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Abstract
We present an analysis of edge domain walls in exchange-biased ferromagnetic films
appearing as a result of a competition between the stray field at the film edges and the
exchange bias field in the bulk. We introduce an effective two-dimensional micromag-
netic energy that governs themagnetization behavior in exchange-biasedmaterials and
investigate its energy minimizers in the strip geometry. In a periodic setting, we pro-
vide a complete characterization of global energy minimizers corresponding to edge
domain walls. In particular, we show that energy minimizers are one-dimensional
and do not exhibit winding. We then consider a particular thin-film regime for large
samples and relatively strong exchange bias and derive a simple and comprehensive
algebraic model describing the limiting magnetization behavior in the interior and
at the boundary of the sample. Finally, we demonstrate that the asymptotic results
obtained in the periodic setting remain true in the case of finite rectangular samples.

Keywords Micromagnetics · Energy minimizers · Charged domain walls ·
Asymptotics

Mathematics Subject Classification 82D40 · 49S05

1 Introduction

Ferromagnetic films and multilayers are fundamental nanostructures widely used in
present-day magnetoelectronics devices (Prinz 1998). As such, they have been the
subject of intensive investigations over the last two decades in the engineering, physics
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and applied mathematics communities (Hubert and Schäfer 1998; Bader and Parkin
2010; Dennis et al. 2002; Fidler and Schrefl 2000; DeSimone et al. 2006). Some of the
highlights of these activities include the discoveries of giant magnetoresistance, spin-
transfer torque, spin-orbit coupling and the spin-Hall effect (Bader and Parkin 2010;
Brataas et al. 2012; Soumyanarayanan et al. 2016; Hellman 2017). These new physical
phenomena have led to the design of such technological applications as magnetic
sensors, actuators, high-density magnetic storage devices and nonvolatile computer
memory.

Surface and interfacial effects play a dominant role and are responsible for deter-
mining many properties of the nanostructured ferromagnetic materials (Hubert and
Schäfer 1998; Dennis et al. 2002; Hellman 2017). These phenomena become increas-
ingly important in the case of ultrathin films and multilayers. One basic example
of such nanostructures is given by exchange-biased materials, which consist of a
ferromagnetic film on top of an antiferromagnetic layer (Nogues et al. 2005). As a
consequence of an exchange coupling between the two layers, themagnetization in the
ferromagnetic filmexperiences a net bias induced by themagnetization at the interlayer
interface, which furnishes the free layer with an effective unidirectional anisotropy.
Additionally, nanostructure edges may also drastically change the equilibrium and the
dynamic behaviors of the magnetization. For instance, the nanostructure edges often
determine the mechanism of the magnetization reversal process (Hubert and Schäfer
1998; E et al. 2003; Muratov and Osipov 2008). However, despite the importance of
edge effects, there exist just a handful of rigorous analytical studies characterizing the
magnetization behavior near the film edges (Kohn and Slastikov 2005a; Kurzke 2006;
Moser 2004; Lund et al. 2018; Muratov and Slastikov 2016).

Formation of edge domain walls is an important manifestation of edge effects
observed in ferromagnetic films, double layers and exchange-biased materials (Horn-
reich 1963, 1964;Wade 1964; Rührig et al. 1990;Mattheis et al. 1997; Cho et al. 1999;
Hubert and Schäfer 1998; Dennis et al. 2002; Rebouças et al. 2009). Edge domain
walls appear as the result of a competition between magnetostatic energy dominating
near the edges and the anisotropy or bias field effects in the bulk, leading to a mis-
match in the preferred magnetization directions near and far from the film edges. It
is well known that in ultrathin ferromagnetic films without perpendicular magnetic
anisotropy the magnetization prefers to stay almost entirely in the film plane. At the
same time, the magnetization tends to stay parallel to the film edge even if the mag-
netocrystalline anisotropy or the bias field favors a different magnetization direction
in the interior. This effect is due to the stray field energy which produces a significant
contribution near the sample edges (Kohn and Slastikov 2005a). Inside the sample, the
bias field and/or magnetocrystalline anisotropy dominate the micromagnetic energy,
favoring a single domain state. When these effects are sufficiently strong, they may
also influence the magnetization behavior close to the sample boundary. As a result of
the competition between the stray field and anisotropy/exchange bias energies, also
taking into account the exchange energy, a transition layer near the edge, called edge
domain wall, is formed. Although this simple phenomenological explanation gives
an intuitive picture, apart from a few ansatz-based studies in the physics literature
(Hornreich 1963, 1964; Nonaka et al. 1985; Hirono et al. 1986) there is currently little
quantitative understanding of this phenomenon.
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Fig. 1 A remanent magnetization in an exchange-biased permalloy film (exchange constant A = 1.3 ×
10−11 J/m, saturation magnetization Ms = 8 × 105 A/m, exchange bias field H = 8.91 × 103 A/m) with
dimensions 3.46μm× 0.87μm× 6nm. Result of a micromagnetic simulation, using the code developed in
Muratov and Osipov (2006). The bias field is pointing up. Edge domain walls exhibiting partial alignment
of the magnetization with the sample edges may be seen at the top and the bottom boundary

The goal of this paper is to understand the formation of edge domain walls in
exchange-biasedmaterials, viewed asminimizers of themicromagnetic energy.We are
interested in soft ultrathin ferromagnetic films in the presence of a strong exchange bias
field. Our analysis is based on a reduced two-dimensional micromagnetic energy with
magnetization vector constrained to lie in the film plane, which is well known to ade-
quately describe the magnetization behavior in ultrathin ferromagnetic films (Muratov
and Osipov 2006; Kohn and Slastikov 2005a; DeSimone et al. 2006). Since we are
concerned with themagnetization behavior near the edges, we consider one of the sim-
plest and yet application-relevant geometries, namely that of a ferromagnetic strip. As
described earlier, in this geometry the magnetization inside the strip aligns with the
direction of the bias field, but at the edges it tends to align along the fixed edge direction.
Typically, there is amisalignment between these two directions which, with the help of
the exchange energy, results in the formation of a boundary layer near the edge (see Fig.
1). Let us stress that the situation considered here is very different from the case treated
in Kohn and Slastikov (2005a), where the magnetization behavior at the boundary is
controlled by the magnetization in the interior through the trace theorem. In larger
ferromagnetic samples considered here, the exchange energy does not impose enough
control over magnetization variation. This results in the detachment of the trace of the
interior magnetization profile from the magnetization at the sample boundary. In par-
ticular, the actual magnetization behavior at the boundary is determined in a non-trivial
way through the competition of exchange bias, stray field and bulk exchange energies.

Our analysis of the above problem in nanomagnetism proceeds as follows. First,
we introduce a two-dimensional model, see (2.4), which governs the magnetization
behavior in exchange-biased ultrathin nanostructures and accounts for the presence of
nanostructure edges. This model is an extension of a reduced thin-film model intro-
duced in the context of Ginzburg–Landau systems with dipolar repulsion that provides
matching upper and lower bounds on the full three-dimensional energy for vanishing
film thickness, togetherwith universal error estimates (Muratov 2019). Instead of treat-
ing the magnetization as a discontinuous vector field having length one inside and zero
outside a three-dimensional sample, we consider a two-dimensional domain occupied
by the film in the plane (viewed from the top) and introduce a narrow band near the film
edge, comparable in size to the film thickness. In this band, the magnetization is reg-
ularized for the stray field calculation, using a smooth cutoff function, see (2.3). Note
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that the magnetization behavior is asymptotically independent of the choice of the cut-
off. We then proceed to analyze global energy minimizers associated with the energy
in (2.4) in the presence of strong exchange bias in the direction normal to the strip edge.

We point out that the obtained non-convex, nonlocal, vectorial variational problem
in full generality poses a formidable challenge to analysis. In particular, the system
under consideration is known to exhibit winding magnetization configurations (Cho
et al. 1999), which further complicates the situation. Nevertheless, within a periodic
setting we are able to provide a complete characterization of global energy minimizers
of the energy in (2.4). We first show that the energy minimizing configurations are
one-dimensional, i.e., in those configurations the magnetization depends only on the
distance to the edges. Furthermore, the magnetization vector does not exhibit winding
and may rotate by at most 90 degrees away from the bias field direction. Thus, in the
periodic setting the task of globally minimizing the energy (2.4) reduces to a particular
one-dimensional variational problem. For the latter, we prove that there exist at most
three minimizers, which are smooth solutions to a nonlocal Euler–Lagrange equation
and possess C2 regularity up to boundary, see Theorem 3.1.

We then consider a particular thin-film regime, in which the sample lateral dimen-
sions also go to infinity with an appropriate rate, while the exchange bias, bulk
exchange and magnetostatic energies all balance near the strip edge, see (2.9), (2.11)
and (2.12). Still within the periodic setting, we then derive a simple and comprehen-
sive algebraic model describing the magnetization behavior in the interior and at the
boundary of the ferromagnet in the regime of strong exchange bias in the limit as the
film thickness goes to zero, see Theorem 3.2. This reducedmodel uniquely determines
the magnetization trace at the film edge for the minimizers, see Theorem 3.3. We also
show that after a blowup the magnetization profile near the edge converges uniformly
to an explicit profile in (3.9). Finally, we demonstrate that the asymptotic results for
the limit behavior of the energy and the average trace of the magnetization on the
sample edges obtained in the periodic setting remain true in the case of rectangular
domains, see Theorem 3.4.

Our proofs in the periodic setting rely on a sharp, strict lower bound for the energy
in (2.4) of a two-dimensional magnetization configuration in terms of the energy in
(4.26) evaluated on the averages along the direction of the strip of the component of
the magnetization normal to the strip edge. For the magnetostatic part of the energy,
the corresponding lower bound is obtained, using Fourier techniques. For the local part
of the energy, we use its convexity as a function of that component in the absence of
winding. The latter is ensured by the choice of the reconstruction of the magnetization
vector from the average of its component in the direction normal to the edge. We note
that this argument crucially uses the specific form of the exchange bias energy and does
not apply in the case of the uniaxial anisotropy considered by us in Lund et al. (2018).
Once the one-dimensional nature of theminimizers has been established, the derivation
of the Euler–Lagrange equation and the regularity still requires a delicate analysis due
to the fact that nonlocality remains intertwined with the rest of the terms, producing
an integro-differential equation. Additionally, under our Lipschitz assumption on the
cutoff function, which also allows to mimic films with tapering edges, the nonlocal
term may produce singularities near the sample boundaries, limiting the regularity of
the minimizers up to the boundary. Finally, using the Euler–Lagrange equation we
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are able to show that the tangential component of the magnetization in a minimizer
does not change sign. This allows us to take advantage of the convexity of the one-
dimensional energy as a function of the normal component under this condition to
establish the precise multiplicity of the minimizers.

For our asymptotic analysis, we first remark that in our problem it is necessary to
go beyond the magnetostatics contribution at the sample edges considered in Kohn
and Slastikov (2005a). Indeed, since the magnetization in the sample interior con-
verges to a constant vector, the net magnetic line charge density at the strip edges is
constant to the leading order. Therefore, one needs to perform an asymptotic expan-
sion to extract the leading-order non-trivial contribution associated with the charge
distribution between the strip edge and the strip interior in the boundary layer near the
edge. After subtracting the leading-order constant, we deduce the asymptotic behavior
of the minimal energy and the energy minimizers by establishing matching asymp-
totic upper and lower bounds on the energy. The lower bounds are a combination
of the Modica–Mortola type bounds for the local part of the energy, while for the
magnetostatic energy we use carefully chosen test potentials in a duality formulation
that goes back to Brown (1963). In turn, the upper bounds rely on explicit Modica–
Mortola transition layer profiles with an optimized boundary trace. Finally, we show
that the presence of the additional edges parallel to the bias direction does not affect
the asymptotic behavior of the energy for rectangular samples.

