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Abstract

Traveling waves of cell signaling in epithelial layers orchestrate a number of important
processes in developing and adult tissues. These waves can be mediated by positive feedback
autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a
cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical
model that accounts for ligand-induced ligand release, extracellular ligand diffusion and
ligand–receptor interaction. We focus on the case when the main mode for ligand degradation
is extracellular and analyze the problem with the sharp threshold positive feedback
nonlinearity. We derive expressions that link the speed of propagation and other characteristics
of traveling waves to the parameters of the biophysical processes, such as diffusion rates,
receptor expression level, etc. Analyzing the derived expressions we found that traveling
waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic
dependence of the speed of propagation on ligand diffusivity. Our results for the fully
developed traveling fronts can be used to analyze wave initiation from localized perturbations,
a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide
future modeling studies of cell communication in epithelial layers.

1. Introduction

The development and maintenance of animal tissues depends
on cell communication by diffusible ligands that act
through their cognate cell surface receptors to control cell
differentiation, migration, division and death [1]. Ligand–
receptor binding activates signaling pathways that can
stimulate further ligand release in a responding cell. This
mode of cell signaling is called an autocrine loop [2]. When
combined with ligand diffusion, this type of positive feedback
can lead to traveling waves of cell signaling that have been
indeed observed in a number of experimental systems. For
example, in the developing Drosophila trachea, positive
feedback autocrine loop in the highly conserved epidermal
growth factor receptor (EGFR) system is responsible for the
traveling wave of EGFR activation, which is, in turn, essential
for spatial coordination of cell alignment and intercalation [3].
Traveling fronts mediated by autocrine loops can also operate

in adult tissues when they respond to wounding. Cells at
the edge of the wound have been shown to secrete a mixture
of growth factors and smaller molecules, like ATP, that can
initiate the tissue-level waves of cell signaling [4–6]. One
function of such fronts is to coordinate the collective migration
of cells during the early stages of wound closure.

Recently we have begun to formulate and analyze
biophysical models of spatially distributed autocrine loops in
order to understand the regulation of traveling waves in these
systems [7–9]. Our models accounted for ligand-induced
ligand release, extracellular ligand diffusion, reversible
binding to surface receptors and receptor-mediated ligand
degradation. In a number of such problems we have
derived analytical results for the profiles and speeds of
propagating waves and explored their nontrivial dependence
on the parameters of the biophysical problems. Here
we focus on the case when the main pathway for ligand
degradation is mediated not by cell surface receptors, but by
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(a) (b)

Figure 1. Ligand-mediated signal transmission: the geometry of the system (a) and the elementary processes (b).

the extracellular molecules, such as proteases that can degrade
soluble ligands. Based on the combination of analytical and
numerical approaches we show that traveling fronts robustly
exist in this case, but that their properties can be quite
different from those in problems with receptor-mediated ligand
degradation.

We begin by considering an idealized epithelium in
the form of an extended flat layer of cells bounded by
semi-infinite space filled with extracellular matrix. In the
following, individual cells are modeled within the continuum
approximation. Thus, the system consists of three distinct
spatial compartments: the extracellular space where signals
can diffuse and undergo reactions with the extracellular
medium and its contents, the cell layer where various
intracellular processes occur, and the cell layer surface through
which signaling molecules are secreted and where they can
bind to their specific cell surface receptors. This is illustrated
schematically in figure 1.

For simplicity, we will consider signaling mediated by
a single signaling molecule (ligand). Ligands are released
from the cell surfaces and can diffuse in the extracellular
space. The fate of each ligand molecule in the extracellular
space is determined by two basic processes. A ligand can
bind to its specific cell-surface receptor, causing activation
of intracellular signaling cascades which, in turn, can lead
to cellular responses affecting further ligand release by cells.
Alternatively, a ligand may react with other molecular species
present in the extracellular matrix and become incapable of
further signaling, either through binding or degradation. In this
paper, we make two assumptions regarding the interactions
of ligand molecules with their environment. First, we will
assume that the cellular response to ligand–receptor binding
results in increased secretion of ligands from the surface of the
affected cell, generating a positive autocrine feedback loop
[10]. Second, we will assume that ligands in the extracellular
space are irreversibly inactivated (degraded) via a first-order
process.

At the cell surface, the ligand molecule can associate with
the cell surface receptor to form a ligand–receptor complex.
This complex can then either dissociate to release the ligand
molecule back to the extracellular environment, or it can be
endocytosed into the cell, where the ligand molecule can be

either reprocessed or destroyed. Endocytosis provides another
mechanism of ligand extraction at the cell surface, which may
compete with the degradation processes in the bulk of the
extracellular medium. Since in this paper we are interested in
the role the bulk degradation plays in autocrine signaling, we
will simplify our discussion by considering only the extreme
case in which endocytosis is negligible in comparison with
bulk degradation. This regime accentuates the fact that in the
presence of bulk degradation the spatial domains of ligand
release and ligand removal are very different, making the
problem highly nonlocal.

Mathematically, the processes described in figure 1 may
be formulated in terms of the following system of equations:

∂S

∂T
= D

(
∂2S

∂X2
+

∂2S

∂Y 2
+

∂2S

∂Z2

)
− kdS, Z > 0, (1)

D
∂S

∂Z
= ∂C

∂T
− gSP, Z = 0, (2)

∂C

∂T
= konRS − koffC, Z = 0, (3)

∂P

∂T
= −kpP + gP σ(C/CT ), Z = 0. (4)

Here, the variables are as follows: S denotes the concentration
of ligand molecules in the extracellular space located at Z > 0,
where (X, Y,Z) are three-dimensional spatial coordinates; C
is the ligand–receptor complex density at the cell surfaces,
located at Z = 0; P is the density of an intracellular species that
mediates the release of ligand molecules into the extracellular
space; finally, T is time. Equation (1) describes diffusion of the
ligand molecules with diffusion coefficient D and degradation
with rate kd in the extracellular space. Equation (2) provides
the boundary condition for the ligand flux at the cell surfaces,
which consists of the first term coming from association–
dissociation of complexes and the second term describing
ligand secretion with rate constant gS . Equation (3) describes
the association–dissociation dynamics of the complexes at
the cell surface with binding rate kon, free receptor density
R and dissociation rate koff . Lastly, equation (4) describes the
response of the intracellular species to the number of ligand–
receptor complexes and consists of a first-order degradation
process with rate kp and a production term with rate constant

2



Phys. Biol. 6 (2009) 016006 C B Muratov et al

Table 1. Descriptions and typical values of the model parameters.

