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Abstract
We present a detailed analysis of one-dimensional Néel walls in thin uniaxial
ferromagnetic films in the presence of an in-plane applied external field in
the direction normal to the easy axis. Within the reduced one-dimensional thin
film model, we formulate a non-local variational problem whose minimizers are
given by one-dimensional Néel wall profiles. We prove existence, uniqueness
(up to translations and reflections), regularity, strict monotonicity and the
precise asymptotics of the decay of the minimizers in the considered variational
problem.
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1. Introduction

Ferromagnetic materials are at the heart of modern information storage technology, whose
need to keep up with the ever-growing amount of digital data, currently in excess of 1021 bytes
worldwide, is readily apparent [1]. This is why these materials have attracted a huge degree
of attention since the early days of the digital age. The basic principle of magnetic storage
relies on the tendency of the electron spins in ferromagnetic materials to align along certain
preferred directions, giving rise to magnetic domains [2]. Registering and manipulating the
magnetization orientation in a given domain is then used to read and write discrete data encoded
by the magnetization orientation in each domain.

One common magnetic storage solution relies on the use of thin uniaxial ferromagnetic
films in which the magnetization vector prefers to align along either direction of the easy
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magnetocrystalline axis in the film plane [1–5]. When the film thickness becomes sufficiently
small (under a few tens of nanometres), the magnetization vector is constrained to lie almost
entirely in the film plane. In this situation magnetic domains in epitaxial (monocrystalline)
films usually consist of relatively large regions, in which the magnetization vector is nearly
constant and oriented in the direction of one of the two possible directions along the easy axis.
These regions are separated by narrow transition regions, called domain walls, in which the
magnetization vector rapidly rotates between the two orientations [2, 6–9]. One of the most
common wall types in such materials is the Néel wall, which separates two regions of opposite
magnetization by an in-plane rotation and is oriented along the easy axis to ensure zero net
magnetic charge. In real materials these walls are often pinned to the material imperfections,
and their motion determines magnetization reversal under the action of applied magnetic
fields [2].

Studies of Néel walls have a long and somewhat controversial history (see the discussions
in [2, 10]), but at present the structure of the Néel wall in very thin films appears to be
rather well understood on the basis of micromagnetic arguments [2, 9, 11–17]. The basic
features of the predicted one-dimensional Néel wall profiles had been verified experimentally
in [18] (see also [19, 20]). Rigorous mathematical studies of the Néel walls are more recent
and go back to the work of Garcı́a-Cervera [14, 16], who undertook some analysis of the
associated one-dimensional variational problems and performed extensive numerical studies of
the energy functional obtained by Aharoni from the full micromagnetic energy after restricting
the admissible configurations to profiles which depend only on one spatial variable [21].
Melcher further studied the minimizers of the same functional in the class of magnetization
configurations constrained to the film plane and established symmetry and monotonicity of
the energy minimizing profiles connecting the two opposite directions of the easy axis [22].
Using a further one-dimensional thin film reduction of the micromagnetic energy introduced
in [17], Capella, Melcher and Otto outlined the proof of uniqueness of the Néel wall profile
and its linearized stability with respect to one-dimensional perturbations [23]. Stability of
geometrically constrained one-dimensional Néel walls with respect to large two-dimensional
perturbations in soft materials was demonstrated asymptotically in [24]. More recently,
!-convergence studies of the one-dimensional wall energy in the limit of very soft films and in
the presence of an applied in-plane field normal to the easy axis were undertaken in [25, 26], and
a rigorous derivation of the effective magnetization dynamics driven by the reduced thin film
energy introduced in [23] from the full three-dimensional Landau–Lifshitz–Gilbert equation
was presented in [27].

In this paper, we perform a detailed variational study of the Néel walls, understood as one-
dimensional minimizers of the reduced thin film micromagnetic energy, in uniaxial materials
in the presence of an applied in-plane magnetic field in the direction perpendicular to the easy
axis, extending previous results for Néel walls in the absence of the applied field. We prove
existence, uniqueness (up to translations and reflections), regularity, strict monotonicity and
the precise decay of the energy minimizing wall profiles. Our variational setting is slightly
different from that adopted in the earlier works and relies on the angle variable rather than the
two-dimensional unit vector representation of the magnetization. For this reason our proofs
differ in a few technical aspects from those of [22]. In fact, one of the purposes of our work
was to clarify some of the arguments in the analyses of [16, 22, 23]. In particular, we spell out
the details of the proof of uniqueness of minimizers within our setting and fill in the missing
argument for proving strict monotonicity of the angle variable as the function of coordinate,
which is needed to establish stability of the Néel wall profile in [23]. We also establish the
precise asymptotic behaviour of the Néel wall profiles at infinity, which is new even in the
case of zero applied field. Let us note that while in this paper we are not concerned with the
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logarithmic tail of the Néel walls in very soft materials, which was one of the main focuses
of [14, 16, 22], our decay estimates could be made quantitative in this regime to yield the
intermediate asymptotics of the Néel wall profile away from the core.

The rest of our paper is organized as follows. In section 2 we discuss the basic
micromagnetic energy and derive the reduced one-dimensional energy that describes the Néel
walls in the applied in-plane field oriented normally to the easy axis. Then in section 3 we
present the variational setting for our analysis and state our main result. Section 4 contains a
few auxiliary results and section 5 contains the proof of the main theorem. We also discuss
some open problems at the very end of section 5.

2. Model

In this paper we are interested in the analysis of the energy minimizing magnetization
configurations in thin uniaxial ferromagnetic films of large extent with the easy axis in the film
plane. We also wish to include the effect of an applied in-plane field in the direction normal
to the easy axis. The starting point in the studies of such systems is the energy functional,
introduced by Landau and Lifshitz, which leads to a non-convex, non-local variational problem.
The functional, written in the CGS units, is [2, 10, 28, 29]

E(M) = A

2|Ms|2

∫

"

|∇M |2 d3r +
K

2|Ms|2

∫

"

#(M) d3r −
∫

"

Hext · M d3r

+
1
2

∫

R3

∫

R3

∇ · M(r)∇ · M(r′)

|r − r′|
d3r d3r ′ +

M2
s

2K

∫

"

|Hext|2 d3r. (1)

Here " ⊂ R3 is the domain occupied by the ferromagnetic material, M : R3 → R3 is
the magnetization vector that satisfies |M | = Ms in " and M = 0 in R3 \ ", the positive
constants Ms, A and K are the material parameters referred to as the saturation magnetization,
exchange constant and the anisotropy constant, respectively, Hext is an applied external field,
and # : R3 → R is a non-negative potential that has several minima at which # vanishes.
Note that ∇ · M in the double integral is understood in the distributional sense.

