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Abstract

The effect of small-amplitude noise on excitable systems with strong time-scale separation is analyzed. It is found that
vanishingly small random perturbations of the fast excitatory variable may result in the onset of a deterministic limit cycle
behavior, absent without noise. The mechanism, termed self-induced stochastic resonance, combines a stochastic resonance-
type phenomenon with an intrinsic mechanism of reset, and no periodic drive of the system is required. Self-induced stochastic
resonance is different from other types of noise-induced coherent behaviors in that it arises away from bifurcation thresholds,
in a parameter regime where the zero-noise (deterministic) dynamics does not display a limit cycle nor even its precursor. The
period of the limit cycle created by the noise has a non-trivial dependence on the noise amplitude and the time-scale ratio between
fast excitatory variables and slow recovery variables. It is argued that self-induced stochastic resonance may offer one possible
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cenario of how noise can robustly control the function of biological systems.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Small random perturbations may have dramatic ef-
ects on dynamical systems and lead to the emergence
f new dynamical behaviors which, surprisingly, can
e deterministic in suitable limits[1]. Stochastic reso-
ance is a well-known example[4,14]. A system driven
y a weak periodic forcing will oscillate precisely with

he period of the driving force in the presence of van-
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ishingly small noise, whereas no such oscillation ar
in the absence of noise. The periodic forcing chan
which state is temporarily the most favorable energ
cally. Due to the noise, the system is able to reach
most favorable state by activated hopping events.
rate of the hopping depends mainly on the energy
rier to be crossed[3,6], and the barrier height vari
in time due to the forcing. As a result, in a suita
limit as the period of the forcing goes to infinity a
the amplitude of the noise to zero, the hopping ta
place precisely when its rate matches the frequen
the driving force. This is the resonance phenome
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whose net effect is a synchronization of the system
with the forcing.

In this standard mechanism of stochastic resonance,
the periodic forcing plays an essential role. Yet in re-
cent years there has been numerical and experimen-
tal evidence that small random perturbations can also
trigger transition to a deterministic periodic behavior
even in the absence of periodic drive on the system.
The corresponding mechanisms have been termedau-
tonomous stochastic resonance[5,4,14] or coherence
resonance[8,13]. They both arise in systems close to
the threshold of bifurcation toward a periodic behav-
ior. Above the bifurcation threshold, a limit cycle is
present, but below threshold the intrinsic oscillation is
only a transient feature observed while the system re-
laxes toward its equilibrium state. In such situations,
the noise can temporarily push the system above the
bifurcation threshold and thereby trigger a cycle. If the
period of this cycle is much larger than the time-scale
over which it is triggered by the noise, the ratio between
the variance of the period and its mean is very small,
i.e. the phenomenon displays a high degree of coher-
ence. The resonance phenomenon in these mechanisms
refers to the possibility to optimize the degree of co-
herence by adjusting the amplitude of the noise, which
is quite different from its original meaning in standard
stochastic resonance. In particular, both in autonomous
stochastic resonance and in coherence resonance the
time scale associated with the rate of noise-activated
hopping does not have to match the intrinsic periodic
t than
t sult,
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constructive role in the deterministic dynamics it initi-
ates. A similar mechanism has been reported recently
by Freidlin in the pioneering paper[2]. Here we show
its ubiquity in randomly perturbed excitable systems.
(Self-induced stochastic resonance may, for instance,
explain the results observed in the numerical experi-
ments with the FitzHugh–Nagumo model performed
in [15]).

Excitable systems arise in a wide variety of areas
which include climate dynamics, chemical reactions,
lasers, ion channels, nerve cells, neural systems, car-
diovascular tissues, etc. and are especially common in
biology [7–9]. One can think of them as dynamical
systems possessing a rest state, an excited state, and a
recovery state. In the absence of perturbations, an ex-
citable system remains in the rest state. Small pertur-
bations create only small amplitude linear responses.
Larger perturbations, however, cause large-amplitude
dynamical excursions during which the system goes to
its excited state, then its recovery state, before return-
ing to the rest state. Generally, the excited phase is fast
whereas the recovery phase is slow because they arise
as a result of the competition between positive and neg-
ative feedbacks operating on very different time-scales.
As a result, the slow recovery motion in an excitable
system can generally be described as a motion on a
slow manifold that the system quickly reaches after a
large excursion in the excited state.