Our paper is organized as follows. In Sect. 2, we present the two-dimensional
model analyzed throughout the paper and discuss the relevant scaling regime. In Sect.
3, we state our main results. In Sect. 4, we present the proof of Theorem 3.1 that
characterizes the energy minimizers in the periodic setting. In Sect. 5, we present the
proofs of Theorems 3.2 and 3.3 about the asymptotic behavior of the minimizers in
the periodic setting in the considered regime. Finally, in Sect. 6, we present the proof
of Theorem 3.4 about the asymptotics of the minimizers on a rectangular domain.

2 Model

In this paper,we investigate ultrathin ferromagnetic filmswith negligiblemagnetocrys-
talline anisotropy and in the presence of an exchange bias, which manifests itself as
a Zeeman-like term in the energy. As our films of interest are only a few atomic
layers thin, it is appropriate to model them using a two-dimensional micromagnetic
framework. Furthermore, in the absence of perpendicular magnetic anisotropy the
equilibrium magnetization vector is constrained to lie almost entirely in the film plane
(DeSimone et al. 2000; Kohn and Slastikov 2005b; Garcia-Cervera and E 2001;Mura-
tov and Osipov 2006). Therefore, in the case of an extended film the magnetization
state may be described by a map m : R2 → S

1, with the associated energy (after a
suitable rescaling) given by

E(m) = 1

2

∫
R2

(
|∇m|2 + h|m − e2|2

)
dx

+ δ

8π

∫
R2

∫
R2

∇ · m(x)∇ · m(y)

|x − y| dx dy. (2.1)
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Here, the terms in the order of appearance are: the exchange energy, the Zeeman-
like exchange bias energy due to an adjacent fixed magnetic layer and the stray field
energy, respectively (Hubert and Schäfer 1998; DeSimone et al. 2000; Nogues et al.
2005). In writing (2.1), we measured lengths in the units of the exchange length and
introduced the effective dimensionless film thickness δ > 0 that plays the role of the
strength of the magnetostatic interaction. Also, we have introduced the dimensionless
constant h > 0 that characterizes the strength of the exchange bias along the vector
e2, the unit vector in the direction of the second coordinate axis. Note that due to
rotational symmetry of the exchange and magnetostatic energies, the choice of the
direction in the exchange bias term is arbitrary. Observe that by positive definiteness
of the stray field term the unique global minimizer for the energy in (2.1) is given by
the monodomain state m(x) = e2.

2.1 Energy of a Finite Sample

Wenow turn our attention to films of finite extent, i.e., when the ferromagneticmaterial
occupies a bounded domain in the plane, D ⊂ R

2. One would naturally expect that the
abovemodel can be easily modified to describe the finite sample case by restricting the
domains of integration to D. However, this is not the case as such a model would miss
the contribution of the edge charges to the magnetostatic energy (Kohn and Slastikov
2005a). On the other hand, a simple extension of the magnetization m from D to the
whole of R2 by zero and treating ∇ · m distributionally would not work in general,
as in this case the magnetostatic energy becomes infinite unless the magnetization
is tangential to the boundary ∂D of the sample (for further discussion, see Lund
et al. 2018). This is due to the fact that a discontinuity in the normal component
of the magnetization at the sample edge produces a divergent contribution to the
magnetostatic energy. Physically, however, the thickness-averagedmagnetization goes
smoothly to zero on the atomic scale around the film edge, which for ultrathin films
is comparable to the film thickness δ. Therefore, the magnetization profile appearing
in the expression for the magnetostatic energy needs to be regularized:

mδ(x) := ηδ(x)m(x) x ∈ D, (2.2)

where ηδ(x) is a cutoff at scale δ that is determined by the detailed structure of the
sample near the edges (e.g., compositional changes, elastic strain, edge roughness,
tapering ends in as-grown film, etc.). Here, we take for simplicity

ηδ(x) := η

(
dist(x, ∂D)

δ

)
, (2.3)

where η ∈ C∞(R
+
) satisfies η′(t) > 0 for all 0 < t < 1, η(0) = 0 and η(t) = 1 for

all t ≥ 1. This defines a Lipschitz cutoff at scale δ near ∂D to smear the film edge on
the scale of its thickness. The two-dimensional micromagnetic energy modeling the
ultrathin ferromagnetic film of finite extent is now defined as
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E(m) = 1

2

∫
D

(
|∇m|2 + h |m − e2|2

)
dx

+ δ

8π

∫
D

∫
D

∇ · mδ(x)∇ · mδ(y)

|x − y| dx dy. (2.4)

This energy is the starting point of our investigation. We note that the precise choice
of the cutoff function will become unimportant in the asymptotic limit considered in
Theorems 3.2–3.4, indicating that the detailed physics of the film edges does not affect
the magnetization patterns in the considered regime. This is one of the main physical
findings of our paper.

2.2 Energy in a Periodic Setting

We are also interested in a particular situation in which the domain has the shape of an
infinite strip along the x1-direction, of width b > 0; this situation is not immediately
covered by the previous discussion. We assume periodicity in x1 with period a > 0
and define the energy per period:

E#(m) = 1

2

∫
D

(
|∇m|2 + h |m − e2|2

)
dx

+ δ

8π

∫
D

∫
R×(0,b)

∇ · mδ(x)∇ · mδ(y)

|x − y| dy dx, (2.5)

where D = (0, a) × (0, b). Note that this energy is translationally invariant in the x1-
direction. In particular, one-dimensional magnetization configurations independent of
x1 are natural candidates for minimizers of E#. We point out that choosing the strip
axis to lie along the direction e1 (perpendicular to e2) creates a competition between
the exchange bias favoring m to lie along e2 and the shape anisotropy forcing m to lie
along e1, which makes this configuration the most interesting one.

2.3 Connection to Three-Dimensional Micromagnetics

Let us point out that the energy in (2.4) may also be justified in some regimes by con-
sidering suitable thin-film limits of the full three-dimensional micromagnetic energy:

E(m) = 1

2

∫
�

(
|∇m|2 + h|m − e2|2

)
dx

+ 1

8π

∫
R3

∫
R3

∇ · m(x)∇ · m(y)

|x − y| dx dy, (2.6)

where � ⊂ R
3 is the domain occupied by the material and m : � → S

2, with m
extended by zero outside � and ∇ · m understood distributionally. Typically when
considering thin films, the domain � is taken to be a cylinder � = D × (0, δ), where
D ⊂ R

2 is the base of the film and δ is the film thickness (DeSimone et al. 2000). In
reality, the filmedges are never straight, but vary on the scale of the film thickness δ, and
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averaging over the thickness, we recover an analog of the regularized magnetization
mδ introduced in (2.2) (for further discussion in a related context, see Muratov 2019).
Indeed, when 0 < δ � 1, the out-of-plane component of the magnetizationm(x) ∈ S

2

is strongly penalized, forcing the magnetization to be restricted to the equator of S2,
identified with S1. Furthermore, the magnetization vector will be effectively constant
on the length scale δ. Therefore, to the leading order in δ we will have

m(x1, x2, x3) = (m(x1, x2), 0) m : R2 → S
1, (2.7)

and E(m) 	 E(m)δ, where mδ in (2.4) is defined, using a cutoff function ηδ related
to the shape of the film edge (see also Slastikov 2005).

2.4 Thin-Film Regime

Wenow introduce a particular asymptotic regime inwhich edge domainwalls bifurcate
from the monodomain state m = e2 as global energy minimizers when the effective
film thickness δ → 0. We note that for all other parameters fixed the minimizer of
the two-dimensional energy in (2.4) or the three-dimensional energy in (2.6) would
converge to the monodomain state (for a closely related result, see Muratov 2019).
Therefore, in order to observe non-trivial minimizers in the thin-film limit the lateral
size of the ferromagnetic sample must diverge with an appropriate rate simultaneously
with δ → 0. To capture this balance,we introduce a small parameter ε > 0 correspond-
ing to the inverse lateral size of the ferromagnetic sample, i.e., diam(Dε) = O(ε−1),
and set δ = δε → 0 as ε → 0. We also allow h = hε to depend on ε. We then have a
one-parameter family of functionals, parametrized by ε and given by E(m) = E0

ε (m),
where

E0
ε (m) = 1

2

∫
Dε

(
|∇m|2 + hε |m − e2|2

)
dx

+ δε

8π

∫
R2

∫
R2

∇ · mδε (x)∇ · mδε (y)

|x − y| dx dy, (2.8)

with a slight abuse of notation, assuming the cutoff function in (2.3) is defined, using
Dε instead of D. If we then rescale Dε to work on an O(1) domain D, we obtain that
E0

ε (m) = ε−1Eε(m(·/ε)), where

Eε(m) := 1

2

∫
D

(
ε |∇m|2 + hε

ε
|m − e2|2

)
dx

+ δε

8π

∫
R2

∫
R2

∇ · mεδε (x)∇ · mεδε (y)

|x − y| dx dy. (2.9)

To proceed, we take, once again, the domain D to be a rectangle, D = (0, a) ×
(0, b), and consider two magnetization configurations as competitors. The first one is
the monodomain state m(1) = e2 and the second one is a profile m(2) in which the
magnetization rotates smoothly from e2 in (0, a) × (εLε, b − εLε) to e1 at x2 = 0
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and x2 = b within layers of width εLε near the top and bottom edges of D such
that εδε 
 εLε 
 1. Note that while in the former the edge magnetic charges are
concentrated within layers of thickness δε (in the original, unscaled variables), in the
latter the edge magnetic charges are spread within layers of width Lε (again, before
rescaling).

It is not difficult to see that as ε → 0 we have

Eε(m
(1)) 	 aδε

2π
| ln εδε|,

Eε(m
(2)) 	 a

(
c1
Lε

+ c2hεLε

)
+ aδε

2π
| ln εLε|, (2.10)

for some c1,2 > 0 depending on the choice of the transition profile. Clearly, when the
exchange bias field hε = O(1), the first two terms give an O(1) contribution to the
energy Eε(m(2)). Therefore, in order for the energy of the edge charges E(m(1)) in a
monodomain state to be comparable with the local contributions to the energy of edge
domain walls, one needs to choose

δε = λ

| ln ε| , (2.11)

for some λ > 0 playing the role of the renormalized effective film thickness. Notice
that this scaling has recently appeared in a different context in the studies of thin
ferromagnetic films with perpendicular magnetic anisotropy (Knüpfer et al. 2019). At
the same time, according to (2.10) the leading-order contribution to the magnetostatic
energy of the edge charges for the optimal choice of the edge domain wall width
Lε = O(1) turns out to be the same as the energy of the monodomain state. Therefore,
for hε = O(1) it is not energetically advantageous to form edge domain walls. These
walls would thus form at lower values of the exchange bias field hε.

In order to balance the energies of the two configurations above for δε given by
(2.11) and hε 
 1, we need to evaluate the difference between the two at optimal wall
width Lε = O(h−1/2

ε ). Matching the wall energy O(h1/2ε ) with the energy difference
O(δε ln(Lε/δε)) then yields that one needs to choose

hε = β

(
ln | ln ε|
| ln ε|

)2

, (2.12)

for some β > 0 playing the role of the renormalized field strength. The corresponding
optimal choice of Lε is Lε = O(| ln ε|/(ln | ln ε|)). Furthermore, under (2.11) and
(2.12) one would expect that a transition from the monodomain state to states contain-
ing edge domain walls takes place at some critical value of β for fixed value of λ as
ε → 0. Below, we will show that this is indeed the case and identify the critical value
of β.
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3 Statement of Results

We now proceed to formulate the main results of this paper. Throughout the rest of
the paper, the functions mδ and ηδ are defined in (2.2) and (2.3), respectively, and
the function η satisfies the assumptions specified in Sect. 2.1. We begin with the
simplest setting, namely that of a periodic magnetization on a strip oriented normally
to the direction of the bias field as described in Sect. 2.2. Our main result here is the
identification of one-dimensional edge domain wall profiles as unique global energy
minimizers of the energy E# irrespectively of the relationship between a, b, δ and h.
Throughout the rest of this paper, we always assume that δ < b/2.