Parameter Description Typical value

D Ligand diffusivity 10−6 cm2 s−1

kon Ligand–receptor binding rate constant 102 μM−1 min−1

koff Ligand–receptor dissociation rate constant 10−1 min−1

kp Degradation rate constant for the 10−2 min−1

ligand release-mediating intracellular species
kd Ligand degradation constant 1 min−1

in the extracellular medium
L Ligand diffusion length in the 75 μm

extracellular medium
R Cell surface receptor density 105/cell
CT Threshold ligand–receptor complex density 103/cell
gP Maximum production rate for the ligand 10 min−1/cell

release-mediating intracellular species
gSgP /kp Maximum ligand secretion rate 60 min−1/cell
A Cell surface area 25 μm2

α Dimensionless degradation rate 0.01
β Dimensionless surface capacitance 0.86
sT Dimensionless feedback threshold 0.20
v Dimensionless front speed 0.34

gP which involves a sigmoidal dependence σ(a) on the ratio of
the complex density to a threshold value CT . The latter realizes
the mechanism of ligand-induced ligand release responsible
for the positive autocrine feedback loop [10]. The model
parameters and their typical values are shown in table 1.

Our main results are presented in section 2. Specifically,
in section 2.1 we introduce the fast ligand–receptor binding
approximation to the full model presented in section 1, in
section 2.2 we non-dimensionalize the model and identify the
dimensionless parameter groups, in section 2.3 we discuss
existence, stability and multiplicity of the steady states
supported by the model, in section 2.4 we analyze the traveling
front solutions and the dependence of the front speed on the
dimensionless model parameters, in section 2.5 we consider
a number of limiting regimes of front propagation, and in
section 2.6 we perform an analysis of the front speed
dependence on the original biophysical parameters. Finally,
in section 3 we summarize our findings and further discuss the
applicability of our results to time transients and more detailed
models of cell signaling.

2. Results

2.1. Fast binding approximation

We now turn to the analysis of the system of equations in
(1)–(4). Our first step is to simplify them by assuming that
the binding dynamics is very fast. Mathematically, this can be
achieved by passing to the limit kon, koff → ∞ with the ratio
kon/koff fixed. Biophysically, this implies that binding and
dissociation are the fastest processes compared to all other
processes, i.e., we have koff � kp, kd . As a result, we can
replace equations (2) and (3) with

C = konRS

koff
, D

∂S

∂Z
= konR

koff

∂S

∂T
− gSP, Z = 0, (5)

where we took into account that both C → (konR/koff)S|Z=0

and ∂C/∂T → (konR/koff)(∂S/∂T )|Z=0 in the limit.

Therefore, when the binding processes are fast, one can assume
that the ligand–receptor complex density follows the ligand
concentration at the epithelium surface. At the same time,
note that the absence of the endocytosis term in equation (3)
leads to an appearance of a new capacitance-like term in the
effective boundary condition given by equation (5). This is
a novel feature of the considered model that was not present
in our previous studies of autocrine signaling, in which ligand
degradation occurred via ligand-mediated endocytosis [7–9].

2.2. Non-dimensionalization

We now non-dimensionalize the reduced problem given by
equations (1), (4) and (5) by introducing the following new
variables:

t = kpT , x = X

L
, s = S

S0
, p = P

P0
, (6)

where

L =
√

D

kd

, S0 = gSgP

kp

√
Dkd

, P0 = gP

kp

, (7)

and introducing dimensionless constants

α = kp

kd

, β = kpkonR

koff
√

Dkd

, sT = CT koffkp

√
Dkd

gSgP konR
. (8)

As a result, we obtain the following dimensionless system,
which will be the subject of the analysis below:

α
∂s

∂t
= ∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
− s, z > 0, (9)

∂s

∂z
= −p + β

∂s

∂t
, z = 0, (10)

∂p

∂t
= −p + σ(s/sT ), z = 0. (11)

This model contains three dimensionless parameters: sT , α

and β. The meaning of the first parameter is straightforward,
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it represents the degree of excitability of the positive feedback.
The parameter α measures the relative speed of degradation
(fast degradation compared to intracellular dynamics means
α � 1). The meaning of the parameter β is less
straightforward. Roughly speaking, it measures the delay in
establishing a steady signaling profile after activation of the
positive feedback. Note that the units of time and length were
chosen to be the time scale of intracellular reaction k−1

p and the
diffusion length L = (D/kd)

1/2 of ligands in the extracellular
space. Thus, L is the characteristic distance ligand molecules
can diffuse away from the cell surfaces before being degraded.
On the other hand, observe that in cell signaling problems
another combination of the parameters l = D/(konR) has the
dimension of length and measures the spatial extent of an
autocrine loop in the absence of bulk degradation [2]. In terms
of these two lengths, we can write β = kpL/(koff l). From
this, one can see that β can be both small and large. The latter
does not contradict our assumption kp � koff , however, since
it is possible to have L � l for sufficiently small values of kd .

Lastly, the choice of the sigmoidal function σ is dictated
by the specifics of the intracellular signaling cascade and the
response to its activation, but is typically assumed to be of Hill
type in the modeling studies

σ(a) = aν

1 + aν
, (12)

with ν sufficiently large [11]. Here, note that the activation
threshold sT is already explicitly contained in the argument
of σ in equation (11). In fact, most of our analysis will
be performed under a further simplifying assumption of sharp
activation threshold, ν → ∞, i.e. when the sigmoidal function
σ is approximated by

σ(a) = H(a − 1), (13)

where H(x) is the Heaviside step function. We will also make
a quantitative comparison between the case ν = ∞ and ν < ∞
for front propagation problems in section 3.

2.3. Steady states and their stability

We begin with the analysis of the steady states of signaling
admitted by the model. Under appropriate conditions, one
would expect our system to exhibit multistability. Indeed,
the cooperativity built into the ligand-mediated ligand release
mechanism and the ligand degradation in the bulk represent
two competing tendencies with a possibly nontrivial balance.
Note, however, that by the non-local nature of the problem all
steady states in the system will be spatially inhomogeneous.
Therefore, the role of equilibria in the system will be played by
the solutions which are constant across the epithelium surface
(but not in the normal direction).