The micromagnetic energy in (1) is composed of five terms: the exchange energy term
which penalizes the spatial variations of the magnetization M , the anisotropy term reflecting
the magnetocrystalline properties of the material, the Zeeman energy favouring the alignment
of M with the applied external field, the stray-field energy, which is non-local and favours
vanishing distributional divergence, i.e. ∇ · M = 0 both in " and on ∂" (the so-called pole-
avoidance principle), and an inessential constant term added for convenience. In the case
of a uniaxial material of interest to us, there exists a distinguished axis identified through a
unit vector e, and # is given by #(M) = M2

s − (M · e)2, so that the minima of # are
{±eMs} [2, 10, 29].

In the case of extended monocrystalline thin films with the in-plane easy axis we have
" = R2 × (0, d), and without loss of generality we may assume that e = e2, where ei is
the unit vector in the ith coordinate direction. For thin films (moderately soft, ultra-thin) of
practical interest to magnetic device applications such as MRAMs (magnetoresistive random
access memories) [4–6], a significant reduction of the energy in (1) is possible, giving rise to
the reduced thin film energy [9, 17]. To better explain the relevant parameter regime, let us
introduce the following quantities

% =
(

A

4πM2
s

)1/2

, L =
(

A

K

)1/2

, Q =
(
%

L

)2

, (2)

called the exchange length, the Bloch wall thickness, and the material quality factor,
respectively. When the film is ultra-thin and soft, we have d ! % ! L, but at the same time
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one also has a balance Ld/%2 ∼ 1 for many materials [30]. In this situation the dimensionless
parameter

ν = 4πM2
s d

KL
= Ld

%2
= d

%
√

Q
, (3)

which is referred to as the thin film parameter [17], becomes a single measure of the strength
of the magnetostatic interaction relative to both anisotropy and exchange.

The reduced thin film energy is formally obtained from the full micromagnetic energy in
(1) by assuming that M does not vary in the direction of e3 (the direction normal to the film),
setting the component of M along e3 to zero and passing to the limit Q → 0 and d → 0
jointly, subject to ν = O(1) fixed, after rescaling lengths with L [17] (see also [9]). Assuming
further that Hext = e1hK/Ms , after a suitable rescaling we arrive at the following reduced
energy functional:

E(m) = 1
2

∫

R2
|∇m|2 d2r +

1
2

∫

R2
(m · e1 − h)2 d2r

+
ν

8π

∫

R2

∫

R2

∇ · m(r)∇ · m(r′)

|r − r′|
d2r d2r ′, (4)

where nowm : R2 → S1 is the unit vector in the direction of the magnetization in the film plane.
Note that the assumptions on M used in this derivation are justified by the strong penalization
of the variations of M across the normal direction to the film by the exchange energy and by
the strong penalization of the normal component of M by the shape anisotropy [2]. Also, up
to a constant factor the last term in (4) is simply the square of the homogeneous H−1/2-norm
of ∇ · m in R2 [9].

The reduced energy in (4) is the starting point of the analysis of the rest of our paper.
Without loss of generality we may assume that h " 0. Also note that for h " 1 the
energy in (4) admits a unique global minimum m = e1 and no Néel walls are, therefore,
possible in this situation. For h ∈ [0, 1), on the other hand, there are two global minimizers
m± = (h, ±

√
1 − h2) corresponding to the two monodomain states. In the following, we

will always assume that h is in this non-trivial range, in which Néel walls connecting the two
states appear. Let us point out that at the same time we do not allow the external field to have
a component in the direction of the easy axis, since in this case only one monodomain state
exists as the global minimizer of the energy. Under an applied field in the direction of the
easy axis Néel walls begin to move, invading the domain with higher energy density by the
domain with the lower energy density [2, 23]. Similarly, the considered wall orientation along
the easy axis is the only one that makes the stray-field energy of a one-dimensional profiles
finite. When the wall makes a non-zero angle with the easy axis (compare with [31]), it carries
a net magnetic charge, which makes the associated magnetostatic potential for the wall in the
whole of R2 infinite.

3. Variational formulation and statement of the main result

We now turn to the study of one-dimensional Néel wall profiles. For that we assume that m
varies only along e1 and compute the energy of such a configuration per unit length of the wall.
It is convenient to introduce the new variable ϑ = ϑ(x) which gives the angle that the vector
m makes with e2 in the counter-clockwise direction as a function of the coordinate along e1.
Thus, setting

m(x) = (− sin ϑ(x), cosϑ(x)) ∈ S1 (5)
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for every x ∈ R, we can rewrite the one-dimensional version of the functional in (4) in terms
of the angle variable ϑ to obtain the one-dimensional Néel wall energy (see [17]):

E(ϑ; R) := 1
2

∫

R

{
|ϑx |2 + (sin ϑ − h)2 +

ν

2
sin ϑ

(
− d2

dx2

)1/2

sin ϑ
}

dx

= 1
2

∫

R

(
|ϑx |2 + (sin ϑ − h)2

)
dx +

ν

8π

∫

R

∫

R

(
sin ϑ(x) − sin ϑ(y)

)2

(x − y)2
dx dy, (6)

where, as usual, (−d2/dx2)1/2 denotes the square root of the one-dimensional negative
Laplacian (a linear operator whose Fourier symbol is |k|), and, furthermore, we used the
identity [31, 32]

(
− d2

dx2

)1/2

u(x) = 1
π

−
∫

R

u(x) − u(y)

(x − y)2
dy, (7)

for every x and, say, every u ∈ C∞
c (R), where −

∫
stands for the principal value of the integral.

We wish to study the minimizers of the energy in (6) among the profiles that connect the
two distinct minima of the energy at x = ±∞. To this end, we need to introduce a suitable
admissible class of functions which yields minimizers with the desired properties. We propose
to minimize E(ϑ; R) over the admissible class

A := {ϑ ∈ H 1
loc(R) : ϑ − ηh ∈ H 1(R)}, (8)

where ηh ∈ C∞(R; [0, π ]) is a fixed non-increasing function such that, setting

θh := arcsin h ∈
[
0,

π

2

)
, (9)

we have ηh = π − θh in (−∞, −1) and ηh = θh in (1, +∞). We point out that the definition
of A does not depend on the choice of ηh: If η̃h ∈ C∞(R; [0, 1]) is a different non-increasing
function, i.e., η̃h += ηh, satisfying η̃h = π − θh in (−∞, −1) and η̃h = θh in (1, +∞), then

A = {ϑ̃ ∈ H 1
loc(R) : ϑ̃ − η̃h ∈ H 1(R)}. (10)

Indeed, any ϑ ∈ A satisfies also ϑ − η̃h ∈ H 1(R) for η̃h − ηh ∈ H 1(R); vice versa, for the
same reason any ϑ̃ ∈ H 1

loc(R) with ϑ̃ − η̃h ∈ H 1(R) belongs to A. Note that our choice of
the admissible class A fixes the rotation sense of the Néel wall, and the wall of the opposite
rotation sense may be obtained from the minimizer over A by a reflection about x = 0.