We start by defining the admissible class in which we will seek the minimizers of
E#:

A# := {m ∈ H1
loc(R × [0, b];S1) : m(x1 + a, x2) = m(x1, x2)}, (3.1)

and introduce the representation of the magnetization inA# in terms of the angle that
m makes with respect to the x2-axis:

m = (− sin θ, cos θ). (3.2)

We also define, for α ∈ (0, 1), the one-dimensional half-Laplacian acting on u ∈
C1,α([0, b]) that vanishes at the endpoints, extended by zero to the rest of R:

(
− d2

dx2

)1/2

u(x) := 1

π
−
∫ b

0

u(x) − u(y)

(x − y)2
dy + bu(x)

πx(b − x)
x ∈ (0, b). (3.3)

Finally, with a slight abuse of notation we will use ηδ(x) to define the cutoff as a
function of one variable, x = x2, and extend it by zero outside (0, b).

We have the following basic characterization of the minimizers of E# over A#.

Theorem 3.1 There exist at most three minimizers m of E# over A#. Each minimizer
is one-dimensional, i.e., m = m(x2), and symmetric with respect to the midline, i.e.,
m(x2) = m(b − x2). Furthermore, m2(x2) ≥ 0 and m1(x2) is either identically
zero or does not change sign. In addition, if θ is such that m satisfies (3.2), then
θ ∈ C∞(0, b) ∩ C2([0, b]) and satisfies

0 = d2θ

dx2
− h sin θ + δ

2
ηδ sin θ

(
− d2

dx2

)1/2

ηδ cos θ x ∈ (0, b), (3.4)

together with θ ′(0) = θ ′(b) = 0.

It is clear that m = e2 is one possibility for a minimizer in Theorem 3.1, which
corresponds to the monodomain state. Note that by (3.4) the state m = e2 is always
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a critical point of the energy E#. Furthermore, it is easy to see that m = e2 is a local
minimizer of E# if the Schrödinger-type operator

L = − d2

dx2
+ V (x), V (x) := h − δ

2
ηδ(x)

(
− d2

dx2

)1/2

ηδ(x) (3.5)

has only positive eigenvalues when x ∈ (0, b). The monodomain state competes with
a profile having θ = θ(x2) ∈ (0, 1

2π ] and another, symmetric profile obtained by
replacing θ with −θ , both corresponding to the edge domain walls.

Remark 3.1 Observe that by Theorem3.1 theminimizers of E# do not exhibit winding,
i.e., the size of the rangeof θ associatedwith theminimizer does not reachor exceed2π .
Notice that a priori winding cannot be excluded, since the nonlocal term in the energy
may favor oscillations of m. In fact, winding will be required if the minimization of
E# is carried out over an admissible class with a prescribed nonzero winding number
across the period along x1 (for a related study, see Ignat and Moser 2017).

Wenow turn to the regimedescribed inSect. 2.4, inwhich edgedomainwalls emerge
asminimizers of E#.We begin by introducing a periodic version of the rescaled energy
in (2.9):

E#
ε (m) := 1

2

∫
D

(
ε |∇m|2 + hε

ε
|m − e2|2

)
dx+

δε

8π

∫
D

∫
R×(0,b)

∇ · mεδε (x)∇ · mεδε (y)

|x − y| dy dx . (3.6)

This energy is still well defined on the admissible class A# for D = (0, a) × (0, b).
We are going to completely characterize the minimizers of E#

ε under the scaling
assumptions in (2.11) and (2.12) as ε → 0. In particular, we will show that for small
enough β the minimizers asymptotically consist of edge domain walls of width of
order εLε, where

Lε := | ln ε|
ln | ln ε| . (3.7)

To see this, let us drop the nonlocal term in (3.6) for the moment and consider a
magnetization profile m given by (3.2) with θ = θ(x2) satisfying θ(0) = θ0 ∈ (0, π

2 ].
Then, after the rescaling of x2 by εLε and formally passing to the limit ε → 0 we
obtain the following local one-dimensional energy:

E∞
1d (θ) :=

∫ ∞

0

(
1

2
|θ ′|2 + β(1 − cos θ)

)
dx . (3.8)

For θ0 fixed, this energy is explicitly minimized by

θ∞(x) = 4 arctan
(
e2

√
β(x0−x)

)
, x0 = 1

2
√

β
ln tan

(
θ0

4

)
, (3.9)
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and the corresponding minimal energy is given by

E∞
1d (θ∞) = 8

√
β sin2

(
θ0

4

)
. (3.10)

Indeed, using the Modica–Mortola trick (Modica 1987) we find that

E∞
1d (θ) ≥ −2

√
β

∫ ∞

0
sin

(
θ

2

)
θ ′ dx

+ 1

2

∫ ∞

0

[
θ ′ + 2

√
β sin

(
θ

2

)]2
dx ≥ E∞

1d (θ∞), (3.11)

and equality holds if and only if θ = θ∞.
We now define the function

F0(n) := 4
√

β

(
1 −

√
1 + n

2

)
+ λ

4π
(2n2 − 1) n ∈ [0, 1], (3.12)

and observe that F0(cos θ0) = E∞
1d (θ∞) when λ = 0. In the following, we will show

that, up to an additive constant, the minimum of E#
ε may be bounded below as ε → 0

by amultiple of F0(nε), where nε is the trace of the second component of theminimizer
on the edge. Moreover, this lower bound turns out to be sharp in the limit, allowing to
characterize the global energy minimizers of E#

ε in terms of those of F0. The latter can
in principle be computed as roots of a cubic polynomial, resulting in a cumbersome
explicit formula. Taking advantage of the fact that F0(n) is a strictly convex function
of n, however, one can conclude that F0 admits a unique minimizer for every λ > 0
and β > 0. We have the following result regarding the minimizers of F0, whose proof
is a simple calculus exercise.

Lemma 3.1 Let F0(n) be defined by (3.12), and let n0 = n0(β, λ) be a minimizer of
F0 on [0, 1]. Then, n0 is unique, and if

βc := λ2

π2 , (3.13)

we have n0 = 1 and F0(n0) = λ
4π for all β ≥ βc, while 0 < n0 < 1 and F0(n0) < λ

4π
for all β < βc.

We also remark that the bifurcation at β = βc can be seen to be transcritical, and that
n0(β, λ) is monotone increasing in β and goes to zero as β → 0 with λ > 0 fixed.
The latter is consistent with the fact that the magnetization wants to align tangentially
to the film edge when the energy at the edge is dominated by the stray field (see also
Hornreich 1963, 1964;Wade 1964; Nonaka et al. 1985; Hirono et al. 1986; DeSimone
et al. 2000; Kohn and Slastikov 2005a; Lund et al. 2018).

Our next result gives an asymptotic relation between the energy of the minimizers
of E#

ε and that of the minimizers of F0.
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Theorem 3.2 Let λ > 0 and β > 0. Assume δε and hε are given by (2.11) and (2.12).
Then, as ε → 0 we have

| ln ε|
ln | ln ε|

(
min
m∈A#

E#
ε (m) − aλ

2π

)
→ 2a min

n∈[0,1] F0(n). (3.14)

We note that since minm∈A# E#
ε is bounded in the limit as ε → 0 and since the

energy in (3.6) consists of the sum of three positive terms, we also get that mε → e2
in L2(D;R2) for any minimizer mε of E#

ε (or even for any configuration with finite
energy). However, much more can be said about the minimizers of E#

ε in the limit
ε → 0,which is the content of our next theorem.Letmε = (mε,1,mε,2)be aminimizer,
which by Theorem 3.1 is one-dimensional, and define

θε(x) := − arcsinmε,1(0, εLεx) x ∈ (0, ε−1L−1
ε b), (3.15)

where Lε is defined in (3.7). Then, we have the following result.

Theorem 3.3 Let λ > 0 and β > 0. Assume δε and hε are given by (2.11) and (2.12),
let mε be a minimizer of E# over A#, and let θε be defined in (3.15). Then, as ε → 0
we have

|θε| → θ∞ in H1
loc(R

+), (3.16)

where θ∞ is given by (3.9)with θ0 = arccos n0 and n0 is as in Lemma 3.1. In particular,
m2,ε(·, 0) → n0. Moreover, convergence in (3.16) is uniform on [0, 1

2ε
−1L−1

ε b].
We remark that in view of the reflection symmetry of the minimizers guaranteed by

Theorem 3.1, the same conclusions hold in the vicinity of the top edge as well.We also
note that by Theorem 3.3 and Lemma 3.1, there is a bifurcation from the monodomain
state to a state containing edge domain walls as the energy minimizers at β = βc in
the limit as ε → 0, with θ∞ = 0 for all β ≥ βc and θ∞ 
= 0 for all β < βc.

We now go to the original problem on the rectangular domain described by the
energy in (2.9). In our final theorem,we establish that both the energy of theminimizers
and their average trace on the top and the bottom edges of the rectangle approach the
same values as in the case of the minimizers in the periodic setting as ε → 0.

Theorem 3.4 Let λ > 0 and β > 0. Assume δε and hε are given by (2.11) and (2.12),
and let mε be a minimizer of Eε from (2.9) over H1(D;S1). Then, as ε → 0 we have

| ln ε|
ln | ln ε|

(
Eε(mε) − aλ

2π

)
→ 2aF0(n0), (3.17)

where n0 ∈ [0, 1] is the unique minimizer of F0 in (3.12). Furthermore, mε(x) → e2
for a.e. x ∈ D, and we have

1

a

∫ a

0
m2,ε(t, 0) dt → n0 and

1

a

∫ a

0
m2,ε(t, b) dt → n0. (3.18)
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The statement of the above theorem implies that when D is a rectangle aligned with
the direction of the preferred magnetization, the minimal energy behaves asymptoti-
cally as twice the horizontal edge length times the energy of the one-dimensional edge
domain wall, while the average trace of the minimizer at the top and bottom edges
agrees with that in the one-dimensional edge domain wall. At the same time, the mag-
netization in the bulk tends to its preferred value m = e2. This is consistent with
the expectation that a one-dimensional boundary layer should form near the charged
edges.

4 Proof of Theorem 3.1

First of all, existence of a minimizer m ∈ A# follows from the direct method of
calculus of variations, using standard arguments. To prove that the minimizer is one-
dimensional, for any admissible m we define a competitor m = (m1,m2), where

m2(x1, x2) := 1

a

∫ a

0
m2(t, x2) dt, m1(x1, x2) :=

√
1 − m2

2(x1, x2). (4.1)

We are now going to establish several useful results concerning m, using some ideas
related to those in Sandier and Shafrir (1993).

Lemma 4.1 Let m ∈ A#, and let m be defined by (4.1). Then, m ∈ A#,

∫
D

|∇m|2 dx ≤
∫
D

|∇m|2 dx, (4.2)

and equality in the above expression holds if and only if m is independent of x1.

