \12 2\2
_a Uoy = _4” Vox + hm f 7D =7 ) (y) dy.
dx? dx? dx e=0 T [x—y|>€ ()C }’)

Since W € C>'(R), we have g'W’(ug) + gW~ (uop) uox € L*>(R), ( dzz) vor € L*(R), we have
1
(—d—z) o, € L*(R). Thus elliptic estimates imply uo, € W22 (R), ie., uy € W ®R) c C*2 (R).

dx?
Thus ug is a classical solution of (4.6). Moreover, since ug € C?: (R), we can write
1
d*\? 1 -
(——2) o (x) = lim = ln) — i),
dx 0T Jpmyize (X —y)

The second half of Theorem 1.1 follows. O
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