It is easy to see that the Euler–Lagrange equation associated with the functional in (6) is
given by

− ϑxx + cosϑ sin ϑ − h cosϑ +
ν

2
cosϑ

(
− d2

dx2

)1/2

sin ϑ = 0, (11)

with the boundary conditions at infinity

lim
x→+∞

ϑ(x) = θh, lim
x→−∞

ϑ(x) = π − θh. (12)

The main result of this paper is the following.

Theorem 1 (existence, uniqueness, regularity, strict monotonicity and decay of Néel
walls). For every ν > 0 and every h ∈ [0, 1) there exists a minimizer of E(ϑ; R) in (6)
over A in (8), which is unique (up to translations), strictly decreasing with range equal to
(θh, π − θh) and is a smooth solution of (11) that satisfies the limit conditions given in
(12). Moreover, if ϑ(0): R → (θh, π − θh) is the minimizer of E in the class A satisfying
ϑ(0)(0) = π

2 , then ϑ(0)(x) = π − ϑ(0)(−x), and there exists a constant c > 0 such that
limx→+∞ x2(ϑ(0)(x) − θh) = c.
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4. Some auxiliary lemmas

We start with a few preliminary considerations and lemmas. Let ϑ ∈ A. By Morrey’s
theorem (see [33, theorem 11.34]), ϑ − ηh ∈ C1/2(R) and ϑ − ηh → 0 as x → ±∞;
that is, ϑ ∈ C(R) ∩ L∞(R) and satisfies (12). Furthermore, assuming in addition that
ϑ(R) ⊂ [θh, π − θh] and E(ϑ, R) < +∞, and defining ρ: R → [θh,

π
2 ] by

ρ(x) :=






ϑ(x) if ϑ(x) ∈
[
θh,

π

2

]
,

π − ϑ(x) if ϑ(x) ∈
(π

2
, π − θh

]
,

(13)

for every x ∈ R, we have sin ρ = sin ϑ , and since the map ϑ -→ ρ is Lipschitz, we also have
|ϑx | = |ρx | almost everywhere on R. Thus

+ ∞ > E(ϑ, R) = E(ρ, R) = 1
2

∫

R
|ρx |2 dx +

1
2

∫

R
(sin ρ − h)2 dx +

ν

4
‖ sin ρ‖2

H̊ 1/2(R)

" 1
2

∫

R
|ρx |2 dx +

ch

4

∫

R

(
ρ − θh

)2 dx +
ν

4
‖ sin ρ‖2

H̊ 1/2(R)

" ch

4

∥∥ρ − θh

∥∥2
H1

+
ν

4
‖ sin ρ‖2

H̊ 1/2(R)
, (14)

where ch := cos2
(
π
4 + θh

2

)
> 0 for all θh < π

2 . In the above inequality, we used the fact that,
since ρ(R) ⊂ [θh,

π
2 ], θh ∈ [0, π

2 ), and sin z " z/
√

2 for all z ∈ [0, π
4 ], we have

sin ρ − h = sin ρ − sin θh = 2 cos
(
ρ + θh

2

)
sin

(
ρ − θh

2

)
"

√
ch√
2

(ρ − θh). (15)

Lemma 2 (restriction of rotations). Let ϑ ∈ A such that E(ϑ) < +∞. Then there exists
ϑ̃ ∈ A such that ϑ̃(R) ⊂ [θh, π − θh] and E(ϑ̃) # E(ϑ), with strict inequality unless
ϑ(R) ⊂ [θh, π − θh].

Proof.
Step 1. We show first that there exists ϑτ ∈ A such that ϑτ (R) ⊂ [0, π ], sin ϑτ = | sin ϑ |,
and E(ϑτ ) # E(ϑ). Let ϑτ : R → [0, π ] be defined by

ϑτ (x) :=
{
ϑ(x) − 2kπ if ϑ(x) ∈ [2kπ, (2k + 1)π),

2kπ − ϑ(x) if ϑ(x) ∈ [(2k − 1)π, 2kπ),
(16)

for every x ∈ R. The definition is well-posed since {[2kπ, (2k + 1)π), [(2k − 1)π, 2kπ) :
k ∈ Z} is a partition of R. Notice that ϑτ is obtained by means of a translation by −2kπ

in each interval of the form [2kπ, (2k + 1)π), and by means of a reflection with respect
to the origin and a translation by 2kπ in each interval of the form [(2k − 1)π, 2kπ). By
construction, ϑτ ∈ [0, π ] and sin ϑ # | sin ϑ | = sin ϑτ so that ‖ sin ϑ‖L2(R) = ‖ sin ϑτ‖L2(R)

and −h
∫

R sin ϑτ dx # −h
∫

R sin ϑ dx, implying that
∫

R(sin ϑτ −h)2 dx #
∫

R(sin ϑ−h)2 dx.

Furthermore, since the map ϑ -→ ϑτ is Lipschitz, we also have
∫

R ϑ2
x dx =

∫
R

(
ϑτ

x

)2 dx.
The conclusion now comes from the fact that

∫

R
u

(
− d2

dx2

)1/2

u dx = 1
2π

∫

R

∫

R

(
u(x) − u(y)

)2

(x − y)2
dx dy

" 1
2π

∫

R

∫

R

(
|u(x)| − |u(y)|

)2

(x − y)2
dx dy =

∫

R
|u|

(
− d2

dx2

)1/2

|u| dx.