Proof Since m(x) = (m1(x),m2(x)) ∈ S
1 for a.e. x ∈ D, we have

m2
1(x) + m2

2(x) = 1 for a.e. x ∈ D. (4.3)

Therefore, applying weak chain rule (Lieb and Loss 2010, Theorem 6.16) to the above
expression yields

m1∇m1 = −m2∇m2 a.e. in D. (4.4)

Combining (4.3) and (4.4), and using the fact that ∇m1(x) = 0 for a.e. x ∈ A ⊆ D
whenever m1 = 0 on A and |A| > 0 (Lieb and Loss 2010, Theorem 6.19), we have

|∇m(x)| =
⎧⎨
⎩

|∇m2(x)|√
1−m2

2

, |m2(x)| < 1,

0, |m2(x)| = 1,
for a.e. x ∈ D. (4.5)
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Note that this implies ∇m2 = 0 on the set A as well. Then, by monotone convergence
theorem we can write

∫
D

|∇m|2 dx = lim
ε→0

∫
D

|∇m2|2
1 + ε − m2

2

dx . (4.6)

Now for ε > 0, consider the function:

Fε(u, v) := v2

1 + ε − u2
(u, v) ∈ [−1, 1] × R. (4.7)

By direct computation, this function is convex for all ε > 0. Therefore,

∫
D

|∇m2|2
1 + ε − m2

2

dx =
∫
D

|∂1m2|2
1 + ε − m2

2

dx +
∫
D
Fε(m2, ∂2m2) dx

≥
∫
D
Fε(m2, ∂2m2) dx +

∫
D

∂u Fε(m2, ∂2m2)(m2 − m2) dx

+
∫
D

∂vFε(m2, ∂2m2)(∂2m2 − ∂2m2) dx . (4.8)

At the same time, by Fubini’s theorem and the definition of m2 we have

∫
D

∂u Fε(m2, ∂2m2)(m2 − m2) dx

=
∫ b

0

(
∂u Fε(m2, ∂2m2)

∫ a

0
(m2 − m2) dx1

)
dx2 = 0, (4.9)

and
∫
D

∂vFε(m2, ∂2m2)(∂2m2 − ∂2m2) dx

=
∫ b

0

(
∂vFε(m2, ∂2m2)

∫ a

0
(∂2m2 − ∂2m2) dx1

)
dx2

=
∫ b

0

(
∂vFε(m2, ∂2m2) ∂2

∫ a

0
(m2 − m2) dx1

)
dx2 = 0. (4.10)

This yields

∫
D

|∇m2|2
1 + ε − m2

2

dx ≥
∫
D

|∇m2|2
1 + ε − m2

2

dx . (4.11)

We now argue by approximation and take mδ ∈ C∞(R × [0, b];S1) such that
mδ → m in H1

loc(R× [0, b];R2) as δ → 0 (Bethuel and Zheng 1988; Bourgain et al.
2000). Then, we have mδ

2 ∈ C∞(R × [0, b]) as well. Turning to mδ
1 defined in (4.1),
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observe thatmδ
1 ∈ C(R×[0, b]). Furthermore, sincem1 is a composition of a smooth

nonnegative function with the square root, we also have that mδ
1 ∈ W 1,∞(R× (0, b)).

Thus, mδ ∈ H1
loc(R × [0, b]), and by the arguments at the beginning of the proof, we

have

∫
D

|∇mδ|2 dx = lim
ε→0

∫
D

|∇mδ
2|2

1 + ε − |mδ
2|2

dx . (4.12)

Combining this equality with (4.6) and (4.11), we arrive at (4.2) for mδ and mδ .
Passing to the limit δ → 0, by lower semicontinuity of

∫
D |∇mδ|2 dx we obtain that

m1 ∈ H1
loc(R× [0, b]) and (4.2) holds. Furthermore, by construction |m| = 1, and m

is independent of x1, hence, m ∈ A#. Finally, if equality holds in (4.2) then we have∫
D |∂1m2|2 dx = 0, yielding the rest of the claim. ��
With a slight abuse of notation, from nowwewill frequently refer tom as a function

of one variable, i.e., m = m(x2), and extend it by zero for all x2 /∈ (0, b). Similarly,
we treat ηδ in (2.3) as a function of one variable, i.e., ηδ = ηδ(x2), and extended it by
zero for all x2 /∈ (0, b) as well.

Lemma 4.2 Let m ∈ A#. Then,

∫
D

∫
R×(0,b)

∇ · mδ(x)∇ · mδ(y)

|x − y| dx dy

≥ a
∫
R

∫
R

(m2(x)ηδ(x) − m2(y)ηδ(y))2

(x − y)2
dx dy, (4.13)

where mδ is defined in (2.2) and m is given by (4.1). Moreover, equality holds if and
only if m2(x) = m2(x) for a.e. x ∈ D.

Proof The proof proceeds via passing to Fourier space. For n ∈ Z and ξ ∈ R, we
define Fourier coefficients c(n, ξ) ∈ R

2 as

c(n, ξ) :=
∫
D
e−iq(n,ξ)·xmδ(x) dx, (4.14)

where q(n, ξ) := (2πa−1n, ξ) ∈ R
2. Then, the inversion formula reads (see, e.g.,

Milisic and Razafison 2013, Sect. 4):

mδ(x) = 1

2πa

∑
n∈Z

∫
R

eiq(n,ξ)·xc(n, ξ) dξ. (4.15)

In terms of c(n, ξ), the left-hand side of (4.13) may be written as

∫
D

∫
R×(0,b)

∇ · mδ(x)∇ · mδ(y)

|x − y| dx dy
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= 1

a

∑
n∈Z

∫
R

|q(n, ξ) · c(n, ξ)|2
|q(n, ξ)| dξ. (4.16)

Keeping only the n = 0 contribution in the right-hand side, we, therefore, have

∫
D

∫
R×(0,b)

∇ · mδ(x)∇ · mδ(y)

|x − y| dx dy

≥ 1

a

∫
R

|ξ | |c2(0, ξ)|2 dξ. (4.17)

Passing back to real space, with the help of the integral formula for the H̊1/2(R) norm
(Di Nezza et al. 2012) we obtain (4.13). Finally, by (4.15) and (4.16) the inequality in
(4.13) is strict, unless m2 = m2 almost everywhere. ��

Having obtained the above auxiliary results for m, we now proceed to the proof of
our first theorem.

Proof of Theorem 3.1 Let m ∈ A# be a minimizer of E#. By Lemmas 4.1 and 4.2, we
have E#(m) ≥ E#(m), where m is defined in (4.1). In particular, this inequality is in
fact an equality, and by Lemma 4.1, we have m = m(x2). Moreover, by Lemma 4.2
we have E#(m) = aE#

1d(m), where

E#
1d(m) := 1

2

∫ b

0

(
|m′|2 + h|m − e2|2

)
dx

+ δ

8π

∫
R

∫
R

(m2(x)ηδ(x) − m2(y)ηδ(y))2

(x − y)2
dx dy, (4.18)

with the usual abuse of notation that m and ηδ are treated as functions of one variable
in the right-hand side of (4.18), and m2ηδ has been extended by zero outside (0, b).

Wenowclaim thatm2(x2) ≥ 0 for all x2 ∈ (0, b). Indeed, taking m̃ := (m1, |m2|) ∈
A# as a competitor, we have |∇m̃| = |∇m| and

∫
R

∫
R

(m2(x)ηδ(x) − m2(y)ηδ(y))2

(x − y)2
dx dy

≥
∫
R

∫
R

(m̃2(x)ηδ(x) − m̃2(y)ηδ(y))2

(x − y)2
dx dy, (4.19)

where the last inequality follows from the fact that the integrand in the right-hand side
of (4.19) is pointwise no greater than that in its left-hand side. On the other hand,
since |m − e2|2 = 2 − 2m2, we have E#

1d(m) > E#
1d(m̃), unless m̃(x2) = m(x2) for

all x2 ∈ (0, b).
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Now that we established that m2 ≥ 0, we may define θ(x2) := − arcsinm1(x2) ∈
[−π

2 , π
2 ], so that m satisfies (3.2). Then, we can rewrite the energy of the minimizer

as

E#
1d(m) =

∫ b

0

(
1

2
|θ ′|2 + h(1 − cos θ)

)
dx

+ δ

8π

∫
R

∫
R

(cos θ(x)ηδ(x) − cos θ(y)ηδ(y))2

(x − y)2
dx dy, (4.20)

where in the exchange energywe approximated θ by functions bounded away from±π
2

and passed to the limit with the help of monotone convergence theorem. In particular,
from boundedness of the right-hand side of (4.20) it follows that θ ∈ H1(0, b).
Therefore, θ satisfies the weak form of (3.4) (for further details, see Capella et al.
2007; Chermisi and Muratov 2013). At the same time, since ηδ cos θ ∈ H1(R) by
weak product and chain rules (Brezis 2011, Corollaries 8.10 and 8.11), and the operator
(−d2/dx2)1/2 is a bounded linear operator from H1(R) to L2(R), we also have θ ′′ ∈
L2(0, b), and, hence, θ ∈ C1,1/2([0, b]). In particular, we can use the formula in (3.3)
to compute the nonlocal term in (3.4).

We now apply a bootstrap argument to establish further interior regularity of θ .
Note that this result is not immediate, since the function ηδ extended by zero to the
whole real line is only Lipschitz continuous. Nevertheless, for every x ∈ I where
I � (0, b) is open we can introduce a partition of unity whereby we have

(
− d2

dx2

)1/2

ηδ(x) cos θ(x) = 1

π
−
∫
R

ηδ(x) cos θ(x) − ηδ(y) cos θ(y)χ(y)

(x − y)2
dy

− 1

π

∫
R

ηδ(y) cos θ(y)(1 − χ(y))

(x − y)2
dy, (4.21)

where χ ∈ C∞
c (R) is such that χ ≡ 1 in I and supp(χ) ⊂ (0, b). Taking the

distributional derivative of the right-hand side in (4.21) and using the fact that now
ηδχ cos θ ∈ H2(R), we get that the left-hand side of (4.21) is in H1(I ). Applying
the bootstrap argument locally, we thus obtain that θ ∈ H3

loc(0, b) and, hence, θ ∈
C∞(0, b), and (3.4) holds classically for all x ∈ (0, b). Once the latter is established,
we obtain the boundary condition θ ′(0) = θ ′(b) = 0 via integration by parts.

To establish higher regularity of θ near the boundary, we estimate the nonlocal
term, using the fact that ηδ ∈ C∞([0, b]) and θ ′ ∈ C1/2([0, b]). For x ∈ (0, b), let
u(x) := ηδ(x) cos θ(x). Notice that

|u(x)| ≤ Cx(b − x), (4.22)

for some C > 0. Focusing on the first term in the right-hand side of (3.3), with the
help of Taylor formula we can write for x ∈ (0, 1

2b):

∣∣∣∣−
∫ b

0

u(x) − u(y)

(x − y)2
dy

∣∣∣∣ ≤
∣∣∣∣−
∫ 2x

0

u(x) − u(y)

(x − y)2
dy

∣∣∣∣ +
∣∣∣∣
∫ b

2x

u(x) − u(y)

(x − y)2
dy

∣∣∣∣
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≤
∫ 2x

0

|u′(ξ1) − u′(x)|
|x − y| dy +

∫ b

2x

|u′(ξ2)|
|x − y| dy

≤ Cx1/2 + C ln(2b/x), (4.23)

for someC > 0, where |ξ1− x | < |x− y| and ξ2 ∈ (x, y). Combining this with (4.22)
yields

∣∣∣∣∣ηδ(x)

(
− d2

dx2

)1/2

ηδ(x) cos θ(x)

∣∣∣∣∣ ≤ Cx(1 + x1/2 + ln x−1), (4.24)

for some C > 0 and all x sufficiently small. Thus, the expression in the left-hand side
of (4.24) is continuous and vanishes at x = 0. By the same argument, the same holds
true near x = b. Using this fact, from (3.4) we conclude that θ ∈ C2([0, b]).

We now prove that there are at most three minimizers of E# in A#. Let m be
a minimizer associated with θ ∈ H1(0, b). Then, by (4.20) the function m̃ ∈ A#

associated with θ̃ = |θ | is also a minimizer. In particular, θ̃ ∈ C2([0, b]) and solves
(3.4) classically. Now, suppose that there exists a point x0 ∈ [0, b] such that θ̃ (x0) = 0.
By regularity of θ̃ in the interior or homogeneous Neumann boundary conditions, we
then also have θ̃ ′(x0) = 0. We now apply a maximum principle- type argument that
goes back to Capella et al. (2007), based on the uniqueness of the solution of the
initial value problem for (3.4) considered as an ordinary differential equation with the
nonlocal term treated as a given function of x ∈ [0, b]:

θ ′′(x) = c(x) sin θ(x), c(x) := h − δ

2
ηδ(x)

(
− d2

dx2

)1/2

ηδ(x) cos θ(x). (4.25)

Indeed, by the argument in the preceding paragraph the function c(x) is continuous
on [0, b]. Therefore, if θ̃ (x) vanishes for some x0 ∈ [0, b], we have θ̃ ≡ 0 on [0, b].
Alternatively, θ̃ > 0 for all x ∈ [0, b], which means that θ does not change sign.