Setting s = s(z) in equation (9) and taking into account
that the ligand concentration must vanish far from the
epithelium, we immediately find that s(z) = s̄ e−z, where
s̄ is the ligand concentration at the epithelium surface. Further
substituting this expression into equation (4), we find that in
an equilibrium p = s̄ and s̄ needs to satisfy

s̄ = σ(s̄/sT ). (14)

This equation always has a trivial solution s̄ = 0. However,
when the value of the threshold sT becomes sufficiently small,
a pair of two new roots of equation (14) appears via a saddle-
node bifurcation. When ν → ∞ in equation (12), the roots of
equation (14) are explicitly

s̄1 = 0, s̄2 = sT , s̄3 = 1, (15)

when sT < 1. Furthermore, it is not difficult to see in this
case that s̄ = 0 and s̄ = 1 are stable equilibria, while s̄ = sT

is unstable. The stability of s̄ = 0 and s̄ = 1 equilibria
should be already clear from physical considerations, since
when s̄ is sufficiently close to those values, equations (1) and
(4) effectively decouple. The analysis, however, is rather
involved because the nonlocality of the problem introduces
memory effects. In appendix A we explicitly demonstrate
stability of these equilibria with respect to perturbations in p
of the form δp = Re(a0 e−iqx). We also note that the analysis
of appendix A can be straightforwardly extended to the general
case of ν < ∞ and small initial perturbations of general form,
the results are expected to be unchanged.

Finally, let us note that in the original, unscaled variables
the condition sT < 1 of bistability for sharp threshold
nonlinearity can be rewritten as

cT <
konR√
Dkd

, cT = koffkp

gSgP

CT . (16)

Here we introduced a dimensionless parameter cT , which is
simply the threshold CT rescaled by the value of C at which
the maximum secretion flux and the dissociation flux are
equal. Thus, the condition of bistability states that the rescaled
threshold cT must be smaller than the ratio of two quantities,
with the dimension of velocity, characterizing binding and
degradation.

2.4. Traveling fronts

A common dynamical feature of the considered class
of reaction-diffusion systems is the phenomenon of front
propagation [12–17]. In particular, propagation of fronts
of signaling activity has been observed in a number of cell
communication models in which reaction and diffusion occur
in spatially separated compartments [7, 9, 18]. To see whether
front propagation is still possible in autocrine systems in the
presence of bulk degradation, we constructed exact traveling
wave solutions in the form of planar fronts of signaling activity,
when the nonlinearity σ is of sharp threshold type, i.e. given
by equation (13).

Without a loss of generality, we may assume that the front
solution is independent of the y-variable. Thus, we look for
solutions of equations (9)–(11) in the form s = s(x − vt, z)

and p = p(x − vt). Substituting this ansatz into equations
(9)–(11), we obtain the following boundary-value problem for
the front profile:

∂2s

∂x2
+

∂2s

∂z2
+ αv

∂s

∂x
− s = 0, z > 0 (17)

∂s

∂z
+ p + βv

∂s

∂x
= 0, z = 0, (18)
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(a)

(b)

(c)

Figure 2. The profile of the traveling front at α = 0.5, β = 1 and sT = 0.2226.

v
∂p

∂x
− p + H(s − sT ) = 0, z = 0. (19)

By fronts we mean those solutions of equations (17)–(19) for
which the level of signaling (which is an increasing function
of s at z = 0) is monotone in x. Without a loss of generality we
may assume that in a front ∂s(x, 0)/∂x < 0, with the profile
approaching zero at x = +∞ and the state of high signaling at
x = −∞:

p(+∞) = 0, s(+∞, z) = 0, (20)

p(−∞) = 1, s(−∞, z) = e−z. (21)

It is easy to see from equation (19) that a monotonic decrease
of s(x, 0) implies that p(x) is non-increasing. On the other
hand, any bounded solution s(x, z) of equations (17), (18),
(20) and (21) with non-increasing and bounded p(x) is, in
fact, strictly monotonically decreasing in x for each z � 0. The
latter follows from an application of the maximum principle
techniques to the boundary-value problem in equations (17),
(18), (20) and (21), we outline the argument in appendix B.
Note that the last statement also provides a consistency
verification of the monotonicity assumption for s(x, 0).

By strict monotonicity of s(x, 0), there exists a unique
point x = x0 at which the threshold of the feedback loop
activation is crossed, provided that 0 < sT < 1. By
translational symmetry we may assume that this happens at
the origin, i.e. we have s(0, 0) = sT . Also, we can consider
the case v > 0 only, i.e., when the on-state of signaling invades
the off-state from left to right, since the problem is invariant
with respect to the transformation

x → −x, z → z, v → −v, (22)

sT → 1 − sT , p → 1 − p, s → e−z − s. (23)

Therefore, if the solution with v > 0 is found, then another
solution with v < 0 can be obtained from the first one via
the transformation above. In particular, if sT = s+

T (v) is the
threshold at which the front propagates with speed v > 0, then
sT = s−

T (v), where

s−
T (v) = 1 − s+

T (−v), (24)

is the threshold at which the front moves with speed v < 0,
i.e. when the off-state invades the on-state from right to left.
In particular, this implies that v = 0 must occur at sT = 1

2 .
We solved the boundary-value problem in equations (17)–

(19), using Fourier transform techniques (the details are
presented in appendix C). The typical solution profile for a
particular set of parameters is presented in figure 2. One can
see that in agreement with the general discussion above, the
solution has a monotone signaling profile, and the distribution
of s in the extracellular medium is tightly localized next to
the epithelium surface and advancing into the region with low
signaling activity. The speed of the front is given by the
implicit relation sT = s+

T (v) (for v > 0), where

s+
T (v) = 1

π

∫ ∞

1
2 (αv+

√
4+α2v2)

×
( √

τ 2 − αvτ − 1

τ(1 + vτ)((1 + β2v2)τ 2 − αvτ − 1)

)
dτ. (25)

In particular, uniqueness of solutions (up to translations)
follows from s+

T (0) = 1
2 , limv→∞ s+

T (v) = 0, and strict
monotonic decrease of the function s+

T (v) in equation (25)
for all v > 0, demonstrated at the end of appendix C. To
summarize:

for every 0 < sT < 1, there exists a unique speed
v = v(α, β, sT ) and a unique, up to translations,
traveling front profile for each α > 0 and β > 0.