(17)
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Step 2. Without loss of generality, in view of step 1, we can assume that ϑ ∈ A is such that
ϑ(R) ⊂ [0, π ] and E(ϑ) < +∞. Set I := {x ∈ R : ϑ(x) ∈ [0, θh) ∪ (π − θh, π ]} and let
ϑ̃ : R → [θh, π − θh] be defined by

ϑ̃(x) :=






θh if ϑ(x) < θh,

ϑ(x) if ϑ(x) ∈ [θh, π − θh] = R \ I,

π − θh if ϑ(x) > π − θh

(18)

for every x ∈ R.
Notice that, since ϑ = ϑ̃ in R \ I , we have

‖ sin ϑ − h‖2
L2(R) − ‖ sin ϑ̃ − h‖2

L2(R) = ‖ sin ϑ − h‖2
L2(I ) " 0. (19)

Moreover, since ϑ̃ is constant on I , we have

‖ sin ϑ̃‖2
H̊ 1/2(R)

= 1
2π

∫

R\I

∫

R\I

(
sin ϑ(x) − sin ϑ(y)

)2

(x − y)2
dx dy

+
1
π

∫

R\I

∫

I

(
h − sin ϑ(y)

)2

(x − y)2
dx dy, (20)

and so

‖ sin ϑ‖2
H̊ 1/2(R)

− ‖ sin ϑ̃‖2
H̊ 1/2(R)

= 1
2π

∫

I

∫

I

(
sin ϑ(x) − sin ϑ(y)

)2

(x − y)2
dx dy

+
1
π

∫

R\I

∫

I

(
sin ϑ(x) − sin ϑ(y)

)2 −
(
h − sin ϑ(y)

)2

(x − y)2
dx dy (21)

" 1
π

∫

R\I

∫

I

(
sin ϑ(x) − h

)(
h + sin ϑ(x) − 2 sin ϑ(y)

)

(x − y)2
dx dy > 0,

where in the second to last inequality we have used the identity A2 − B2 = (A − B)(A + B)

and in the last one the fact that for every x ∈ I and every y ∈ R \ I the following inequalities
hold: sin ϑ(x) < h # sin ϑ(y). Then we conclude that E(ϑ̃) < E(ϑ). $

The following rearrangement property is a consequence of lemma 7.17 in [34].

Lemma 3. Let u ∈ L2(R) be a non-negative function and let u∗ be its symmetric decreasing
rearrangement, i.e.

u∗(x) :=
∫ +∞

0
χ{u>t}∗(x) dt, (22)

where for a Borel set A ⊂ R the rearranged set A∗ is the interval with measure L1(A) centred
at the origin. Then

‖u∗‖2
H̊ 1/2(R)

=
∫

R
u∗

(
− d2

dx2

)1/2

u∗ dx #
∫

R
u

(
− d2

dx2

)1/2

u dx = ‖u‖2
H̊ 1/2(R)

, (23)

with equality only if u is a translation of a symmetric decreasing function.

To prove our main result, we first need the following preliminary lemma. The idea goes
back to [22], except that here our variable is the angle function rather than the first component
of the magnetization vector. Let us point out that the rearrangement argument of lemma 4 only
yields the non-increasing property of ϑ for the minimizer. To prove strict decrease, one needs
an additional argument presented in step 3 of the proof of the main theorem below.
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Lemma 4 (rearrangement). Let ϑ ∈ A be such that ϑ(R) ⊂ [θh, π − θh] and E(ϑ) < +∞.
Then there exists a function ϑo(x): R → [θh, π − θh] satisfying (12) and the following
properties:

ϑo(0) = π

2
, ϑo(x) = π − ϑo(−x), ϑo

x # 0 on R and E(ϑo) # E(ϑ), (24)

where the equality in the latter expression holds only if sin ϑ is a translation of a symmetric
decreasing function.

Proof. Let ρ: R → [θh,
π
2 ] be defined as in (13) for every x ∈ R. Then, from the discussion

at the beginning of section 4 we have E(ϑ, R) = E(ρ, R). Now, define ρo : R → [θh,
π
2 ] by

setting

ρo(x) := θh +
(
ρ(x) − θh

)∗
, (25)

where given a function f , f ∗ stands for the symmetric rearrangement of f . This implies that
ρo is even, (ρ∗)x # 0 on R+, and ρo(x) → θh as |x| → +∞. Moreover, the level sets of ρo

are simply the rearrangement of the level sets of ρ, i.e.,

{x : ρo(x) > t} = {x : ρ(x) > t}∗. (26)

A consequence of this is the equimeasurability of the functions ρo and ρ, i.e.,

L1({x : ρo(x) > t}
)

= L1({x : ρ(x) > t}
)

(27)

for every t > 0. This, together with the layer cake representation theorem 1.13 in [34], yields
∫

R
φ
(
ρo(x)

)
dx =

∫

R
φ(ρ(x)) dx (28)

for every monotone, absolutely continuous functionφ : [0, ∞) → [0, ∞) satisfyingφ(0) = 0.
Choosing φ(z) = (sin(min(z, π

2 )) − h)2
+, we see that

∫

R

(
sin ρo(x) − h

)2 dx =
∫

R

(
sin ρ − h

)2 dx. (29)

We recall now the following property of rearrangements of any given Borel measurable
function f : R → R vanishing at infinity:

(# ◦ |f |)∗ = # ◦ f ∗ (30)

for every # : R+ → R+ non-decreasing. Applying the above property to f := ρ − θh : R →
[0, π

2 − θh] and # : f -→ sin(θh + f ), which is increasing for every f ∈ [0, π
2 − θh], we get

(sin ρ)∗ = sin
(
θh + (ρ − θh)

∗) = sin ρo. (31)

In view of the above identity and using also lemma 3, we have
∫

R
sin ρo

(
− d2

dx2

)1/2

sin ρo dx =
∫

R
(sin ρ)∗

(
− d2

dx2

)1/2

(sin ρ)∗ dx

#
∫

R
sin ρ

(
− d2

dx2

)1/2

sin ρ dx =
∫

R
sin ϑ

(
− d2

dx2

)1/2

sin ϑ dx, (32)

where the equality holds only if sin ϑ is a translation of a symmetric decreasing function.
Finally, by lemma 7.17 in [34],

∫

R
|ρo

x |2 dx =
∫

R

[(
ρ(x) − θh

)∗
x

]2
dx #

∫

R
|ρx |2 dx =

∫

R
|ϑx |2 dx. (33)
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Define ϑo : R → [θh, π − θh] by setting

ϑo(x) :=
{
ρo(x) if x " 0,

π − ϑo(−x) = π − ρo(x) if x < 0.
(34)

Since sin ϑo = sin ρo, by (29), (32) and (33) we conclude. $
We now investigate the decay of monotone solutions of (11) satisfying (12). This

information, combined with the properties of the fundamental solution of the linearization
of (11) around θh (see, e.g., [16, section 5.1]), will be used to establish the precise asymptotics
behaviour of the minimizers of E over A as x → ±∞.