We shall be interested in excitable systems whose
excitatory variables are perturbed by small amplitude
r how
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r cle
ime-scale of the system (it just has to be smaller
his time-scale to guarantee coherence). As a re
oise plays a rather passive role in these mechan

n addition, the constraint that the system be clos
ifurcation requires fine-tuning of the control para
ters. Thus, one may wonder if there is a more ro
ay by which noise can create deterministic perio
ehavior in the absence of periodic driving force.

In this paper, we show that there exists indeed a
ust mechanism, which we termself-induced stocha
ic resonance, by which small noise can trigger tra
ition to a deterministic periodic behavior in syste
way from bifurcation threshold, i.e. in a parame
egime where the zero-noise (deterministic) dyn
cs of the system does not display a limit cycle
amics nor even its precursor. In addition, we s

hat the noise amplitude works as a control param
or the coherent motion, hence the noise plays a
andom perturbations. In these situations, we s
hat noise systematically triggers a new large ex
ion while the system is in the slow recovery state.
rigger mechanism involves a barrier crossing even
hich the system escapes the slow manifold as
ted with the recovery state and whose rate depen

he position of the system on this manifold. As a
ult, the hopping always arises precisely when its
atches the recovery time-scale. This is the stoc

ic resonance part of the mechanism. It is comb
ith a mechanism of reset provided by the exc
tate which mitigates the periodic forcing neces
n standard stochastic resonance and instead ma
elf-induced. Indeed, after the large excursion in the
ited state triggered by the hopping event, the sy
oes back to the state of slow recovery motion and
henomenon can repeat itself over and over again
esult is the emergence of a deterministic limit cy
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induced by the noise whose amplitude and frequency
are controlled by a parameter involving the amplitude
of the noise and the ratio between the fast excitatory
and the slow recovery time-scales.

The remainder of this paper is organized as follows.
In Section2 we explain the mechanism of self-induced
stochastic resonance in the context of excitable system.
We establish in which limit the mechanism arises and
express the period of the limit cycle in terms of the
noise amplitude and the ratio of time-scales in the
system. In Section3 we demonstrate the feasibility
of the mechanism on the example of the Brusselator.
In this system, a complete analysis is possible which
we corroborate by a series of careful numerical
experiments to illustrate how the coherence of the
mechanism can be made arbitrarily high, how the noise
can be used as a control parameter, etc. In Section4
we compare self-induced stochastic resonance with
coherence resonance to stress the differences between
the two. Finally, some concluding remarks are given in
Section5.

2. The general mechanism of self-induced
stochastic resonance

A generic excitable system consists of a set of exci-
tatory and recovery variables, denoted, respectively by
u andv, whose dynamics is governed by:{

H
t ise
w s.
T ere
w a
G :

〈
d uali-
t
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i by
f ri-
a
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Fig. 1. Deterministic flow generated by(6). HereA = 0.7 andα =
0.01. The thick curves are theu- andv-nullclines, respectively. The
slow manifold of the recovery state is theu−(v) portion of theu-
nullcline. The excited state corresponds to the part of the phase space
to the right of theu+(v) portion of theu-nullcline. Note thatu is
shown on a logarithmic scale.

arise on the time-scale of order 1, and their dynam-
ics is governed by the equation foru in Eq. (1) with
v frozen (except, perhaps, in some part of the excur-
sion whenu turns over to go back to the recovery state,
see below). The recovery state corresponds to a slow
motion on the manifold defined by the stable solution
branch off (u, v) = 0 containing the rest state defined
byf (u, v) = g(u, v) = 0 (seeFig. 1for an illustration).
In the absence of the noise, the excited state can only be
a transient state, and the trajectory quickly approaches
the slow manifold of the recovery state, and then pro-
ceeds on the time-scaleα−1 along this manifold and
into the globally attracting steady state.