To conclude the proof of the multiplicity of the minimizers, observe that in view
of the above we need to show that there is at most one minimizer θ ∈ (0, π

2 ] of the
right-hand side of (4.20). In this case, we can rewrite the energy in terms of m2 < 1:

E#
1d(m) = 1

2

∫ b

0

(
|m′

2|2
1 − m2

2

+ 2h(1 − m2)

)
dx

+ δ

8π

∫
R

∫
R

(m2(x)ηδ(x) − m2(y)ηδ(y))2

(x − y)2
dx dy. (4.26)

By inspection, this energy is convex. Furthermore, the last term in (4.26) is strictly
convex in view of the fact that m2ηδ vanishes identically outside (0, b). Thus, there
is at most one minimizer with m1 > 0. If such a minimizer exists, then by reflection
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symmetry the function m̃ := (−m1,m2) is also a minimizer, which is the only mini-
mizer with m̃1 < 0. Finally, the symmetry of the minimizer with respect to reflections
x2 → b − x2 follows from the invariance of the energy in (4.26) with respect to such
reflections. ��

5 Proof of Theorems 3.2 and 3.3

In view of the result in Theorem 3.1, it suffices to consider the minimizers of a suitably
rescaled version of the one-dimensional energy in (4.26) when m2 < 1:

E#
ε,1d(m) := 1

2

∫ b

0

(
ε|m′

2|2
1 − m2

2

+ 2hε

ε
(1 − m2)

)
dx

+ δε

8π

∫
R

∫
R

(m2(x)ηεδε (x) − m2(y)ηεδε (y))
2

(x − y)2
dx dy. (5.1)

Let us also define a rescaled version of this energy, up to an additive constant:

Fε,1d(m) := 1

2

∫ ε−1L−1
ε b

0

(
|m′

2|2
1 − m2

2

+ 2β(1 − m2)

)
dx − λ| ln ε|

2π ln | ln ε|

+ λ

8π ln | ln ε|
∫
R

∫
R

(m2(x )̃ηδε/Lε (x) − m2(y)̃ηδε/Lε (y))
2

(x − y)2
dx dy,

(5.2)

where η̃δε/Lε (x) := η(Lε min(x, ε−1L−1
ε b− x)/δε). Using these definitions, we have

E#
ε,1d(m) = λ

2π
+ ln | ln ε|

| ln ε| Fε,1d(m(·/(εLε)). (5.3)

With these notations, proving Theorem 3.2 is equivalent to showing that
min Fε,1d(m(·/(εLε)) converges to 2F0(n0) as ε → 0, where the minimization is
done over

A1d
ε := H1((0, ε−1L−1

ε b);S1). (5.4)

Below, we show that this is indeed the case by establishing the matching upper and
lower bounds for min Fε,1d .

To proceed, we separate the energy Fε,1d into the local and the nonlocal parts:

Fε,1d(m) = FMM
ε,1d (m) + FS

ε,1d(m), (5.5)

where

FMM
ε,1d (m) := 1

2

∫ ε−1L−1
ε b

0

(
|m′

2|2
1 − m2

2

+ 2β(1 − m2)

)
dx (5.6)
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is the Modica–Mortola-type energy and

FS
ε,1d(m) := λ

8π ln | ln ε|
∫
R

∫
R

(
m2(x )̃ηδε/Lε (x) − m2(y)̃ηδε/Lε (y)

)2
(x − y)2

dx dy

− λ| ln ε|
2π ln | ln ε| (5.7)

is the stray field energy, up to an additive constant. Note that using the standard
Modica–Mortola trick (Modica 1987), one obtains a lower bound for FMM

ε,1d .

Lemma 5.1 Let m = (m1,m2) ∈ A1d
ε with 0 ≤ m2 < 1. Then, for every R ∈

(0, ε−1L−1
ε b/2] and every r ∈ [0, R] we have

FMM
ε,1d (m) ≥ 4

√
β

(
1 −

√
1 + m2(r)

2

)

+ 4
√

β

⎛
⎝1 −

√
1 + m2

(
ε−1L−1

ε b − r
)

2

⎞
⎠

− 8
√

β

(
1 −

√
1 + m2(R)

2

)
. (5.8)

In order to obtain the upper and lower bounds on the stray field energy, we prove the
following lemma that offers two characterizations of the one-dimensional fractional
homogeneous Sobolev norm. Here, by H̊1(R2) we understand the space of functions
in L2

loc(R
2) whose distributional gradient is in L2(R2;R2).

Lemma 5.2 Let u ∈ H1(R) and have compact support. Then,

(i)

1

4π

∫
R

∫
R

(u(x) − u(y))2

(x − y)2
dx dy

= 1

2π

∫
R

∫
R

ln |x − y|−1u′(x)u′(y) dx dy. (5.9)

(ii)

1

4π

∫
R

∫
R

(u(x) − u(y))2

(x − y)2
dx dy

= − min
v∈H̊1(R2)

(∫
R

∫
R

|∇v(x, z)|2 dx dz + 2
∫
R

v(x, 0)u′(x) dx
)

. (5.10)

Proof For the proof of (5.9), we refer to the Appendix in Lund et al. (2018). To obtain
(5.10), we first note that the minimum in the right-hand side of (5.10) is attained.
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Indeed, considering the elements of the homogeneous Sobolev space H̊1(R2) as equiv-
alence classes of functions modulo additive constants makes this space into a Banach
space (Ortner and Süli 2012), and by coercivity and strict convexity of the expression
in the brackets, we hence get existence of a unique minimizer (up to an additive con-
stant). Note that the integrals in the right-hand side of (5.10) are unchanged when an
arbitrary constant is added to v, and that v(·, 0) ∈ L2

loc(R) is well defined as the trace
of a Sobolev function.

The minimizer v0 ∈ H̊1(R2) of the expression in the right-hand side of (5.10)
solves the following Poisson-type equation:

�v0 = u′(x)δ(z) in D′(R2), (5.11)

where δ(·) is the one-dimensional Dirac delta function. Therefore, v0 is easily seen to
be (again, up to an additive constant)

v0(x, z) = 1

2π

∫
R

u′(y) ln
√

(x − y)2 + z2 dy. (5.12)

In particular, since u′ has compact support and, therefore, integrates to zero over R,
we have an estimate for the function v0 in (5.12):

|v0(x, z)| ≤ C√
x2 + z2

|∇v0(x, z)| ≤ C

x2 + z2
, (5.13)

for some C > 0 and all x2 + z2 large enough. Furthermore, it is not difficult to see
that v0 ∈ C1/2(R2):

|v(x1, z1) − v(x2, z2)|2 ≤ 1

16π2

∫
R

|u′(y)|2 dy
∫
R

ln2
{

(y − x1)2 + z21
(y − x2)2 + z22

}
dy,

(5.14)

where we used Cauchy–Schwarz inequality, and the last integral may be dominated
by C(|x1 − x2| + |z1 − z2|) for some universal C > 0.

We nowmultiply both parts of (5.11) by v0 and integrate overR2. After integrating
by parts and taking into account (5.13), we obtain

∫
R

∫
R

|∇v0(x, z)|2 dx dz = −
∫
R

v0(x, 0)u
′(x) dx . (5.15)

From this, we get

min
v∈H̊1(R2)

(∫
R

∫
R

|∇v(x, z)|2 dx dz + 2
∫
R

v(x, 0)u′(x) dx
)

=
∫
R

v0(x, 0)u
′(x) dx .

(5.16)

Finally, combining (5.9), (5.12) and (5.16), we obtain (5.10). ��
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Using the definition of FS
ε,1d(m) and Lemma 5.2, we arrive at the following lower

bound for the stray field energy.

Lemma 5.3 Let m ∈ A1d
ε . Then,

F S
ε,1d(m) ≥ − λ| ln ε|

2π ln | ln ε| − λ

2 ln | ln ε|
∫
R

∫
R

|∇v(x, z)|2 dx dz

− λ

ln | ln ε|
∫ ε−1L−1

ε b

0
v(x, 0)

(
m2(x )̃ηδε/Lε (x)

)′ dx, (5.17)

for every v ∈ H̊1(R2), where v(·, 0) is understood in the sense of trace.

We will also find useful the following basic upper bound for the minimum energy.

Lemma 5.4 There exists C > 0 such that

min
m∈A1d

ε

Fε,1d(m) ≤ C, (5.18)

for all ε sufficiently small. Furthermore, if Fε,1d is minimized by m = e2, then the
reverse inequality also holds.

Proof The proof is obtained by testing the energy with m = e2. Then, FMM
ε,1d (m) = 0,

and by Lemma 5.2, we have

4πλ−1 ln | ln ε|FS
ε,1d(m) + 2| ln ε|

=
∫ b

εLε

0

∫ b
εLε

0
ln |x − y|−1η̃′

δε/Lε
(x )̃η′

δε/Lε
(y) dx dy

= 2
∫ b

εδε

0

∫ b
εδε

0
ln |x − y|−1η′(x)η′(y) dx dy

− 2
∫ b

εδε

0

∫ b
εδε

0
ln |x − y|−1η′(x)η′(ε−1δ−1

ε b − y) dx dy

≤ C + 2 ln(ε−1δ−1
ε b) ≤ 2| ln ε| + 2 ln | ln ε| + C ′, (5.19)

for some C,C ′ > 0 and all ε 
 1, where we took into account (2.11). This inequality
is equivalent to (5.18). Finally, if m = e2 is the minimizer, the matching asymptotic
lower bound then follows. ��
Proof of Theorem 3.2 Let mε be a minimizer of Fε,1d over A1d

ε . Note that in view of
Lemma 5.4 and Theorem 3.1 we may assume that m2,ε < 1. With the help of the
rescalings introduced earlier, proving Theorem 3.2 amounts to establishing that

2F0(n0) ≤ lim inf
ε→0

Fε,1d(mε) ≤ lim sup
ε→0

Fε,1d(mε) ≤ 2F0(n0), (5.20)

where n0 ∈ [0, 1] is the minimizer of F0 from Lemma 3.1. The proof proceeds in four
steps.
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Step 1 Construction of a test potentialWe first establish the liminf inequality in (5.20).
Focusing on the stray field energy, we use Lemma 5.3 with the test function v ∈
H̊1(R2) constructed as follows. For nε := mε,2(δε/Lε), define

v1(ρ) :=

⎧⎪⎪⎨
⎪⎪⎩

− nε

2π ln
(

b
2εδε

)
, 0 ≤ ρ ≤ δε/Lε,

− nε

2π ln
(

b
2εLερ

)
, δε/Lε ≤ ρ ≤ b/(2εLε),

0, ρ ≥ b/(2εLε),

(5.21)

and

v2(ρ) :=

⎧⎪⎪⎨
⎪⎪⎩

nε−1
2π ln

(
b

2εLε

)
, 0 ≤ ρ ≤ 1,

nε−1
2π ln

(
b

2εLερ

)
, 1 ≤ ρ ≤ b/(2εLε),

0, ρ ≥ b/(2εLε),

(5.22)

We then define, for all (x, z) ∈ R
2, the test potential

v(x, z) := v1

(√
x2 + z2

)
+ v2

(√
x2 + z2

)

−v1

(√
(ε−1L−1

ε b − x)2 + z2
)

− v2

(√
(ε−1L−1

ε b − x)2 + z2
)

. (5.23)

Clearly, v is admissible. Furthermore, in view of the symmetry of mε guaranteed by
Theorem 3.1 we have∫ ε−1L−1

ε b

0
v(x, 0)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx

= 2
∫ ε−1L−1

ε b/2

0
v(x, 0)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx . (5.24)

Similarly, we have
∫
R

∫
R

|∇v(x, z)|2 dx dz = 2
∫
R

∫ ε−1L−1
ε b/2

−∞
|∇v(x, z)|2 dx dz

= 4π
∫ ε−1L−1

ε b/2

0
|∇v1(ρ) + ∇v2(ρ)|2ρ dρ. (5.25)

Carrying out the integration in polar coordinates yields

∫
R

∫
R

|∇v(x, z)|2 dx dz = 4π
∫ 1

δε/Lε

|∇v1(ρ)|2ρ dρ

+ 4π
∫ ε−1L−1

ε b/2

1
|∇v1(ρ) + ∇v2(ρ)|2ρ dρ

= n2ε
π

ln

(
Lε

δε

)
+ 1

π
ln

(
b

2εLε

)
. (5.26)
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Step 2 Computation of the potential energy We now write, using the definition of the
potential v in (5.23):