Lemma 5. Let ϑ ∈ C∞(R) be a non-increasing solution of (11) satisfying (12), with
ϑ(−x) = π−ϑ(x) for all x ∈ R and all derivatives vanishing as x → ±∞. Let u = sin ϑ−h

and assume that there exist c > 0 and α ∈ (0, 2] such that ‖u‖W 2,∞(R) # c and

u(x) # c

1 + |x|α
∀x ∈ R. (35)

Then there exists C = C(c, α, h, ν) > 0 such that

|ux(x)|, |uxx(x)|,
∣∣∣∣∣

(
− d2

dx2

)1/2

u(x)

∣∣∣∣∣ # C

1 + |x|α
∀x ∈ R. (36)

Proof. Throughout the proof we assume that x > 0 is sufficiently large depending only on c,
α and h. All the constants in the estimates are also assumed to depend only on c, α, h and ν.

Equation (11) written in terms of u reads

uxx

1 − h2 − 2uh − u2
+

(h + u)u2
x

(1 − h2 − 2uh − u2)2
= u +

ν

2

(
− d2

dx2

)1/2

u. (37)

In particular, since u(x) goes to zero as x → ∞ together with all its derivatives, we also have
that lim

x→∞
M(x) = 0, where

M(x) := max
[x,∞)

∣∣∣∣∣

(
− d2

dx2

)1/2

u

∣∣∣∣∣ . (38)

Now, multiply (11) by ϑx and integrate over (x, ∞). Together with the monotonicity of u(x),
this yields

ϑ2
x (x) # u2(x) + νu(x)M(x). (39)

Using the fact that ux = ϑx cosϑ , from (37) and (39) we obtain

|uxx(x)| # C(u(x) + M(x)). (40)

On the other hand, for every δ > 0 sufficiently small we have by (7)
(

− d2

dx2

)1/2

u(x) = 1
π

∫ − 1
2 x

−∞

u(x) − u(y)

(x − y)2
dy +

1
π

∫ 1
2 x

− 1
2 x

u(x) − u(y)

(x − y)2
dy

+
1
π

∫ x−δ

1
2 x

u(x) − u(y)

(x − y)2
dy +

1
π

−
∫ x+δ

x−δ

u(x) − u(y)

(x − y)2
dy +

1
π

∫ +∞

x+δ

u(x) − u(y)

(x − y)2
dy.

(41)

Using the symmetric decreasing property of u(x), we can then estimate the left-hand side of
(41) as∣∣∣∣∣

(
− d2

dx2

)1/2

u(x)

∣∣∣∣∣ # C

(

δ−1u( 1
2x) + δ max

[x−δ,x+δ]
|uxx | +

∫ 1
2 x

− 1
2 x

u(y)

(x − y)2
dy

)

, (42)
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where to estimate the fourth term in the right-hand side of (41) we used Taylor formula
u(y) = u(x) + ux(x)(y − x) + 1

2uxx(x̄(y))(y − x)2, for some x̄(y) lying between x and y, and
noted that the linear term in y − x does not contribute to the principal value of the integral.
Combining the estimate in (42) with (40) and the assumption on the decay of u in (35) then
yields

∣∣∣∣∣

(
− d2

dx2

)1/2

u(x)

∣∣∣∣∣ # C

(
δ−1

xα
+ δM(x − δ) +

1
x2

+
1

x1+α

)
. (43)

Now, choosing δ > 0 sufficiently small, the last estimate implies
∣∣∣∣∣

(
− d2

dx2

)1/2

u(x)

∣∣∣∣∣ # Cx−α +
1
2
M(x − δ), (44)

for every α # 2. Therefore, by monotonicity of M(x), we also have

M(x) # Cx−α + 1
2M(x − δ), (45)

for all x > 0 sufficiently large.
Let us show that (45) implies the same kind of bound as in (35) for M(x). We use an

induction argument. Let xn := x0 + nδ and Mn := M(xn) for n ∈ N and some x0 > 0 to be
fixed shortly. Clearly, by (45) we have M1 # cx−α

1 for c = 4C + 1
2M(x0)(x0 + δ)α . We claim

that if also Mn−1 # cx−α
n−1, then (45) implies Mn # cx−α

n , provided that x0 is chosen to be
sufficiently large. Indeed, by (45) and the assumption Mn−1 # cx−α

n−1 we have

Mn #
(

C +
cxα

n

2(xn − δ)α

)
x−α

n # (C + 3
4c)x−α

n # cx−α
n , (46)

provided that x0 " 6δ, and the claim follows. Once we established the bound for Mn, the
estimate M(x) # C/(1+xα) for all x ∈ R follows by monotonicity and boundedness of M(x).

To conclude the proof of the lemma, we combine the estimate for M(x) just obtained with
(39) and (40). $

5. Proof of the main result

We are now in a position to prove the main result of this paper, theorem 1.

Step 1: existence. Let {ϑn} ⊂ A be a minimizing sequence, i.e.

lim
n→+∞

E(ϑn) = inf{E(ϑ) : ϑ ∈ A} < +∞. (47)

By translation invariance we may assume that ϑn(0) = π
2 and by lemma 4 that each ϑn satisfies

ϑn(R) ⊂ [θh, π − θh], ϑn(x) = π − ϑn(−x), lim
x→+∞

ϑn(x) = θh, (ϑn)x # 0 on R.

(48)

For each n, let ρn: R → [0, π
2 ] be defined as in (13) (after replacing ϑ with ϑn). By (14)

we have
∥∥ρn − θh

∥∥2
H 1(R)

+ ‖ sin ρn‖2
H̊ 1/2(R)

# C < +∞. (49)

In view of Banach-Alaoglu–Bourbaki’s theorem, there exist a subsequence of {ρn}, not
relabelled, a function v ∈ H 1(R) and a function u ∈ H 1/2(R) such that

ρn − θh ⇀ v weakly in H 1(R) and sin ρn ⇀ u weakly in H 1/2(R). (50)
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Let us fix k ∈ N. By the compact embedding H 1(−k, k) ⊂⊂ L2(−k, k), we may find
a subsequence, not relabeled, such that ρn − θh → v strongly in L2(−k, k) and L1-a.e. in
(−k, k). Thus, ρn → ρ L1-a.e. in (−k, k), where ρ := v + θh. Moreover, since

sup
n

‖ sin ρn‖2
H̊ 1/2(−k,k)

= sup
n

(
1

2π

∫ k

−k

∫ k

−k

(
sin ρn(x) − sin ρn(y)

)2

(x − y)2
dx dy

)

< +∞, (51)

it follows by the fractional compact embedding (see for instance section 8.6 of [34]) that
{sin ρn −h} is precompact in L2(−k, k), that is, up to a subsequence, not relabeled, sin ρn → u

strongly in L2(−k, k) and L1-a.e. in (−k, k). Then by the uniqueness of the limits, u = sin ρ
L1-a.e. in (−k, k) for every k.