With the introduction of the noise, the situation
changes. The trajectory may leave the recovery state
and go back to the excited state by escaping the slow
manifold in theu direction via a noise-activated pro-
cess. We will assume that for small noise,ε 	 1, such
process happens at Kramers rate[3,6]:

k = ν exp

(−�V (v)

ε

)
	 1, (3)

where�V (v) is somev-dependent energy barrier to be
crossed to initiate the escape from the slow manifold,
andν is some characteristic frequency independent of
ε. As a result, the system will perform an excursion in
the excited state driven mainly by the deterministic part
of the dynamics. After this excursion, the trajectory
lands again somewhere on the slow manifold of the
u̇ = f (u, v) + √
εη,

v̇ = αg(u, v).
(1)

eref andg are the nonlinearities,α is the ratio of the
ime-scales, and we have added some external noη
ith amplitudeε perturbing the excitatory variable
he noise may have different physical origins. H
e will assume thatη is external white-noise, i.e.
aussian process with mean zero and covariance

η(t)η(t′)〉 = δ(t − t′) (2)

ifferent kinds of noise can be used and lead to q
atively similar results.

Whenα 	 1, there is a large time-scale separa
n the deterministic part of the dynamics governed
and g. This is consistent with the excitatory va
blesu being fast and the recovery variablesv being
low. Thus, the large excursions in the excited s
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recovery motion. The dynamics can then proceed along
the slow manifold until another escape happens, and so
on. This process may lead to a truly deterministic limit
cycle in a suitable limit because of the following two
mechanisms.

2.1. Resonance mechanism

The interplay between the escape events and the mo-
tion along the slow manifold requires that their time-
scales be comparable. Assume that the energy bar-
rier �V (v) in Eq. (3) decreases as one approaches the
steady state by the dynamical path along the slow man-
ifold (this amounts to assuming that the escape events
become easier as the system approaches the steady
state). Then by Eq.(3), the escape rate is a very rapidly
increasing function ofv whenε is small. Suppose that
ε, α → 0 in a way that:

ε logα−1 → β (4)

for some finiteβ. Then escape from the slow manifold
will occur with probability one at the pointv = v� on
this manifold, wherev� satisfies:

�V (v�) = β, (5)

provided that this equation has a solution on the acces-
sible part (i.e. the stable branch) of the slow manifold.
For small but nonzeroα andε, escape occurs with prob-
ability close to one in the vicinity of the pointv = v�
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The mechanism described above does not require
the system to be close to bifurcation, and therefore it is
robust against parameter changes as long as(5) defines
an accessible point on the slow manifold. In addition,
since the dynamics in the recovery state is much slower
than the one in the excited state, the period of the limit
cycle will be dominated by the time it takes the system
to go from the point it lands on at the slow manifold
to v� where it leaves it again. But sincev� depends
on the amplitude of the noiseε and the ratio of time-
scaleα through(5), bothα andε can be used as control
parameters for the period of the limit cycle.

3. The Brusselator

To demonstrate the feasibility of the self-induced
stochastic resonance mechanism discussed in Section
2, we will consider the Brusselator[11]:{

u̇ = 1 + u2v − (1 + A)u + √
εη,

v̇ = α(Au − u2v),
(6)

whereu andv are scalars andA is a control parameter.
This is of the form(1) for the nonlinearitiesf = 1 +
u2v − (1 + A)u andg = Au − u2v.

The Brusselator is a prototypical excitable system
whenα 	 1 andA < 1. This can be seen from its phase
portrait shown inFig. 1 for a particular choice of the
parameters. WhenA < 1, the nullclines of(6) intersect
o s
a
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here�V (v�) = ε logα−1. Indeed, beforev reache
�, the slow recovery motion is so much faster t
he escape rate that the system has no time to ho
ore it reachesv�. But as soon asv has passedv�, the
scape rate becomes so much faster than the rec
otion that the system must hop. Thus, the matc
f time-scales implied by(5) is precisely the resonan
echanism in standard stochastic resonance[1,14].