∫ ε−1L−1
ε b/2

0
v(x, 0)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx

=
∫ ε−1L−1

ε b/2

0
v1(x)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx

+
∫ ε−1L−1

ε b/2

0
v2(x)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx . (5.27)

With the help of the definition of v1 in (5.21), we have for the first term in the right-hand
side of (5.27):

∫ ε−1L−1
ε b/2

0
v1(x)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx

= v1(0)nε +
∫ ε−1L−1

ε b/2

δε/Lε

v1(x)m
′
ε,2(x) dx

= v1(0)nε +
∫ 1

δε/Lε

v1(x)m
′
ε,2(x) dx +

∫ ε−1L−1
ε b/2

1
v1(x)m

′
ε,2(x) dx

= (v1(0) − v1(1))nε + v1(1)mε,2(1) +
∫ 1

δε/Lε

(v1(x) − v1(1))m
′
ε,2(x) dx

+
∫ ε−1L−1

ε b/2

1
v1(x)m

′
ε,2(x) dx

= (v1(0) − v1(1))nε + v1(1) +
∫ 1

δε/Lε

(v1(x) − v1(1))m
′
ε,2(x) dx

+
∫ ε−1L−1

ε b/2

1
v′
1(x)(1 − mε,2(x)) dx, (5.28)

where in the last line, we used integration by parts. Similarly, with the help of the
definition of v2 in (5.22) we have for the second term in the right-hand side of (5.27):

∫ ε−1L−1
ε b/2

0
v2(x)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx

= v2(1)mε,2(1) +
∫ ε−1L−1

ε b/2

1
v2(x)m

′
ε,2(x) dx

= v2(1) +
∫ ε−1L−1

ε b/2

1
v′
2(x)(1 − mε,2(x)) dx, (5.29)
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again, using integration by parts. Combining the two formulas above yields

∫ ε−1L−1
ε b/2

0
v(x, 0)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx
= v1(1) + v2(1) + (v1(0) − v1(1))nε

+
∫ 1

δε/Lε

(v1(x) − v1(1))m
′
ε,2(x) dx

+
∫ ε−1L−1

ε b/2

1
(v′

1(x) + v′
2(x))(1 − mε,2(x)) dx . (5.30)

Finally, recalling the precise definitions of v1 and v2, we obtain

∫ ε−1L−1
ε b/2

0
v(x, 0)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx

= − 1

2π
ln

(
b

2εLε

)
− n2ε

2π
ln

(
Lε

δε

)

+ nε

2π

∫ 1

δε/Lε

m′
ε,2(x) ln x dx

+ 1

2π

∫ ε−1L−1
ε b/2

1

1 − mε,2(x)

x
dx . (5.31)

Step 3 Lower bound We now estimate the left-hand side of (5.31), using Young’s
inequality:

∫ ε−1L−1
ε b/2

0
v(x, 0)

(
mε,2(x )̃ηδε/Lε (x)

)′ dx

≤ − 1

2π
ln

(
b

2εLε

)
− n2ε

2π
ln

(
Lε

δε

)

+ 1

4π

∫ 1

δε/Lε

(
ln2 x + |m′

2,ε(x)|2
)
dx

+ 1

2π

∫ ε−1L−1
ε b/2

1
(1 − mε,2(x)) dx

≤ − 1

2π
ln

(
b

2εLε

)
− n2ε

2π
ln

(
Lε

δε

)

+ C
(
1 + FMM

ε,1d (mε)
)

, (5.32)

for some C > 0 independent of ε 
 1. Thus, according to Lemma 5.3 and (5.26), we
have

FS
ε,1d(mε) ≥ − λ| ln ε|

2π ln | ln ε| + λ

2π ln | ln ε|
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× ln

(
b

2εLε

)
+ λn2ε

2π ln | ln ε| ln
(
Lε

δε

)

− C

ln | ln ε|
(
1 + FMM

ε,1d (mε)
)

, (5.33)

again, for someC > 0 independent of ε 
 1. Recalling (2.11) and (3.7), this translates
into

FS
ε,1d(mε) ≥ − λ

2π
+ λn2ε

π
− C

ln | ln ε|
(
1 + FMM

ε,1d (mε)
)

. (5.34)

Therefore, for any α ∈ (0, 1
2 ) and all ε small enough we can write

Fε,1d(mε) = FMM
ε,1d (mε) + FS

ε,1d(mε)

≥ (1 − α)

[
FMM

ε,1d (mε) + λ

2π
(2n2ε − 1)

]
− Cα, (5.35)

for some C > 0 independent of ε and α.
Now, applying Lemma 5.1 we arrive at

Fε,1d(mε) ≥ 2(1 − α)F0(nε) − 8
√

β

(
1 −

√
1 + m2,ε(R)

2

)
− Cα, (5.36)

for any R ∈ (0, ε−1L−1
ε b/2] and C > 0 independent of ε 
 1, α and R. At the same

time, using Lemma 5.4 and (5.36) we obtain

β

∫ ε−1L−1
ε b

0
(1 − m2,ε) dx ≤ FMM

ε,1d (mε) ≤ C, (5.37)

for someC > 0 and all ε 
 1. Therefore, there exists Rε ∈ [ε−1L−1
ε b/4, ε−1L−1

ε b/2]
such that choosing R = Rε we have mε,2(R) ≥ 1− 4CεLε/(βb), so that the next-to-
last term in (5.36) can be absorbed into the last term. Thus, we have

Fε,1d(mε) ≥ 2(1 − α) min
n∈[0,1] F0(n) − Cα, (5.38)

for some C > 0 independent of α and ε, for all ε small enough, and the liminf
inequality follows by sending α → 0.

Step 4 Upper bound Finally, we derive an asymptotically matching upper bound for
the energy. We use the truncated optimal Modica–Mortola profile at the edges as a test
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configuration. More precisely, for K > 1 and ε sufficiently small, we define m ∈ A1d
ε

satisfying (3.2) with θ(x) = θ̄ (min(x, b/(εLε) − x)), where

θ̄ (x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ0, 0 ≤ x ≤ δε
Lε

,

4 arctan

(
e
−2

√
β
(
x− δε

Lε

)
tan θ0

4

)
,

δε
Lε

≤ x ≤ K + δε
Lε

,

4 arctan
(
e−2K

√
β tan θ0

4

) [
1 − η

(
x
K − 1 − δε

K Lε

)]
, K + δε

Lε
≤ x ≤ 2K + δε

Lε
,

0, 2K + δε
Lε

≤ x ≤ b
2εLε

,

(5.39)

and θ0 = arccos n0, where n0 is the unique minimizer of F0(n) in Lemma 3.1. By the
argument leading to the case of equality in (3.11), we obtain

FMM
ε,1d (m) = 8

√
β

(
1 −

√
1 + n0

2

)
− 8

√
β

⎛
⎜⎜⎝1 −

√√√√1 + cos
(
θ̄
(
K + δε

Lε

))

2

⎞
⎟⎟⎠

+ 2β(1 − n0)
δε

Lε

+
∫ K+ δε

Lε

δε
Lε

(
|θ̄ ′|2 + 2β(1 − cos θ̄ )

)
dx . (5.40)

Thus, we have

FMM
ε,1d (m) ≤ 8

√
β

(
1 −

√
1 + n0

2

)
+ C ln | ln ε|

| ln ε|2 + CKe−4K
√

β, (5.41)

for some C > 0 independent of ε and K and all ε sufficiently small.
Turning now to the stray field energy, with the help of Lemma 5.2 we can write

FS
ε,1d(m) = − λ| ln ε|

2π ln | ln ε|

+ λ

4π ln | ln ε|
∫ b

εLε

0

∫ b
εLε

0
ln

|x − y|−1

εLε

× (
m2(x )̃ηδε/Lε (x)

)′ (
m2(y)̃ηδε/Lε (y)

)′ dx dy, (5.42)

where we took into account that inserting a constant factor to the argument of the
logarithm does not change the stray field energy. With the help of the definition of m,
this is equivalent to

FS
ε,1d(m) = − λ| ln ε|

2π ln | ln ε|

+ λ

2π ln | ln ε|
∫ 2K+ δε

Lε

0

∫ 2K+ δε
Lε

0
ln

|x − y|−1

εLε

× (
m2(x )̃ηδε/Lε (x)

)′ (
m2(y)̃ηδε/Lε (y)

)′ dx dy
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+ λ

2π ln | ln ε|
∫ 2K+ δε

Lε

0

∫ b
εLε

b
εLε

−2K− δε
Lε

ln
|x − y|−1

εLε

× (
m2(x )̃ηδε/Lε (x)

)′ (
m2(y)̃ηδε/Lε (y)

)′ dx dy. (5.43)

Observe that the integral in the last line of (5.43) is bounded above by a constant
independent of ε and K for all ε sufficiently small. Therefore, we now concentrate on
estimating the remaining terms in (5.43).

We can write the integral in the second line in (5.43) as follows:∫ 2K+ δε
Lε

0

∫ 2K+ δε
Lε

0
ln

|x − y|−1

εLε

(
m2(x )̃ηδε/Lε (x)

)′ (
m2(y)̃ηδε/Lε (y)

)′ dx dy

= n20

∫ δε
Lε

0

∫ δε
Lε

0
ln

|x − y|−1

εLε

η̃′
δε/Lε

(x )̃η′
δε/Lε

(y) dx dy

+ 2n0

∫ 2K+ δε
Lε

δε
Lε

∫ δε
Lε

0
ln

|x − y|−1

εLε

η̃′
δε/Lε

(x)m′
2(y) dx dy

+
∫ 2K+ δε

Lε

δε
Lε

∫ 2K+ δε
Lε

δε
Lε

ln
|x − y|−1

εLε

m′
2(x)m

′
2(y) dx dy =: I1 + I2 + I3.

(5.44)

For the first integral, we have

I1 = n20 ln
1

εδε

+ n20

∫ 1

0

∫ 1

0
ln |x − y|−1η′(x)η′(y) dx dy ≤ n20 ln

1

εδε

+ C,

(5.45)

for some C > 0 independent of ε and K and all ε sufficiently small. At the same time,
noting that m′

2(x + δεL−1
ε ) ≥ 0 for all 0 < x < 2K , we get

I2 ≤ 2n0(1 − n0) ln
1

εLε

+ 2n0

∫ 2K

0
ln |y|−1m′

2(y + δεL
−1
ε ) dy

≤ 2n0(1 − n0) ln
1

εLε

+ C, (5.46)

again, for some C > 0 independent of ε and K and all ε sufficiently small. Finally,
for the third integral we have

I3 = (1 − n0)
2 ln

1

εLε

+
∫ 2K+ δε

Lε

δε
Lε

∫ 2K+ δε
Lε

δε
Lε

ln |x − y|−1m′
2(x)m

′
2(y) dx dy

≤ (1 − n0)
2 ln

1

εLε

+ CK , (5.47)
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once again, for some C > 0 independent of ε and K and all ε sufficiently small.
We now put all the obtained estimates together:

I1 + I2 + I3 ≤ ln
1

εLε

+ n20 ln
Lε

δε

+ CK . (5.48)

Then, recalling the definitions in (2.11) and (3.7) and combining the estimate in (5.48)
with the one in (5.41), we arrive at

Fε,1d(m) ≤ 8
√

β

(
1 −

√
1 + n0

2

)
+ λ

2π
(2n20 − 1)

+ C ln | ln ε|
| ln ε|2 + CKe−4K

√
β + CK

ln | ln ε| , (5.49)

for someC > 0 independent of ε and K and all ε sufficiently small. Taking the limsup
as ε → 0, therefore, yields

lim sup
ε→0

Fε,1d(m) ≤ 2F0(n0) + CKe−4K
√

β. (5.50)

Finally, the result follows by sending K → ∞. ��
Proof of Theorem 3.3 As in the proof of Theorem 3.2, we consider minimizers mε of
Fε,1d and write FMM