Finally, by the lower semicontinuity of the L2 and H 1/2 norms with respect to their weak
convergences and Fatou lemma applied to the sequence {(sin ρn − h)2}, we have

1
2

∫ k

−k

|ρx |2 dx +
1
2

∫ k

−k

(sin ρ − h)2 dx +
ν

8π

∫ k

−k

∫ k

−k

(
sin ρ(x) − sin ρ(y)

)2

(x − y)2
dx dy

# lim inf
n→+∞

1
2

∫ k

−k

|(ρn)x |2 dx +
1
2

∫ k

−k

(sin ρn − h)2 dx (52)

+
ν

8π

∫ k

−k

∫ k

−k

(
sin ρn(x) − sin ρn(y)

)2

(x − y)2
dx dy # lim inf

n→+∞
E(ρn, R).

Applying Lebesgue’s monotone convergence theorem to the sequences {χ(−k,k)[(ρx)
2+(sin ρ−

h)2]} and
{
χ(−k,k)2

(sin ϑ(x)−sin ϑ(y))2

(x−y)2

}
, we then obtain

E(ρ, R) # lim inf
n→+∞

E(ρn, R) = lim inf
n→+∞

E(ϑn, R). (53)

Given such a ρ, let us define ϑ : R → R by setting

ϑ(0)(x) :=
{
ρ(x) if x " 0,

π − ρ(x) if x < 0,
(54)

for every x ∈ R. We claim that ϑ(0) satisfies the following properties:

ϑ(0)(0) = π

2
, ϑ(0)(x) = π − ϑ(0)(−x), lim

x→+∞
ϑ(0)(x) = θh, ϑ(0)

x # 0 on R. (55)

Since ρ−θh ∈ H 1(R), by Morrey’s theorem we have limx→+∞ ϑ(0)(x) = limx→+∞ ρ(x) = θh

and ϑ(0) ∈ C(R). Finally, since weak convergence in H 1(R) implies pointwise and uniform
convergence on compacts (see for instance theorem 8.6 in [34]), by the first of (50) we have
ρn → ρ locally uniformly on R. Therefore, the following properties

ρn(0) = π

2
, ρn(x) = ρn(−x), ρn(x1) " ρn(x2) if 0 # x1 # x2, (56)

are preserved when taking the limit as n → +∞ which in turn implies by construction that the
properties in (55) are satisfied.

Since by construction E(ϑ(0), R) = E(ρ, R), by (53) and (55), we conclude that ϑ(0) is
a minimizer for E in the class A.

Step 2: Euler–Lagrange equation. Since the first variation of E at any global minimizer of E

is zero, we have that the minimizer ϑ(0) of E, as well as any other minimizer of E, satisfies

0 = d
dt

∣∣∣∣
t=0

E(ϑ(0) + tϕ, R) =
∫

R

(
ϕxϑ

(0)
x + ϕ cosϑ(0) sin ϑ(0) − hϕ cosϑ(0)

+
ν

2
ϕ cosϑ(0)

(
− d2

dx2

)1/2

sin ϑ(0)

)
dx, (57)
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for every ϕ ∈ H 1(R). In other words, φ = ϑ(0) is a weak solution of the ordinary differential
equation

− φxx + b(x) cosφ = 0, (58)

where b(x) := sin ϑ(0) − h + 1
2ν(−d2/dx2)1/2 sin ϑ(0). Since ϑ(0)

x ∈ L2(R) and the sine
function is Lipschitz, we have (sin ϑ(0))x = ϑ(0)

x cosϑ(0) ∈ L2(R), and by the estimate
∥∥∥∥u +

ν

2

(
− d2

dx2

)1/2

u

∥∥∥∥
L2(R)

# C‖u‖H 1(R), (59)

applied to u := sin ϑ(0) − h, we conclude that b(x) ∈ L2(R). By (58), the weak second
derivative of ϑ(0) is given by ϑ(0)

xx = b(x) cosϑ(0) and is, hence, in L2(R). Therefore,
ϑ(0)

x ∈ H 1(R) and by Morrey’s theorem, together with the fact that ϑ(0) ∈ C(R), we have
that ϑ(0)

x is continuous and bounded on R as well. Using the interpolation inequality (here we
follow the arguments of [23])

‖ϑ(0)
x ‖L4(R) # ‖ϑ(0)

x ‖1/2
L∞(R)‖ϑ

(0)
x ‖1/2

L2(R)
< +∞, (60)

we have (sin ϑ(0))xx = ϑ(0)
xx cosϑ(0) − (ϑ(0)

x )2 sin ϑ(0) ∈ L2(R). Thus, by (59) and the fact that
(d/dx)(−d2/dx2)1/2u = (−d2/dx2)1/2ux , readily verified via the Fourier representation of the
fractional Laplacian [32], we conclude that b(x) ∈ H 1(R) and so by Morrey’s theorem b(x)

is continuous and bounded. This in turn implies that ϑ(0)
xx = b(x) cosϑ(0) ∈ L∞(R) ∩ C(R),

that is, ϑ(0) ∈ C2(R) is a classical solution of (58). Finally, bootstrapping these regularity
arguments, we conclude that ϑ(0) ∈ C∞(R), and, moreover, all the derivatives are bounded
uniformly in R. Together with boundedness of their L2 norms, the latter implies that all the
derivatives of ϑ(0) vanish at infinity.

Step 3: strict monotonicity. First we show that ϑ(0)
x (0) < 0 employing the same argument as

in [23]. Since ϑ(0) ∈ C2(R) is a classical solution of (58), if we assume that ϑ(0)(0) = π
2 and

ϑ(0)
x (0) = 0, the uniqueness theorem for ordinary differential equations implies that ϑ(0) must

be identically equal to π
2 , a contradiction.