The values of the dimensionless parameters and the front
speed corresponding to the typical set of dimensional model
parameters in table 1 are listed at the bottom of that table.
The graph of the threshold sT as a function of the front speed
v for the same values of α and β as in figure 2 is shown in
figure 3.

2.5. Asymptotic regimes

We used equation (25) to study parametric dependence of the
dimensional front propagation speed

V = Lkpv(α, β, sT ), (26)

on various model parameters of the problem. Note that for
fixed v the value of sT from equation (25) is a monotonically
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Figure 3. Dependence of v on sT for α = 0.5 and β = 1 obtained
from equation (25).

decreasing function of both α and β (see the end of
appendix C). Nevertheless, since most of the dimensional
model parameters enter into these dimensionless quantities
in non-trivial combinations, it is not obvious what to expect
for the dependence of the dimensional front speed on, e.g., the
diffusion coefficient D or the degradation constant kd . To get
a better understanding of the dependence of the dimensional
front speed on the model parameters, we first undertook
a study of a number of asymptotic parameter regimes (for
the derivation of the corresponding reduced models, see
appendix D). We start with the case in which both parameters
α and β are small. This case corresponds to the limit in which
the bulk degradation is very fast and, therefore, can be treated
under the quasi steady-state approximation. The smallness of
β, in turn, implies that the capacity of the epithelium surface
is negligible, and so upon secretion ligands quickly diffuse
far from the cell surface. In this situation the time scale of
the problem is determined by the dynamics of the intracellular
species.

It is easy to pass to the limit α → 0 and β → 0 in
equation (25), since the integrand and the lower limit of
integration depend continuously on these parameters. As a
result, we get explicitly

s+
T (v) � 1

π

∫ ∞

1

dτ

τ(1 + vτ)
√

τ 2 − 1
= 1

2
− v sec−1(v)

π
√

v2 − 1
. (27)

In particular, we obtain

s+
T (v) � 1

πv
, v � 1, (28)

s+
T (v) � 1

2
− v

π
ln

(
2

v

)
, v � 1. (29)

From the first equation above, the dimensional front speed V

for sT � 1 can be approximated as

V � gSgP konR

πkoffkdCT

=
(

kp

kd

)
konR

πcT

, (30)

where cT is given in equation (16). This result appears to be
quite surprising, since it turns out that the front propagation
speed is independent of both the ligand diffusion constant D

and the intracellular degradation constant kp in this regime.
On the other hand, the speed depends strongly on the binding-
dissociation kinetics, as well as on the degradation rate.

Now let us consider the case α � 1 and β � α in
which ligand degradation in the bulk is slow compared to
other processes. In this case, we can neglect the delay in the
response of the intracellular species to signaling, as well as
the cell surface capacity. Setting β = 0 and treating v to be of
order α−1 � 1, in the limit of α → ∞ we obtain

s+
T (v) � 1

π

∫ ∞

1
2 (αv+

√
4+α2v2)

dτ

τ
√

τ 2 − αvτ − 1

= 1

π
cos−1

(
αv√

4 + α2v2

)
. (31)

In particular, we have

s+
T (v) � 2

παv
, αv � 1, (32)

s+
T (v) � 1

2
− αv

2π
, αv � 1. (33)

Actually, in this case the front speed may be explicitly
expressed in terms of the threshold. After some simple algebra,
we find that

v � 2

α tan(πsT )
. (34)

Writing the dimensional front speed V for sT � 1, from (32)
we obtain the following approximate expression:

V � 2gSgP konR

πkoffkpCT

= 2konR

πcT

. (35)

One can see that now the speed does not depend on the ligand
diffusion constant D and the degradation constant kd . Note
that in the related models of intracellular calcium signaling the
independence of the front speed from the diffusion constant
was already pointed out in [18]. On the other hand, the front
speed strongly depends on kp, in addition to the details of
association–dissociation kinetics. Note that since typically
koff � kp, the front speed will be greater in this regime for the
same value of cT , compared to the case of α � 1 and β � 1
analyzed earlier.

Finally, the third case of interest, β � 1 and α � β

corresponds to fast bulk degradation and large cell surface
capacitance. Setting α = 0 and treating now v as a quantity
of order β−1 � 1, in the limit β → ∞ we obtain

s+
T (v) � 1

π

∫ ∞

1

√
τ 2 − 1

τ((1 + β2v2)τ 2 − 1)
dτ

= 1

2

(
1 − βv√

1 + β2v2

)
. (36)

In particular, for large and small values of βv we have the
following expansions:

s+
T (v) � 1

4β2v2
, βv � 1, (37)

s+
T (v) � 1

2
− βv

2
, βv � 1. (38)
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Also, as in the previous case, we can explicitly express the
front speed in terms of the threshold. After a little algebra we
arrive at the following expression:

v = 1 − 2sT

2β
√

sT (1 − sT )
. (39)

The dimensional front speed V for sT � 1, in turn, is given
by the following approximate expression:

V �
(

D3g2
Sg

2
P k2

off

16kdk2
onR

2k2
pC2

T

)1/4

= koff(Ll)1/2

2c
1/2
T

, (40)

where l = D/(konR) is the range of the autocrine loop [2].

2.6. Parametric analysis

We now turn to the study of the dependence of the dimensional
front speed V on the dimensional model parameters. In all
cases, we will only consider the situation in which the signal
propagates with positive speed, i.e. when sT < 1

2 , so that the
state of high signaling is invading the no-signaling state. Let
us start from the dependence of V on the feedback threshold
CT . Clearly, since CT only enters the dimensionless problem
via the value of sT , an increase in CT will result in a decrease
of the front speed. This behavior is, of course, quite expected.
Similarly, the front speed is an increasing function of gS

and gP .
One would also expect that the dimensional front speed

V is a decreasing function of kd . This, however, already
cannot be seen so straightforwardly from equation (25), since,
as kd increases, the value of sT increases, but at the same
time the values of α and β decrease. Also, the value of L
is decreasing with kd . Nevertheless, we found numerically
for a wide range of the parameters that V decreases as kd

increases. In particular, when the threshold CT of the feedback
is sufficiently small, an increase in kd pushes the parameters
into the regime where α � 1 and β � 1, hence V is given by
equation (30). From that equation one can explicitly see that
V is a decreasing function of kd . On the other hand, when kd

tends to zero, we have α � β � 1. In this limit V is given by
equation (35) and, in fact, becomes essentially independent of
kd for sufficiently small kd .