ε,1d (mε) in the form:

FMM
ε,1d (mε) =

∫ ε−1L−1
ε b

0

(
1

2
|θ ′

ε|2 + β(1 − cos θε)

)
dx . (5.51)

Also, without loss of generality we may assume that θε ≥ 0. Then, with the help of
the estimate in (5.34) we can write

Fε,1d(mε) ≥ 1

2
FMM

ε,1d (mε) − C, (5.52)

for some C > 0 independent of ε 
 1. On the other hand, by (5.20) we know that the
left-hand side of (5.52) is bounded independently of ε 
 1, which, in turn, implies
that

‖θ ′
ε‖L2(0,ε−1L−1

ε b) ≤ C . (5.53)

Now, pick a sequence of εk → 0 as k → ∞. Then, up to a subsequence (not
relabeled) we have θεk⇀θ̄ in H1

loc(R
+
) and locally uniformly by the estimate in

(5.53). At the same time, using (5.35) and the Modica–Mortola trick (Modica 1987),
we have

Fεk ,1d(mεk ) ≥ (1 − α)

[
4
√

β

∫ ε−1
k L−1

εk
b/2

0
sin

(
θεk

2

)
|θ ′

εk
| dx
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+
∫ ε−1

k L−1
εk

b/2

0

[
|θ ′

εk
| − 2

√
β sin

(
θεk

2

)]2
dx + λ

2π
(2n2εk − 1)

]
− Cα,

(5.54)

for some C > 0 and any α ∈ (0, 1
2 ), for all k sufficiently large. Here, we used the

reflection symmetry of the minimizers and defined nεk := mεk ,2(δεk/Lεk ). As in the
proof of Theorem 3.2, we can find Rk ∈ (α−3, 2α−3) such that θεk (Rk) < α for all α
sufficiently small. Then, from (5.54) we obtain

Fεk ,1d(mεk ) ≥ (1 − α)

[
− 4

√
β

∫ Rk

0
sin

(
θεk

2

)
θ ′
εk
dx

+ 4
√

β

∫ ε−1
k L−1

εk
b/2

Rk

sin

(
θεk

2

)
|θ ′

εk
| dx

+
∫ Rk

0

[
θ ′
εk

+ 2
√

β sin

(
θεk

2

)]2
dx + λ

2π
(2n2εk − 1)

]
− Cα

= (1 − α)

[
2F0[nεk ] − 8

√
β

(
1 +

√
1 + cos θεk (Rk)

2

)

+ 8
√

β

(
1 +

√
1 + cos θεk (0)

2

)

− 8
√

β

(
1 +

√
1 + cos θεk (δεk/Lεk )

2

)

+ 4
√

β

∫ ε−1
k L−1

εk
b/2

Rk

sin

(
θεk

2

)
|θ ′

εk
| dx

+
∫ Rk

0

[
θ ′
εk

+ 2
√

β sin

(
θεk

2

)]2
dx

]
− Cα. (5.55)

In viewof the definitionof Rk , the term involving cos θεk (Rk) in (5.55)maybe absorbed
into the last term for all α sufficiently small. Similarly, by (5.53) and Sobolev embed-
ding the second line in the right-hand side of (5.55) may be bounded by (δεk/Lεk )

1/2

and, hence, absorbed into the last term as well for all k sufficiently large depending
on α. Thus, taking into account that Fεk ,1d(mεk ) → 2F0(n0) as k → ∞, we obtain
for all k large enough:

(1 − α)−1F0(n0) + Cα ≥ F0(nεk ) + 2
√

β

∫ ε−1
k L−1

εk
b/2

Rk

sin

(
θεk

2

)
|θ ′

εk
| dx

+ 1

2

∫ Rk

0

[
θ ′
εk

+ 2
√

β sin

(
θεk

2

)]2
dx . (5.56)

We nowobserve that byminimality of F0(n0) both integrals in the right-hand side of
(5.56) are bounded above byCα, for someC > 0 independent ofα and k. In particular,
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this implies that the total variation of cos(θεk/2) on (Rk,
1
2ε

−1
k L−1

εk
b) is bounded by

Cα, and in view of the fact that θεk (Rk) < α, we conclude that θεk (x) < Cα for all
x ∈ [2α−3, 1

2ε
−1
k L−1

εk
b] for some C > 0 independent of α and k for all k sufficiently

large. On the other hand, sending α → 0 on a sequence and extracting a further
subsequence (not relabeled), we conclude that

θ ′
εk

+ 2
√

β sin

(
θεk

2

)
→ 0 in L2

loc(R
+), (5.57)

as k → ∞. Testing the left-hand side of (5.57) against φ ∈ C∞
c (R+) and passing to

the limit, we then conclude that θ̄ satisfies

dθ̄

dx
+ 2

√
β sin

(
θ̄

2

)
= 0 in D′(R+). (5.58)

In particular, since θ̄ ∈ C(R+), we have that θ̄ (x) also satisfies (5.58) classically for
all x > 0. Finally, by strict convexity of F0 we can also conclude that nεk → n0 as
k → ∞. Therefore, we have

arccos n0 = lim
k→∞ arccos nεk = lim

k→∞ θεk (δεk/Lεk ) = θ̄ (0). (5.59)

Thus, θ̄ = θ∞, where the latter is given by (3.9) with θ0 = arccos n0. Combining this
with the uniform closeness of θkε (x) to zero far from x = 0 and the asymptotic decay of
θ∞(x) for large x > 0 then yields uniform convergence of θkε to θ∞ on [0, 1

2ε
−1
k L−1

εk
b].

From (5.57), we conclude that this convergence is also strong in H1
loc(R

+). Finally, in
view of the uniqueness of θ̄ the limit does not depend on the choice of the subsequence
and, hence, is a full limit. ��

6 Proof of Theorem 3.4

The proof follows closely the arguments in Sect. 5, except that we can no longer reduce
theproblem to studying aone-dimensional profile due to lackof translational symmetry
in the x1-direction. Therefore, we need to incorporate the relevant corrections to the
upper and lower bounds in the proof of Theorem 3.2 and show that they are indeed
negligible in comparison with the limit energy F0.

As in Sect. 5, for D̃ε := ε−1L−1
ε D and m ∈ Aε, where

Aε := H1(D̃ε;S1), (6.1)

we introduce

Fε(m) := 1

2

∫
D̃ε∩{|m2|<1}

|∇m2|2
1 − m2

2

dx + β

∫
D̃ε

(1 − m2) dx − λa

2πε
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+ λ

8π ln | ln ε|
∫
D̃ε

∫
D̃ε

∇ · m̃δε/Lε (x)∇ · m̃δε/Lε (y)

|x − y| dx dy, (6.2)

where m̃δε/Lε (x) := m(x )̃ηδε/Lε (x), with η̃δε/Lε (x) := η(dist(x, ∂ D̃ε)Lε/δε). Then,
for m ∈ H1(D;S1) the connection between Fε and the original energy Eε is given by

Eε(m) = λa

2π
+ εFε(m(·/(εLε)), (6.3)

which follows by a straightforward rescaling and applying the weak chain rule (Lieb
and Loss 2010, Theorem 6.16) to the identity |m|2 = 1. Therefore, the first statement
of Theorem 3.4 is equivalent to

ε| ln ε|
ln | ln ε| min

m∈Aε

Fε(m) → 2a min
n∈[0,1] F0(n) as ε → 0. (6.4)

As in the proof of Theorem 3.2, we split the rescaled energy into the local and the
nonlocal parts:

Fε(m) = FMM
ε (m) + FS

ε (m), (6.5)

where

FMM
ε (m) := 1

2

∫
D̃ε∩{|m2|<1}

|∇m2|2
1 − m2

2

dx + β

∫
D̃ε

(1 − m2) dx, (6.6)

and

FS
ε (m) := λ

8π ln | ln ε|
∫
D̃ε

∫
D̃ε

∇ · m̃δε/Lε (x)∇ · m̃δε/Lε (y)

|x − y| dx dy − λa

2πε
. (6.7)

We begin by stating an analog of Lemma 5.1 in the case of a rectangular domain.

Lemma 6.1 Let m = (m1,m2) ∈ Aε, and let m = (m1,m2) be defined as

m2(x1, x2) := εLε

a

∫ ε−1L−1
ε a

0
m2(t, x2) dt,

m1(x1, x2) :=
√
1 − m2

2(x1, x2). (6.8)

Then, m ∈ Aε ∩ C(D̃ε), and for every R ∈ (0, ε−1L−1
ε b/2] and every r ∈ (0, R),

there holds

εLεFMM
ε (m)

a
≥ 4

√
β

(
1 −

√
1 + m2

2

)∣∣∣∣∣
x2=r
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+ 4
√

β

(
1 −

√
1 + m2

2

)∣∣∣∣∣
x2=ε−1L−1

ε b−r

− 8
√

β

(
1 −

√
1 + m2

2

)∣∣∣∣∣
x2=R

. (6.9)

Proof Since m ∈ H1(D̃ε;S1), its trace on D̃ε ∩ {x2 = t} is well defined for every
t ∈ (0, ε−1L−1

ε b). Arguing by approximation, we have m2 ∈ H1(D̃ε) ∩ C(D̃ε), in
view of the one-dimensional character of m2. Furthermore, arguing exactly as in the
proof of Lemma 4.1, we also obtain that m ∈ Aε ∩ C(D̃ε) and

∫
D̃ε

|∇m|2 dx ≥
∫
D̃ε

|∇m|2 dx =
∫
D̃ε∩{|m2|<1}

|∇m2|2
1 − m2

2

dx . (6.10)

In particular, since m is independent of x1, it may be chosen to be continuous in D̃ε.
By (6.10), we have

FMM
ε (m) ≥ 1

2

∫
D̃ε∩{|m2|<1}

|∇m2|2
1 − m2

2

dx + β

∫
D̃ε

(1 − m2) dx . (6.11)

Therefore, using the Modica–Mortola trick (Modica 1987), for every δ ∈ (0, 1) we
obtain

FMM
ε (m) ≥ 1

2

∫
D̃ε∩{|m2|<1}

|∇m2|2
1 − m2

2

dx + β

∫
D̃ε∩{|m2|<1}

(1 − m2) dx

≥ √
2β

∫
D̃ε∩{m2>−1+δ}

|∇m2|√
1 + m2

dx = √
8β

∫
D̃ε

∣∣∣∣∇
(√

1 + mδ
2 − √

2

)∣∣∣∣ dx,

(6.12)

where mδ
2 := max(−1 + δ,m2) ∈ H1(D̃ε) and we used weak chain rule (Lieb and

Loss 2010, Theorem 6.16) and the fact that ∇mδ
2 = 0 on {mδ

2 = −1 + δ} ∪ {mδ
2 = 1}

(Lieb and Loss 2010, Theorem 6.19). Thus, in view of continuity of mδ
2 we get (with

a slight abuse of notation)

εLεFMM
ε (m)

a
≥ √

8β
∫ ε−1L−1

ε a

0

∣∣∣∣
(√

2 −
√
1 + mδ

2(x2)

)′∣∣∣∣ dx2

≥ √
8β

∫ R

r

(√
2 −

√
1 + mδ

2(x2)

)′
dx2

− √
8β

∫ ε−1L−1
ε a−r

R

(√
2 −

√
1 + mδ

2(x2)

)′
dx2, (6.13)

which yields the rest of the claim in view of arbitrariness of δ. ��
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Lower bound for the stray field In order to get the required estimates for the lower
bound, we have to extend the definition of the test potential in a suitable way. Using
the same arguments as in the periodic case, we have a similar lower bound for the
stray field energy:

FS
ε (m) ≥ − λ

2 ln | ln ε|
∫
R3

|∇v|2 dx

− λ

ln | ln ε|
∫
D̃ε

v(x1, x2, 0)∇ · m̃δε/Lε dx − λa

2πε
(6.14)

for every v ∈ H̊1(R3). We also define

n−
ε := εLε

a

∫ aε−1L−1
ε

0
m̃δε/Lε,2(t, δε/Lε) dt, (6.15)

n+
ε := εLε

a

∫ aε−1L−1
ε

0
m̃δε/Lε,2(t, b/(εLε) − δε/Lε) dt . (6.16)

The construction of the potential is done in the same way as before with the only
difference that we now do not have the reflection symmetry for m̃δε/Lε,2 and have to
consider different distributions of charges near the bottom and the top boundaries. We
will carry out the calculation only near the bottom boundary; the other calculation is
completely analogous. To avoid cumbersomenotation,wewill suppress the superscript
“−” throughout the argument.