Now we prove ϑ(0)
x < 0 on R+. We argue by contradiction and assume that there exist

x̄ > 0 such that ϑ(0)
x (x̄) = 0. But then also ϑ(0)

xx must be zero at x̄, because otherwise ϑ(0)

will be either strictly convex or strictly concave at x̄, contradicting the fact that ϑ(0)
x # 0 on

R. Moreover, by differentiating the Euler-Lagrange equation (11) and taking into account that
ϑx(x̄) = ϑxx(x̄) = 0, we get

ϑ(0)
xxx(x̄) = ν

2
cosϑ(0)(x̄)g(x̄), g :=

(
− d2

dx2

)1/2(
ϑ(0)

x cosϑ(0)
)
. (61)

Now we observe that cosϑ(0)(x̄) > 0 because ϑ(0)(R+) ⊂ [θh,
π
2 ], and, recalling (7), taking

into account that ϑx(x̄) = ϑxx(x̄) = 0, and noticing that the integral converges near x̄ in the
usual sense, we have

g(x̄) = − 1
π

∫

R

ϑ(0)
x (y) cosϑ(0)(y)

(x̄ − y)2
dy

= − 1
π

∫

R+

ϑ(0)
x (y) cosϑ(0)(y)

(x̄ − y)2
dy − 1

π

∫

R+

ϑ(0)
x (y) cosϑ(0)(y)

(x̄ + y)2
dy > 0, (62)

where we have used the fact that ϑ(0)
x (−x) = ϑ(0)

x (x) # 0, and the inequality is strict on a
set of positive measure. Therefore, ϑ(0)

xxx(x̄) > 0, which implies that ϑ(0) is increasing at x̄,
contradicting the fact that ϑ(0)

x # 0 on R. Hence, ϑ(0) has to be strictly decreasing on R+.
Since ϑ(0)(x) = π − ϑ(0)(−x) for every x < 0, it follows that ϑ(0)

x < 0 also on R−.
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Step 4: uniqueness (up to translations). It is clear that in view of the translational invariance the
functionϑ(x0)(x) = ϑ(0)(x−x0) with any x0 ∈ R still belongs to A and satisfiesϑ(x0)(x0) = π

2 .
To conclude, we have to show that every minimizers of E in A is of the form ϑ(0)(x − x0) for
some x0 ∈ R. Our argument is related to the strict convexity of the integrand in (6) written as
a function of u = sin ϑ and its derivative noted in [23].

We employ the strict monotonicity of minimizers, which implies that for every minimizer
there is a unique point at which ϑ = π

2 . Let ϑ(1) and ϑ(2) be two different minimizers,
which, after a suitable translation, satisfy ϑ(1)(0) = π

2 and ϑ(2)(0) = π
2 . Define ϑ̃(x) :=

arcsin ( sin ϑ(1)(x)+sin ϑ(2)(x)
2 ) for x " 0 and ϑ̃(x) := π − arcsin ( sin ϑ(1)(x)+sin ϑ(2)(x)

2 ) for x < 0 (the
function sin ϑ̃ is symmetric decreasing by step 1). We claim that for all x += 0 we have

(
ϑ̃x

)2 =
(
ϑ(1)

x cosϑ(1) + ϑ(2)
x cosϑ(2)

)2

4 − (sin ϑ(1) + sin ϑ(2))2
#

(
ϑ(1)

x

)2 +
(
ϑ(2)

x

)2

2
. (63)

Once the claim is proved, we get that ϑ̃x ∈ L2(R) and, hence, ϑ̃ ∈ A. Moreover,
since the anisotropy and the stray-field terms in the energy are quadratic in sin ϑ , we get
E(ϑ̃, R) < 1

2 [E(ϑ(1), R) + E(ϑ(2), R)], which contradicts the minimality of ϑ(1) and ϑ(2).
Let us come to the proof of (63). Observe that by two-dimensional Cauchy–Schwarz

inequality
(
ϑ(1)

x cosϑ(1) + ϑ(2)
x cosϑ(2)

)2

4 − (sin ϑ(1) + sin ϑ(2))2
#

((
ϑ(1)

x

)2 +
(
ϑ(2)

x

)2
) (

cos2 ϑ(1) + cos2 ϑ(2)
)

4 − (sin ϑ(1) + sin ϑ(2))2
. (64)

On the other hand, we have

2 cos2 ϑ(1) + 2 cos2 ϑ(2)

4 − (sin ϑ(1) + sin ϑ(2))2
= 4 − 2 sin2 ϑ(1) − 2 sin2 ϑ(2)

4 − (sin ϑ(1) + sin ϑ(2))2

# 4 − sin2 ϑ(1) − sin2 ϑ(2) − 2 sin ϑ(1) sin ϑ(2)

4 − (sin ϑ(1) + sin ϑ(2))2
= 1. (65)

Combing (65) with (64) then yeilds (63).
Step 5: decay. We claim that by the results of the previous steps the unique minimizer ϑ(0) of
E in A satisfies the assumptions of lemma 5 with α = 1

2 . Indeed, ϑ(0) is a smooth decreasing
solution of (11) satisfying (12) with all derivatives vanishing at infinity and obeying the required
symmetry property. Furthermore, since u = sin ϑ(0) − h ∈ L2(R) is symmetric decreasing,
by an elementary property of monotone functions (see, e.g., [35, lemma A.IV]) we have that
u(x) # |x|−1/2‖u‖L2(R). Therefore, the conclusions of lemma 5 apply to ϑ(0). We now claim
that this, in turn, implies the same kind of estimates for ρ(x) − θh, where ρ is defined by (13)
with ϑ = ϑ(0). Indeed, since ux = ϑ(0)

x cosϑ(0) and uxx = ϑ(0)
xx cosϑ(0) − (ϑ(0)

x )2 sin ϑ(0), the
estimates for the derivatives follow from (36), and to obtain the estimate for (−d2/dx2)1/2ρ,
one can use (42) with u replaced by ρ.

We now rewrite (11) in the following form:

L(ρ(x) − θh) = f (x), f (x) := f1(x) + f2(x) + f3(x), (66)

where

L := − d2

dx2
+

1
2
ν cos2 θh

(
− d2

dx2

)1/2

+ cos2 θh (67)

is a linear operator that can be viewed as a map from H 2(R) to L2(R), and

f1(x) := cos θh(cos θh − cos ρ(x))(ρ(x) − θh)

+ cos ρ(x)(cos θh(ρ(x) − θh) − sin ρ(x) + sin θh), (68)
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f2(x) := 1
2
ν cos θh

(
− d2

dx2

)1/2

(cos θh(ρ(x) − θh) − sin ρ(x) + sin θh), (69)

f3(x) := 1
2
ν(cos θh − cos ρ(x))

(
− d2

dx2

)1/2

(sin ρ(x) − sin θh). (70)

Note that L represents the operator that generates the linearization of (11) around ϑ = θh,
and all the terms in the definition of f are of ‘quadratic order’ in ρ − θh. Also note that the
fundamental solution G(x) associated with L, i.e. the solution of LG(x) = δ(x), where δ(x)

is the Dirac delta-function, is a positive, continuous, piecewise-smooth function with a jump
of the derivative at the origin and a decay G(x) ∼ |x|−2 at infinity (see lemma A.1). Moreover,
L is invertible, and we have