Let us now analyze the dependence of V on kp. When
the value of kp is decreased, α, β and sT all decrease.
Therefore, for small enough values of kp the front speed
can be approximated by equation (30), which states that V is
essentially independent of kp in this regime. On the other hand,
increasing kp results in an increase of sT , with V becoming
zero at a critical value of kp. Therefore, V is expected to
decrease when the value of kp is increased.

As far as the dependence on the binding dissociation is
concerned, one can see that the corresponding rate constants
enter V only via the combination konR/koff . Therefore,
without a loss of generality we can study the effect of changing
those parameters by considering V as a function of, say, the
receptor density R. A change of R by a factor of λ results in
the dimensional front velocity change by a factor of

Vλ/V = v(α, λβ, λ−1sT )/v(α, β, sT ). (41)

Figure 4. Dependence of Vλ/V on λ obtained from equation (41)
for α = 0.75, β = 0.5, sT = 0.25.

From this one can make two observations. First, at a certain
critical value of λ we will have Vλ = 0. On the other hand, for λ

sufficiently large we have βλ = λβ � 1 and sλ
T = λ−1sT � 1,

hence from equation (40) we can see that Vλ/V ∼ λ−1/2 → 0
as λ → ∞. This implies that Vλ must have a maximum for
some value of λ. We verified this to be the case, figure 4 shows
the dependence of Vλ on λ for a particular set of parameters.
Let us point out the similarity of this phenomenon to that
observed by us earlier in the studies of a similar model [7].
Note, however, that in [7] the maximum propagation speed
was observed only in systems in which the ligand was allowed
to diffuse in an extracellular medium layer of finite thickness.
The maximum of V in [7] was absent in semi-infinite media,
as opposed to the results presented here.

Perhaps the most surprising behavior of the dimensional
front speed V is exhibited by its non-monotone dependence on
the ligand diffusion coefficient D. If D is changed by a factor
of μ, the front speed will change by a factor of

Vμ/V = μ1/2v(α, μ−1/2β,μ1/2sT )/v(α, β, sT ). (42)

Once again, at certain critical value of μ we have Vμ = 0. On
the other hand, when the value of μ is decreased, we have
βμ = μ−1/2β � 1 and s

μ

T = μ1/2sT � 1. Therefore,
by equation (40) we must have Vμ/V ∼ μ3/4 → 0 as
μ → 0, and as in the case of the R-dependence, the front
speed V has a maximum at a certain value of the diffusion
coefficient D. Figure 5 shows this to be the case for a particular
set of parameters. Physically, this can be explained by
an interplay between the transport and degradation, which
determines whether the amount of secreted ligands is sufficient
to activate the feedback. Note that the observed non-monotone
dependence of the front velocity on the diffusion coefficient
goes even further than the anomalous scalings reported earlier
in the studies of waves of calcium signaling [18].

3. Discussion

To summarize, we have analyzed ligand-mediated signal
transmission in a mechanistic model of an autocrine system
where ligand degradation occurs in the extracellular medium.
We have shown that long-range signal transmission by

7
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Figure 5. Dependence of Vμ/V on μ obtained from equation (42)
for α = 0.75, β = 0.5, sT = 0.25.

means of self-sustained traveling fronts is possible in such
systems. Autocrine waves in systems with extracellular
ligand degradation have a number of unusual features in
comparison with the waves in systems with receptor-mediated
ligand degradation. The most striking feature of these waves
which is revealed by our analysis is the non-monotonic
dependence of their speed on the ligand diffusion constant.
The analysis of the original nonlinear and nonlocal problem
presents a number of challenges. One of them is related
to different spatial dimensionality of the domains for ligand
diffusion and processing. Specifically, three-dimensional
diffusion of the ligand is coupled with two-dimensional front
of intracellular signaling in the cellular layer. This coupling
becomes especially non-trivial, since ligand concentration
level is determined by the ligand degradation in the three-
dimensional extracellular space, while ligand production is
due to secretion through the two-dimensional surface of the
epithelial layer.

Focusing on the analytically tractable case of infinitely
sharp nonlinearity in the ligand-induced ligand release
feedback loop, we were able to obtain exact expressions that
link the speed of propagation and other wave characteristics to
the parameters of the biophysical processes, such as diffusion
rates, receptor expression level, etc. At the same time, the
implicit nature of the derived equations required more detailed

(a) (b)

Figure 6. A transient response to a localized stimulus in p obtained by solving equations (9)–(12) with no-flux boundary conditions at
x = 0 and x = 50, and α = 1, β = 0.5, ν = 8, and sT = 0.1327. The initial conditions are s = 0, p = e−x2/4.

Figure 7. Comparison of the front speed for the Hill nonlinearity
with that of the sharp threshold nonlinearity for simulation in
figure 6.

analysis of parametric dependences which was guided by a
number of limiting cases identified by us. Our results for
the fully developed traveling fronts can be used to analyze
wave initiation from localized perturbations, a scenario that
frequently arises in vitro and during epithelial wound healing.

To corroborate this scenario in our model, we performed
numerical simulations of the time-dependent problem
described by equations (9)–(11). In order to simulate the
boundary-value problem, we adapted the method of geometric
optimal grids [19] to the problem under consideration (see
appendix E for details). Also, a sufficiently large but finite
value of the Hill coefficient ν was used. As expected
[12, 13, 17], when sT < 1/2 the system exhibits threshold-like
behavior when exposed to localized perturbations. Depending
on the size of the initial stimulus, the system either remains in
the no-signaling state or switches to the state of high signaling.
The result of one such simulation for α = 1, β = 0.5, sT =
0.1327 and ν = 8, using a geometric optimal grid code with
the in-plane step h⊥ = 0.1 and n = 8, is shown in figure 6.
As can be seen from this figure, switching occurs by a front
propagating from the location of the stimulus to the region of
no signaling.

Finally, let us note that our results derived for the case
of the sharp threshold nonlinearity in the feedback loop are
an asymptotic limit of the more general case of the Hill
nonlinearity. In practice, however, they give a very good

8
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approximation for the case of finite values of ν. In particular,
we found numerically that traveling fronts persist in the case
ν < ∞, and that the front speed is quantitatively captured by
the analysis of section 2.4. Figure 7 shows the deviation of
the front speed obtained numerically for the same parameters
as in figure 6 from that of the prediction of equation (25) for
different values of ν. One can see that the agreement is within
10% already for ν � 5.