We would like to find a suitable test potential v that vanishes for x2 > b/(2εLε)

to obtain an appropriate asymptotic lower bound. Let us define v as follows: For
x1 ∈ (0, ε−1L−1

ε a), we define

v(x1, x2, x3) := v1

(√
x22 + x23

)
+ v2

(√
x22 + x23

)
, (6.17)

where v1 and v2 are as in (5.21) and (5.22), respectively, while for x1 ∈ (−∞, 0) we
extend the definition of v as

v(x1, x2, x3) := v1

(√
x21 + x22 + x23

)
+ v2

(√
x21 + x22 + x23

)
. (6.18)

Finally, for x1 ∈ (ε−1L−1
ε a,+∞) we extend the definition of v as

v(x1, x2, x3) := v1

(√(
ε−1L−1

ε a − x1
)2 + x22 + x23

)

+ v2

(√(
ε−1L−1

ε a − x1
)2 + x22 + x23

)
(6.19)
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It is clear that v ∈ H̊1(R3), and we can compute I := ∫
R3 |∇v|2 dx explicitly. First,

we split this integral into three parts:

I =
∫

(−∞,0)×R2
|∇v|2 dx +

∫
(0,ε−1L−1

ε a)×R2
|∇v|2 dx

+
∫

(ε−1L−1
ε a,+∞)×R2

|∇v|2 dx . (6.20)

It is clear that the first and the last integrals in the above expression coincide and the
second integral was already essentially computed in (5.26). Due to the symmetry of
v, it is not difficult to see that

∫
(−∞,0)×R2

|∇v|2 d3x = 2π
∫ ε−1L−1

ε b/2

0

(
∂v1

∂r
+ ∂v2

∂r

)2

r2 dr

= 1

2π

(
n2ε − 1 + b

2εLε

− δεn2ε
Lε

)
. (6.21)

Therefore, we obtain

I = an2ε
2πεLε

ln

(
Lε

δε

)
+ a

2πεLε

ln

(
b

2εLε

)

+ 1

π

(
n2ε − 1 + b

2εLε

− δεn2ε
Lε

)
. (6.22)

Next, we compute

J :=
∫
D̃ε

v(x1, x2, 0)∇ · m̃δε/Lε dx . (6.23)

Note that for x1 ∈ (0, ε−1L−1
ε a) our function v(x1, x2, 0) depends only on x2, and

m̃δε/Lε vanishes at the boundary of D̃ε. Therefore, with a slight abuse of notation we
have

J =
∫ ε−1L−1

ε a

0

∫ ε−1L−1
ε b/2

0
v(x2, 0)

(
∂1m̃δε/Lε,1(x1, x2) + ∂2m̃δε/Lε,1(x1, x2)

)
dx1 dx2

= a

εLε

∫ ε−1L−1
ε b

0
v(x2, 0)∂2mδε/Lε,2(x2) dx2, (6.24)

wheremδε/Lε,2(x2) := εLε

a

∫ ε−1L−1
ε a

0 m̃δε/Lε,2(x1, x2) dx1. Using the same arguments
as for the periodic case, we obtain a formula analogous to (5.31), with mε,2 replaced
by mδε/Lε,2:

∫ ε−1L−1
ε b/2

0
v(x2, 0)

(
mδε/Lε,2(x2)

)′ dx2
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= − 1

2π
ln

(
b

2εLε

)
− n2ε

2π
ln

(
Lε

δε

)

+ nε

2π

∫ 1

δε/Lε

(
mδε/Lε,2(x2)

)′ ln x2 dx2

+ 1

2π

∫ ε−1L−1
ε b/2

1

1 − mδε/Lε,2(x2)

x2
dx2. (6.25)

We now would like to obtain an analog of (5.32) and need to estimate the last two
terms in the right-hand side of (6.25). The first term can be bounded as follows:

∣∣∣∣ nε

2π

∫ 1

δε/Lε

(
mδε/Lε,2(x2)

)′ ln x2 dx2
∣∣∣∣ ≤ εLε

2πa

×
∣∣∣∣∣
∫ ε−1L−1

ε a

0

∫ 1

δε/Lε

∂2m2(x1, x2)̃ηδε/Lε (x1) ln x2 dx2 dx1

∣∣∣∣∣
≤ εLε

4πa

∫ ε−1L−1
ε a

0

∫ 1

δε/Lε

(
|∂2m2(x1, x2)|2 + | ln x2|2

)
dx2 dx1

≤ εLε

2πa
FMM

ε (m) + C, (6.26)

for some universal C > 0. Similarly, we can obtain

1

2π

∫ ε−1L−1
ε b/2

1

1 − mδε/Lε,2(x2)

x2
dx2

= εLε

2πa

∫ ε−1L−1
ε a

0

∫ ε−1L−1
ε b/2

1

1 − m2(x1, x2)̃ηδε/Lε (x1)

x2
dx2 dx1

≤ εLε

2πa

∫ ε−1L−1
ε a−δε/Lε

δε/Lε

∫ ε−1L−1
ε b/2

1

1 − m2(x1, x2)

x2
dx2 dx1

+ 2εδε

πa
ln

(
b

2εLε

)

≤ εLε

2πβa
FMM

ε (m) + C, (6.27)

for some universal C > 0, provided that ε is small enough independently of m. Thus,
after some straightforward algebra we arrive at the following bound for J :

J ≤ − a

2πεLε

[
ln

(
b

2εLε

)
+ n2ε ln

(
Lε

δε

)]
+ C

(
1

εLε

+ FMM
ε (m)

)
, (6.28)

for some C > 0 and all ε small enough independent of m.
Using the estimates for I and J above, and combining them with the estimates for

the similarly defined potential that vanishes for x2 < b/(2εLε), after some tedious
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algebra we obtain the following asymptotic lower bound for the stray field energy:

FS
ε (m) ≥ λa ln | ln ε|

2πε| ln ε|
(
|n−

ε |2 + |n+
ε |2 − 1

)
− C

ln | ln ε|
(
FMM

ε (m) + ln | ln ε|
ε| ln ε|

)
.

(6.29)

Upper bound for stray field To derive an asymptotically sharp upper bound for the
nonlocal energy, we want to estimate from above the integral

W := λ

8π ln | ln ε|
∫
D̃ε

∫
D̃ε

∇ · m̃δε/Lε (x)∇ · m̃δε/Lε (y)

|x − y| dx dy, (6.30)

where m̃δε/Lε (x) := mε(x )̃ηδε/Lε (x), and choose the test sequence

mε(x1, x2) :=
(√

1 − m2
ε,2(x2),mε,2(x2)

)
, (6.31)

in which mε,2 is as defined by the one-dimensional construction in Sect. 5 (see Fig. 2
for an illustration). We then obtain that W = λ

8π ln | ln ε| I , where

I = I1 + I2 + I3 :=
∫
D̃ε

∫
D̃ε

∂1η̃δε/Lε
(x1, x2)mε,1(x2) ∂1η̃δε/Lε

(ξ1, ξ2)mε,1(ξ2)

|x − ξ | dx dξ

+
∫
D̃ε

∫
D̃ε

∂2 (̃ηδε/Lε
(x1, x2)mε,2(x2))∂2 (̃ηδε/Lε

(ξ1, ξ2)mε,2(ξ2))

|x − ξ | dx dξ

+2
∫
D̃ε

∫
D̃ε

∂1η̃δε/Lε
(x1, x2)mε,1(x2)∂2 (̃ηδε/Lε

(ξ1, ξ2)mε,2(ξ2))

|x − ξ | dx dξ. (6.32)

We see that the middle integral I2 is asymptotically equivalent to the one computed
in the periodic case. Therefore, it is enough to estimate the first and the last integrals
and show that they only give a negligible contribution into the stray field energy in the
limit.

We now estimate the first integral I1. Using the definition of η̃δε/Lε , we obtain
that ∂1η̃δε/Lε (x1, x2) = 0 for δεL−1

ε < x1 < ε−1L−1
ε b − δεL−1

ε . Moreover, outside
this interval |∂1η̃δε/Lε (x1, x2)| ≤ Lε/δε. We also know that mε,1(x2) = 0 for x2 ∈
(0, δε/Lε) ∪ (2K + δε/Lε, ε

−1L−1
ε b − 2K − δε/Lε) ∪ (ε−1L−1

ε b − δε/Lε), where
K is the same constant as in the one-dimensional construction. Therefore, by direct
computation we can estimate for all ε sufficiently small:

I1 ≤ C

(
Lε

δε

)2 ∫ 2K+δεL−1
ε

0

∫ 2K+δεL−1
ε

0

∫ δεL−1
ε

0

∫ δεL−1
ε

0

dx1 dξ1 dx2 dξ2√
(x1 − ξ1)2 + (x2 − ξ2)2

≤ CK ln

(
Lε

δε

)
, (6.33)
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δε/Lε δε/Lε

δε/Lε

δε/Lε

2K

2K

ε−1L−1
ε b

ε−1L−1
ε a

Fig. 2 Schematics of the truncated test magnetization configuration m̃δε/Lε used in the upper bound con-
struction of Sect. 6

for some universal C > 0. Similarly, the last integral I3 can be estimated as

I3 ≤ C

(
Lε

δε

)∫ 2K+δεL−1
ε

δεL
−1
ε

∫ ε−1L−1
ε a

0

∫ 2K+δεL−1
ε

0

∫ δεL−1
ε

0

dx1 dx2 dξ1 dξ2√
(x1 − ξ1)

2 + (x2 − ξ2)
2

+
(
Lε

δε

)2 ∫ δεL−1
ε

0

∫ ε−1L−1
ε a

0

∫ 2K+δεL−1
ε

0

∫ δεL−1
ε

0

dx1 dx2 dξ1 dξ2√
(x1 − ξ1)

2 + (x2 − ξ2)
2

≤ CK ln

(
1

ε

)
, (6.34)

again, for some universal C > 0 and all ε small enough.

Proof of Theorem 3.4 We can combine the lower bounds for FMM
ε and FS

ε and proceed
in the same way as in the one-dimensional case. There is a slight mismatch, as the
definition of n±

ε uses the average of m̃δε/Lε,2, while the lower bound (6.9) for FMM
ε

uses mε,2. However, we observe that

∣∣∣∣∣
εLε

a

∫ ε−1L−1
ε a

0
m̃δε/Lε,2(x1, x2) dx1 − mε,2(x2)

∣∣∣∣∣

123



1204 Journal of Nonlinear Science (2020) 30:1165–1205

≤ εLε

a

∫ ε−1L−1
ε a

0
|mε,2(x1, x2)|(1 − η̃δε/Lε (x1, x2)) dx1 ≤ Cεδε, (6.35)

for some C > 0 independent of ε, and, therefore, asymptotically we can interchange
the average of m̃δε/Lε,2 with mε,2 in the formula in (6.9) and arrive at the full lower
bound as in the one-dimensional case. Using in addition the upper bound construction,
the proof of (3.17) follows exactly as in the proof of Theorem 3.2 with the help of
Lemma 6.1. Convergence ofmε to e2 trivially follows from positivity of the stray field
energy and boundedness of Eε(mε) as ε → 0.

Assumingmε is a minimizer of Eε, in the same way as in the proof of the Theorem
3.2 it follows that n−

ε → n0 and n+
ε → n0, therefore we have

mδε/Lε,2(δε/Lε) → n0 and mδε/Lε,2(b/(εLε) − δε/Lε) → n0. (6.36)

Using the inequality in (6.35) and recalling (6.4), we obtain the desired result. ��
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