.2. Reset mechanism

This is inherent to the excitable character of the
em. After a large excursion in the excited state initia
rom v�, the trajectory returns to the slow manifold

point which leads again tov� by the slow recover
otion. Then the process will repeat itself indefinit

n a sequence of recovery and excited states an
ynamics of the system will indeed be a limit cycle
n the stable branch of theu-nullcline, so the flow i
lways into the unique equilibrium point

u0, v0) = (1, A). (7)

ote that the slow manifold of the recovery stat
ssentially the part of theu-nullcline located at the le
f thev-nullcline (seeFig. 1). It is also clear from th
gure that sufficiently large increases in theu variable
way from equilibrium will result in large excursio

nto the excited state. ForA > Aω, where

ω = 1 + α, (8)

he system exhibits a Hopf bifurcation: the steady s
u0, v0) = (1, A) becomes unstable and a limit cy
merges even in the absence of noise.

We begin by presenting results of the numerical s
lations of Eq.(6) with a representative set of values
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Fig. 2. Numerical solution of(6). The parameters are:A = 0.7, α = 0.01,ε = 0.1. (a) The time series with the nearly periodic spike train. (b)
The phase plane plot showing the corresponding (almost) deterministic limit cycle in gray. The thick solid lines are theu- andv-nullclines,
respectively. The dashed line shows the predicted limit cycle, with the escape part shown by a solid line with an arrow. Note that the apparent
size of the fluctuations of the trajectory around the slow manifold (stable branch of theu-nullcline) is accentuated by the logarithmic scale used
for the variableu.

the parameters—later in Section3.2 we perform sim-
ulations with different parameters. We useα = 0.01,
ε = 0.1 which are reasonably small values. We also
takeA = 0.7 which is not close to the Hopf bifurcation
observed atAω � 1, see Eq.(8). We integrate Eq.(6)
using a forward Euler scheme with adaptive time-step
to fully resolve the fast excursion in the excited state.
Fig. 2(a)shows the time series for one realization of
the noise. This figure shows a train of large amplitude
spikes in the excitatory variable. It is striking that the

spikes are occurring in an almost periodic fashion, with
their amplitude and other characteristics being approx-
imately the same at each time. This is corroborated by
the phase plane portrait,Fig. 2(b), which shows a nearly
limit cycle behavior in theuandv variables. The overall
dynamics confirms the scenario in Section2. A large
excursion in the excited state is followed by a slow mo-
tion in the recovery state by which the system tries to go
back to the steady state (u0, v0) = (1, A). But it never
succeeds as the noise systematically triggers new ex-



232 C.B. Muratov et al. / Physica D 210 (2005) 227–240

Fig. 3. The mean interspike distanceT in (a) and its standard deviationσT in (b), as a function of the noise amplitudeε. Consistent with(4) we
measureε in units of 1/ logα−1. In (a), the standard deviation is also shown as errorbars. In all casesA = 0.7, and the full curves correspond
to the same value ofα as inFig. 2. Note the high degree of coherence that can be achieved whenα is small, while at the same timeT shows
significant dependence on the noise amplitudeε.

cursions in the excited state before the system reaches
(u0, v0). These excursions arise in a predictable fashion
whenv is aroundv� < v0.

To further quantify the degree of coherence of the
phenomenon, we have analyzed the statistics of the in-
terspike time intervals as a function of the noise ampli-
tudeε for different values of the time-scale separation
ratio α. For the purpose of this analysis, we define as
a spike any excursion with an amplitudeumax ≥ 10.
Fig. 3(a) shows the mean interspike intervalT and its
standard deviationσT obtained from the numerical so-

lution of Eq.(6). Also, in Fig. 3(b) we show the ratio
σT /T , which characterizes the “signal-to-noise ratio”
for the interspike distance.

For very small values ofε the spikes have the char-
acter of a Poisson process sinceσT /T → 1 asε → 0
with α fixed (see the errorbar andFig. 3(b)). They
represent rare incoherent large-amplitude fluctuations
away from the equilibrium point. Similarly it can be
seen that for large noise amplitudes, when the noise is
no longer weak, the spike train also looses coherence.
However, the data plotted inFig. 3(b) clearly show
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that for the considered values ofα there exists a broad
range ofε where the ratioσT /T is low, signifying high
degree of signal coherence (e.g.,σT /T is less than 0.2
for 0.01 ≤ ε ≤ 1 whenα = 0.001). Also, the degree
of coherence increases asα decreases. At the same
time, the value ofT shows significant dependence on
ε, whileσT does not (as seen, e.g., from the errorbars).