Acknowledgments

The authors gratefully acknowledge valuable discussions with
P Gordon. This work was supported, in part, by NIH via
grants R01 GM076690 and K25AI41935 (FP), and by NSF
via grants DMS-0718027 (CBM), DMS-0349195 (FP) and
DMS-0718604 (SYS).

Appendix A. Stability of equilibria

Consider (9)–(11), with σ given by (13), and let us perturb,
say, the equilibrium s̄ = p = 1 by δp = Re(a0 e−iqx). Let us
look for the solution in the form

p = 1 + Re{a(t) e−iqx}, s = e−z + Re{b(t, z) e−iqx},
(A.1)

with a(0) = a0 and b(0, z) = 0. Assuming that s > sT for all
time (which is expected to be true at least for sufficiently small
a0 in case of stability), we can write the following equations
for a and b:

at = −a + a0δ(t), (A.2)

αbt = bzz − (1 + q2)b, (A.3)

bz = −a + βbt , (A.4)

where δ(t) denotes the Dirac delta-function. Further applying
Fourier transform

âω =
∫ +∞

−∞
a(t) eiωt dt, b̂ω(z) =

∫ +∞

−∞
b(t, z) eiωt dt,

(A.5)

to a and b and solving (A.3) with an extra condition that the
solution vanishes when z → ∞, we find that

b̂ω(z) = b̂ω(0) exp
(−z

√
1 + q2 − iαω

)
, (A.6)

where the branch cut in the definition of the square root is
chosen along the imaginary axis from ω = −i∞ to ω =
−i(1 + q2)/α.

Solving (A.2) and substituting this solution into (A.4)
together with (A.6) we find

âω = a0

1 − iω
, (A.7)

b̂ω = a0 exp
(−z

√
1 + q2 − iαω

)
(1 − iω)

(√
1 + q2 − iαω − iβω

) . (A.8)

Finally, inverting the Fourier transform, we obtain

a(t) = a0 e−t , b(t, z) = a0

2π

∫ +∞

−∞
e−iωtg(ω, z) dω,

(A.9)

where

g(ω, z) = e−z
√

1+q2−iαω

(1 − iω)
(√

1 + q2 − iαω − iβω
) . (A.10)

The first equation in (A.9) is, of course, expected, because the
dynamics of p decouples from that of s when s > sT , and,
in particular, we have a → 0 exponentially as t → ∞. The
second equation is more complicated. However, as is well-
known, since for t � 1 the integral in the second equation
of (A.9) contains a rapidly oscillating term, we must have
b(t, z) → 0 as t → ∞ for all z, hence, stability (more
precisely, the result follows by Riemann–Lebesgue lemma,
since g(·, z) ∈ L1(R) for each z � 0). A more detailed
analysis of the integral shows that convergence is, in fact,
exponential (we do not present this rather tedious analysis
here).

Finally, to show instability of the s̄ = p = sT equilibrium,
we perturb p uniformly by δp = a0 > 0 and look for the
solution in the form

p = sT + Re{a(t)}, s = sT e−z + Re{b(t, z)}, (A.11)

with a(0) = a0 and b(0, z) = 0. Retracing the line of
arguments above, after some rather lengthy algebra we obtain

b(t, 0) =
∫ t

0
g(t − τ)a(τ ) dτ, (A.12)

where a(t) = 1 − sT + (a0 + sT − 1) e−t and

g(t) = 2βλ+e−λ+t√
α2 + 4β2

+
1

π

∫ +∞

α−1

√
αλ − 1

β2λ2 + αλ − 1
e−λt dλ,

(A.13)

with

λ+ = −α +
√

α2 + 4β2

2β2
. (A.14)

From these formulae one can see that g(t) > 0, and so both
a(t) > 0 and b(t, 0) > 0, justifying the assumptions used to
derive these formulae. Therefore, in view of

∫ ∞
0 g(t) dt = 1,

we have p(t), s̄(t) → 1 as t → ∞.

Appendix B. Monotonicity of the ligand profile

To show that monotonicity of p(x) implies that of s(x, z) for
each z is a rather straightforward exercise in the application
of the strong maximum principle for elliptic boundary-value
problems [20]. Here for simplicity we outline the proof
of this statement under the assumption that p is a strictly
monotonically decreasing function, i.e. dp/dx < 0 for all x.
A slightly more technical proof still works in the case
dp/dx � 0, yielding strict monotonicity of s in x as well.

It is clear that by linearity the function u = −∂s/∂x solves
the same kind of boundary-value problem as s

∂2u

∂x2
+

∂2u

∂z2
+ αv

∂u

∂x
− u = 0, z > 0 (B.1)

∂u

∂z
+ g + βv

∂u

∂x
= 0, z = 0, (B.2)
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where g = −∂p/∂x > 0. Under the assumption that
the boundary conditions for s at z = ±∞ hold uniformly
in C1([0, +∞)), we have u(x, z) → 0 uniformly in z as
x → ±∞. Furthermore, by standard regularity theory u is
uniformly bounded when z � 1 for any bounded solution of
(17) and, therefore, decays uniformly to zero as z → ∞, in
view of the fact that ū = C e−z with C large enough is a
supersolution for (B.1) in {z � 1} [20].

We want to show that, in fact, u(x, z) > 0 for all
−∞ < x < +∞ and 0 � z < +∞. So, suppose first
that u < 0 somewhere. In view of the uniform decay of u at
infinity, the function u must attain its minimum at some point
(x0, z0), with −∞ < x0 < +∞ and 0 � z0 < +∞, and by our
assumption u(x0, z0) < 0. Since this is a minimum of u, we
must have ∂u/∂x = 0 at that point. If z0 > 0, then from (B.1)
we have

0 �
(

∂2u

∂x2
+

∂2u

∂z2

)∣∣∣∣
(x0,z0)

= u(x0, z0). (B.3)

But the latter is impossible, since the right-hand side of this
expression is strictly negative. If, on the other hand, z0 = 0,
then by (B.2) we get

∂u

∂z

∣∣∣∣
(x0,z0)