ρ − θh = L−1f (x) =
∫

R
G(x − y)f (y) dy. (71)

Observe that since a priori u(x) # c/(1 + |x|1/2), using Taylor expansion in ρ − θh we
have |f1(x)| # C/(1 + |x|1/2)2, and by lemma 5 we also have |f3(x)| # C/(1 + |x|1/2)2. To
prove that |f2(x)| # C/(1 + |x|1/2)2 as well, we use the estimate in (42) once again, taking
into account that |(ρ cos θh − sin ρ)xx | # | cos θh − cos ρ| |ρxx | + |ρx |2 sin ρ # C/(1 + |x|1/2)2

for x += 0 and arguing as in lemma 5. Thus, we have |f (x)| # C/(1 + |x|), and hence using
(71), we obtain

ρ(x) − θh #
∫

R
G(x − y)|f (y)| dy # C

∫

R

|f (y)|
1 + |x − y|2

dy # C ′

1 + |x|
. (72)

In view of (72), we have now improved the estimate for u(x) to the one in (35) with
α = 1. Repeating the argument above, we then conclude that u(x) # C ′/(1 + |x|2). Let us
show that this estimate is, in fact, optimal, and obtain the precise asymptotics of the decay
of the profile. In view of the estimate just mentioned and arguing as in lemma 5, we have
|f (x)| # C/(1+|x|4). Therefore, using the multipole expansion in (71) and the decay property
of G(x) from lemma A.1, we conclude that

ρ − θh = a

|x|2
+ o(|x|−2), a = ν

2π cos2 θh

∫

R
f (y) dy. (73)

Clearly, a " 0 in (73), and to complete the proof we need to show that a > 0. To establish
this fact, we first note that

∫
R f1(x) dx > 0 and

∫
R f2(x) dx = 0. Indeed, it is easy to see

that f1(x) > 0 for all x ∈ R, and the second equality follows from the fact that the operator
(−d2/dx2)1/2 is self-adjoint and that constants lie in its kernel. To show that

∫
R f3(x) dx > 0,

we use (7) and symmetrize the integral to obtain
∫

R
f3(x) dx = − ν

4π

∫

R

∫

R

(sin ρ(x) − sin ρ(y))(cos ρ(x) − cos ρ(y))

(x − y)2
dx dy

= ν

2π

∫

R

∫

R

sin
(
ρ(x) + ρ(y)

)
sin2

(
ρ(x)−ρ(y)

2

)

(x − y)2
dx dy, (74)

where we used trigonometric identities to arrive at the last line. In view of the fact that
ρ ∈ (θh,

1
2π), the right-hand side of (74) is positive, and the claim follows.

This concludes the proof of the theorem. $
Let us remark that the arguments in the proof of uniqueness above, with the test function

ϑt(x) := arcsin(t sin ϑ(1)(x)+(1−t) sin ϑ(2)(x)) for x " 0 andϑt = π−arcsin(t sin ϑ(1)(x)+
(1 − t) sin ϑ(2)(x)) for x < 0, where t ∈ [0, 1], could also be used to prove uniqueness of the
critical points of the energy E in the class of solutions of (11) with values in (ϑh, π − ϑh),
obeying (12) and crossing the value of π

2 only once at the origin (for a similar treatment
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see [36]). However, since the computations in this case become exceedingly tedious and the
precise behaviour of the solutions at infinity may be needed, we have not pursued this question
any further in this paper. Nevertheless, establishing such a uniqueness result would be helpful
for interpreting the results of the numerical solution of (11) as the Néel wall profiles.

It would also be interesting to see if the one-dimensional Néel wall profiles considered in
this paper are the only minimizers (or even critical points) of the two-dimensional thin film
energy in (4) with respect to perturbations with compact support that have the asymptotic
behaviour given by (12). We note that in the case ν = 0 this problem reduces to the famous
problem of De Giorgi, whose solution in two space dimensions is now well understood [37]
(see also [38] for a recent overview). Whether such a result remains valid in the presence of a
non-local term (ν > 0) remains to be seen (one result in this direction was obtained in [24]).
Let us note that while for the local problem a continuous family of solutions obtained by
rotations of the one-dimensional profile exists, in the non-local problem the orientation of the
wall is expected to be fixed by the condition that the net charge across the wall be zero. The
latter only allows walls that are parallel to the easy axis.
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Appendix.

The following lemma establishes the basic properties of the fundamental solution for the
operator L (see also [16, section 5.1]).

Lemma A.1. Let G(x) be the fundamental solution for the operator L defined in (67). Then

G(x) = 2ν
π

∫ ∞

0

te−t |x| cos θh

ν2t2 cos2 θh + 4(t2 − 1)2
dt. (A.1)

In particular, G ∈ C∞(R\{0}) ∩ Lip(R) ∩ L∞(R) ∩ L1(R), G > 0, G(x) = G(−x), and

G(x) = ν

2π cos2 θh

|x|−2 + O(|x|−4). (A.2)

Proof. The proof is a simple application of Fourier transform and contour integration
techniques, which we present here for completeness. Observe first that the Fourier transform
Ĝ(k) =

∫
R e−ikxG(x) dx of G(x) is well-defined and is given by

Ĝ(k) = 1

|k|2 + 1
2ν cos2 θh|k| + cos2 θh

. (A.3)

Interpreting |k| =
√

k2 as an analytic function of k in the complex plane with a branch cut
on the imaginary axis, i.e., defining

√
(x + iy)2 = |x| + iy sgn x for x += 0, we can write the

formula for inverting the Fourier transform of G as

G(x) = 1
2π

∫

R

eikx

k2 + 1
2ν cos2 θh

√
k2 + cos2 θh

dk, (A.4)

and treat it as an integral along the real axis in the complex plane. In particular, G(x) is even,
and in the following it suffices to consider only x " 0.
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It is easy to see that with our choice of the analytic branch the integrand in (A.4) has no
poles. Furthermore, since the integral in (A.4) over a semicircle of radius R > 0 in the positive
imaginary half-plane vanishes for x " 0 as R → ∞, we can deform the contour of integration
to run back and forth along the positive imaginary axis. After some algebra, we then find that
the integral in (A.4) coincides with that in (A.1).

From the representation in (A.1), one immediately concludes that G(x) is positive,
bounded, smooth for all x += 0 and Lipschitz-continuous at x = 0. The estimate in (A.2)
is then obtained by an elementary asymptotic analysis of the integral in (A.1). $
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