3.1. Analysis

Now we present a quantitative explanation of these
observations, consistent with the general scenario given
in Section2. Our analysis uses a combination between
multiple-time perturbation techniques with matched
asymptotics to describe the fast excitatory excursions
and the slow recovery motion, and large deviation the-
ory to describe the mechanism of escape from the slow
manifold. The latter part of the analysis is complemen-
tary to the rigorous analysis performed by Freidlin in
[2] on a different system and we refer the reader to this
paper for more mathematical details.

3.1.1. Recovery state and escape
Suppose first that the noise is absent in Eq.(6),

ε = 0. Then whenα 	 1 the system relaxes quickly to
u = u−(v), whereu−(v) andu+(v) are the stable and
the unstable branches of theu-nullcline, respectively.
Solving 0= 1 + u2v − (1 + A)u for u:

u
1 + A ±

√
(1 + A)2 − 4v

a
g

v

E
r
t

de,
ε p
t is
n very
m e
f
i
e

is frozen on theO(1) fast-time scale, and on this time-
scale, the dynamics is governed by the equation foru
in Eq. (6) in which v enters as a fixed parameter. It is
convenient to think of this equation as the motion of a
particle in the potential, i.e. write it as:

u̇ = −∂V (u, v)

∂u
+ √

εη, (11)

whereV (u, v) is given by:

V (u, v) = −1

3
vu3 + 1

2
(1 + A)u2 − u (12)

This potential is shown inFig. 4 for different values
of v. It has the shape of a left-slanted S, with a local
minimum atu = u−(v), the intersection ofv = const.
with the stable (left) branch of theu-nullcline defining
the slow manifold and a local maximum atu = u+(v),
the intersection ofv = const. with the unstable (right)
branch of this nullcline. Therefore, even in the presence
of a small noise,ε 	 1, the system stays confined near
this slow manifold and it can only escape via a noise-
activated hopping event whose rate at givenv has the
form of Eq.(3) [6]:

k(v) = 1

2π

√
(1 + A)2 − 4v exp

(−�V (v)

ε

)
(13)

where �V (v) = 2[V (u+(v), v) − V (u−(v), v)] is ex-
plicitly given by:

�
[(1 + A)2 − 4v]3/2

t eck
t -
t .
(
i n-
d ction
2 te
m ow
r .
T
i

fi
E

±(v) =
2v

, (9)

nd insertingu−(v) in the equation forv in Eq. (6)
ives:

˙ = 2α(A − v)

1 + A − 2v +
√

(1 + A)2 − 4v
. (10)

q. (10) together withu = u−(v) specifies the slow
ecovery motion to leading order arising on theO(α−1)
ime-scale whenα 	 1.

When the noise is present but small in amplitu
	 1, Eqs.(9) and (10)are not valid all the way u

o (u0, v0) on the slow manifold (in fact, this point
ever reached), but they still govern the slow reco
otion until the well-defined pointv� where escap

rom this slow manifold arises. To see this, letα → 0
n Eq. (6) assuming thatu andv areO(1). Then the
quation forv reduces tȯv = 0 which indicates thatv
V (v) =
3v2 , (14)

he energy barrier to be overcome. It is easy to ch
hat �V (v) is a decreasing function ofv on the en
ire interval 0< v < (1 + A)2/4, i.e. the rate in Eq
13), while very small whenε 	 1, is a very rapidly
ncreasing function ofv. We can now apply the sta
ard stochastic resonance argument recalled in Se
. There is a precise value,v = v�, such that the ra
atches theO(α) inverse time-scale on which the sl

ecovery motion governed by Eqs.(9) and (10)arises
hus, Eq.(14)gives�V (v) to be inserted into Eq.(5),

.e.