= −g(x0) < 0, (B.4)

which, once again contradicts the fact that (x0, z0) is a
minimum of u. Thus, u � 0 and, by strong maximum principle
this implies u > 0 for all z > 0 [20]. In fact, we have u > 0
for z = 0 as well, since otherwise the point where u = 0 at
z = 0 is a minimum, which contradicts (B.4)

Appendix C. Construction of the exact traveling
front solution

Assuming that s(x, 0) is a strictly monotonically decreasing
function of x and that the threshold s = sT is crossed at x = 0,
we can rewrite (17)–(19) as follows:

∂2s

∂x2
+

∂2s

∂z2
+ αv

∂s

∂x
− s = 0, z > 0 (C.1)

∂s

∂z
+ p + βv

∂s

∂x
= 0, z = 0, (C.2)

v
∂p

∂x
− p + H(−x) = 0, s(0, 0) = sT . (C.3)

Introducing the Fourier transform in the x-direction

ŝq (z) =
∫ +∞

−∞
e−iqxs(x, z) dx, p̂q =

∫ +∞

−∞
e−iqxp(x) dx.

(C.4)

and computing the bounded solution of (17), (19) in Fourier
space, we obtain

ŝq (z) = ŝq (0) e−z
√

1+q2−iαvq, p̂q = i

(q + i0)(1 − ivq)
.

(C.5)

Here we chose the analytic branch of the square root that has
a positive real part and noted that the pole at the origin in the
expression for p̂q should lie below the real axis.

Using the solution just obtained, we can compute

ŝ ′
q(0) = −

√
1 + q2 − iαvqŝq(0). (C.6)

This, in turn, can be substituted into the Fourier transform of
the boundary condition in (18) to yield

ŝq (0) = i

(q + i0)(1 − ivq)(
√

1 + q2 − iαvq − iβvq)
. (C.7)

Then, applying the inverse Fourier transform

s(x, z) = 1

2π

∫ +∞

−∞
eiqx ŝq(z) dq,

p(x) = 1

2π

∫ +∞

−∞
eiqxp̂q dq,

(C.8)

we arrive at

p(x) = (1 − ex/v)H(−x). (C.9)

and, in particular,

s(0, 0) = i

2π

∫ +∞

−∞

× dq

(q + i0)(1 − ivq)
(√

1 + q2 − iαvq − iβvq
) . (C.10)

Using contour integration techniques, this integral can be
transformed to that given in (25). This is done by observing
that the integrand in (C.10) has poles at q = q1, q = q2 and
q = q3, where

q1 = −i0, q2 = − i

v
,

(C.11)

q3 = i
(
αv −

√
α2v2 + 4 + 4β2v2

)
2(1 + β2v2)

,

and the branch cut with the required properties can be chosen
along the intervals (−i∞, q4) and (q5, +i∞), where

q4 = i

2

(
αv −

√
4 + α2v2

)
, q5 = i

2

(
αv +

√
4 + α2v2

)
,

(C.12)

along the imaginary axis. Closing the contour of integration
by an arc above the real axis and then deforming the contour
to lie on the branch cut on the positive imaginary axis, after
some algebra we obtain (25).

Without going into too many details, using the same
approach, we can also calculate the solution s(x, z) in the
extracellular space. The answer can be separated into two
parts

s(x, z) = 1

π

∫ +∞

1
2 (αv+

√
α2v2+4)

×
{

e−xτ

τ (1 + vτ)((1 + β2v2)τ 2 − αvτ − 1)

× [
cos

(
z
√

τ 2 − αvτ − 1
)√

τ 2 − αvτ − 1

+ vβτ sin
(
z
√

τ 2 − αvτ − 1
)]}

dτ, x � 0, (C.13)

10



Phys. Biol. 6 (2009) 016006 C B Muratov et al

and

s(x, z) = 1

π

∫ 1
2 (αv−

√
α2v2+4)

−∞

×
{

e−xτ

τ (1 + vτ)((1 + β2v2)τ 2 − αvτ − 1)

× [
cos

(
z
√

τ 2 − αvτ − 1
)√

τ 2 − αvτ − 1

+ vβτ sin
(
z
√

τ 2 − ατ − 1
)]}

dτ

− 2βv e
(zvβ−x)(αv−

√
α2v2+4β2v2+4)

2(β2v2+1)(
1 +

v(αv−
√

α2v2+4β2v2+4)

2(β2v2+1)

)√
α2v2 + 4β2v2 + 4

− Re

(
e

x
v
−z

√
1−α−v−2

√
1 − α − v−2 − β

)
+ e−z, x � 0, (C.14)

where in (C.14) the integral is understood in the sense of
Cauchy principal value when the pole at τ = −v−1 lies in the
integration segment. As expected, this solution is bounded and
has the behavior at infinity given by (20) and (21). Therefore,
by the arguments of appendix B it is monotone decreasing in
x, consistently with the assumption made at the beginning of
the analysis.

Finally, to see that s+
T is a monotonically decreasing

function of v, α and β, we rewrite the integral in (25) in terms
of the new variable ξ , such that

τ = ξ + ξ0, ξ0 = αv +
√

4 + α2v2

2
. (C.15)

Note that ξ0 is an increasing function of v and α. Substituting
this definition into (25), after some algebra we obtain

s+
T (v) = 1

π

∫ ∞

0

×
√

ξ
(
1 + 1

ξ0(ξ+ ξ0)

)
dξ

√
ξ + ξ0(1 + v(ξ + ξ0))(β2v2(ξ + ξ0)2 + ξ(ξ +

√
α2v2 + 4))

.

(C.16)

From this, by direct inspection it is not difficult to see that the
integrand in the above expression is a decreasing function of
v, α and β.

Appendix D. Limiting regimes

Here we derive the reduced models in the three asymptotic
regimes discussed in section 2.4. In all cases, the model
can be reduced to a single integro-differential equation whose
properties are similar to that of a scalar reaction-diffusion
equation with a bistable nonlinearity.

Case α � 1 and β � 1. As was already noted, in this case
the dynamics of ligands is slaved to that of the intracellular
species, and the cell surface capacity is negligible. Setting
α = β = 0 in (9)–(11), we obtain the following reduced
problem:

∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
− s = 0, z > 0, (D.1)

∂s

∂z
= −p, z = 0, (D.2)

∂p

∂t
= −p + σ(s/sT ), z = 0. (D.3)

These equations can be further simplified to a single integro-
differential equation for the variable p = p(r, t), where
r = (x, y) is the two-dimensional position vector denoting a
point on the epithelium surface. This can be done by explicitly
expressing the ligand concentration at the cell surface in
terms of the distribution of p, using, e.g., Fourier transform
techniques. Omitting the details of this calculation, we arrive
at the following effective equation:
∂p(r, t)

∂t
= −p(r, t) + σ

(
1

sT

∫
K(r − r′)p(r′, t) dr′

)
,

(D.4)

where the kernel K is given explicitly by

K(r) = e−|r|

2π |r| . (D.5)

We note that this type of models (with non-singular kernels)
arises in the studies of phase transitions and networks of
coupled neurons (see, e.g. [21, 22]).

Case α � 1 and β � α. To derive the reduced model in
the considered limit, we invoke the quasi steady-state for the
dynamics of p and set β = 0. As a result, we obtain

α
∂s

∂t
= ∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
− s, z > 0, (D.6)

∂s

∂z
= −σ(s/sT ), z = 0. (D.7)

Note that the boundary-value problem above may be written
as a single equation in the whole space by an even extension of
s to z < 0. This results in a single reaction-diffusion equation,
with the nonlinearity concentrated at z = 0 by a δ-function
(see also [18])

α
∂s

∂t
= ∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
− s + 2σ(s/sT )δ(z), (D.8)

The properties of solutions of (D.8) should be closely related
to those of the usual scalar reaction-diffusion problems with
inhomogeneous sources [12, 14, 15, 17].

Case α � β and β � 1. To obtain the reduced model, we
again use the fact that p is slaved to s and that α can be set to
zero in the equation for s. This leads to the following problem:

∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
− s = 0, z > 0, (D.9)

β
∂s

∂t
= ∂s

∂z
+ σ(s/sT ), z = 0. (D.10)

Once again, solving the boundary-value problem for s in
terms of s̄ = s|z=0 and skipping technical details, we arrive
at the following effective integro-differential equation for
s̄ = s̄(r, t):

β
∂s̄(r, t)

∂t
=

∫
K(r − r′)(
r′ − 1)s̄(r′, t) dr′ + σ(s̄/sT ),

(D.11)
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where r = (x, y) denotes a two-dimensional position vector
of a point on the epithelium, 
r = ∂2/∂x2 + ∂2/∂y2 is the
Laplace’s operator in the plane, and K is given by (D.5). This
equation differs from the more conventional scalar reaction-
diffusion equations only by a presence of the convolution term
in front of the linear part. Note that similar equations have been
studied in the context of nonlocal models of phase transitions
(see e.g. [23]).

Appendix E. Numerical method

Our approach to the problem of solving the boundary-value
problem for the ligand distribution in the extracellular space
uses the concept of optimal grids for approximating the
Neumann-to-Dirichlet map for linear elliptic and hyperbolic
boundary-value problems [19, 24–28], which is based on the
ideas of model reduction methods (see, e.g., [29]). Let us
apply the Fourier–Laplace transform to equation (9). As a
result, we obtain the following two-point problem:

d2ŝ

dz2
= (

1 + r + q2
1 + q2

2

)
ŝ, ŝ|z=∞ = 0, (E.1)

where

ŝ =
∫ ∞

0

∫ +∞

−∞

∫ +∞

−∞
e−rt−iq1x−iq2ys(x, y, z, t) dx dy dt, (E.2)

with boundary data prescribed at z = 0. The Neumann-
to-Dirichlet map in the transform space reads ŝ(0) =
−F(λ)ŝ ′(0), where λ = 1 + r + q2

1 + q2
2 , the prime denotes

differentiation with respect to z, and the impedance function
F(λ) is F(λ) = 1/

√
λ.

The next step is to approximate the continuous impedance
function F(λ) by a discrete one Fn(λ) by replacing the
second-order derivative in equation (E.1) with a staggered
three-point finite difference scheme with n nodes. Then
ŝ0 = −Fn(λ)ŝ ′(0), where

v̂i+1/2 = ŝi+1 − ŝi

hi+1/2
,

v̂i+1/2 − v̂i−1/2

hi

= λŝi,

i = 0, 1, . . . , n − 1, (E.3)

v̂−1/2 = ŝ ′(0), v̂n−1/2 = 0, ŝn = 0, (E.4)

and hi are the grid steps to be determined. The impedance
function for the discrete problem is a rational function which
can be written explicitly as a continued fraction [19]

Fn(λ) = 1

λh0 +
1

h1/2 +
1

λh1 + · · · +
1

hn−1/2 +
1

λhn

. (E.5)

Thus, approximating F(λ) by Fn(λ) reduces to finding the
best rational approximation F̃ n(λ) in the class of rational
functions corresponding to the grids with steps hi > 0. To
make precise what is meant by the ‘best’ approximation, we

choose to minimize the relative error on a spectral interval to
find F̃ n(λ), such that

sup
λ∈[λmin,λmax]

∣∣∣∣F(λ) − F̃ n(λ)

F (λ)

∣∣∣∣ = inf
Fn

sup
λ∈[λmin,λmax]

∣∣∣∣F(λ) − Fn(λ)

F (λ)

∣∣∣∣,
(E.6)

where λmin and λmax are the appropriately chosen ‘cutoff
frequencies’. As was found by Ingerman, Druskin and
Knizhnerman, this variational problem has a unique solution
which gives all hi > 0 [19]. Moreover, for n sufficiently large
the optimal rational approximant obtained in this way is close
to the impedance function of the so-called optimal geometric
grid [19]

h0 = h1/2

1 + eπ/(2
√

n)
, hi+1/2 = hi−1/2 eπ/

√
n,

hi = √
hi+1/2hi−1/2.

(E.7)

To implement the obtained optimal grid in the original
problem, we discretized the problem on a Cartesian product of
the usual rectangular grid with step h⊥ in the (x, y)-plane and
the optimal grid in the z-direction, in space, and used a simple
explicit Euler discretization in time. To accurately resolve
the solution, we chose h1/2 = h⊥, this choice corresponds to
the value of the upper bound λmax of the spectral interval on
which the approximation is optimized to be consistent with
the maximum value of λ resolved by the spatial discretization
of the Laplacian in the plane. The obtained method is very
efficient. For example, we find that only n = 5 nodes of the
optimal grid is sufficient to get a 2% accuracy. At the same
time, the method is very easy to implement.
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