[(1 + A)2 − 4v�]3/2

3v2
�

= β (15)

xes v� as a function ofβ = limε,α→0 ε logα−1, and
qs.(9) and (10)are only valid beforev reachesv�.
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Fig. 4. The potential in(12), up to a constant, as a function ofu for various values ofv. The barrier decreases asv increases.

3.1.2. Excited state and reset
After the trajectory escapes the neighborhood of the

stable nullcline atv = v�, it continues moving toward
increasing values ofu corresponding to the excited
state. At this point the effect of the noise becomes negli-
gible. With the increase ofu, the effective time-scale of
v decreases (see Eq.(6)), so when the system undergoes
a large excursion in the excited state, the time-scales
of these two variables can no longer be separated. On
the other hand, whenu = O(α−1) andv = O(1), Eq.
(6) can be simplified by neglecting all the terms except
u2v. The resulting system of equations is:

u̇ = u2v v̇ = −αu2v, (16)

with the asymptotic boundary conditionsu(−∞) = 0,
v(−∞) = v�. This is equivalent to:

u̇ = u2(v� − αu), v = v� − αu, (17)

which can be solved exactly to give the transition layer
for the rising part of the spike. It shows that in the
spikeu rises toumax = α−1v� � 1 on the time-scale
of α 	 1, whilev approaches zero asymptotically. This
is then followed by a return to the recovery state, i.e.

the fall of the trajectory onto theu-nullcline with fixed
v = 0 (asymptotically) according to:

u̇ = −(1 + A)u, v = 0. (18)

with the asymptotic initial conditionu(0) = umax.
Following the excursion in the excited state, the sys-

tem starts over again the slow recovery motion gov-
erned asymptotically by Eqs.(9) and (10)with initial
conditionv = 0.

3.1.3. Characteristic of the limit cycle
Since the system spends most of the time on the slow

manifold, asymptotically the period of the limit cycle
will be equal to the timeT (v�) it takes to go fromv = 0
tov = v� by Eq.(10). This time is explicitly calculated
by integrating Eq.(10):

T (v�) = α−1

[
A + v� −

√
(1 + A)2 − 4v� + 1 + 1

2
(1 − A) log

(
A2(1 − A +

√
(1 + A)2 − 4v� )

(A − v�)(A − 1 +
√

(1 + A)2 − 4v� )

)]
.

(19)

Note also thatβ in Eq.(15)must satisfy:

β ∈ (βc, ∞) (20)

with

βc = (1 − A)3

3A2 = [(1 + A)2 − 4v0]3/2

3v2
0

(21)
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since the attainable values ofv on theu-nullcline lie in
the interval 0< v < v0 = A. In more colloquial terms,
this means that for a fixed value ofα 	 1 there is a
critical amplitude of the noise for the establishment of
the limit cycle behavior:

εc = (1 − A)3

3A2 logα−1 . (22)

No limit cycle behavior is possible whenβ ≤ βc. As
β approachesβc from above, we havev� → v0, and
T (v�) → ∞. Therefore, if one fixes the parameters in
the deterministic part of the dynamics there is a transi-
tion to a limit cycle behavior at a critical value of the
amplitude of the noise.

Summarizing the results of this section, we have
shown the feasibility of the mechanism of self-induced
stochastic resonance on the specific example of the
Brusselator. Small noise perturbations of the excitatory
variable induce a transition to a deterministic limit cy-
cle whose characteristics are controlled by the noise
amplitude and the time-scale ratio according to the
value ofβ = limε,α→0 ε logα−1. The limit cycle is es-
tablished away from the bifurcation, i.e. for values ofA
which do not need to be close to the critical valueAω →
1 asα → 0, see Eq.(8). On the other hand, the limit
cycle is observed only if the noise is above the critical
value given by Eq.(22). We now proceed to corroborate
these predictions via further numerical experiments.

F
l

ig. 5. Numerical solution of the stochastic differential equation forα = 0.

ines, the predicted limit cycle is shown by the dashed line, with the es

001, ε = 0.067, A = 0.7. The nullclines are shown with thick solid
cape part shown by a solid line with an arrow.
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3.2. Numerical validation

Since the proposed mechanism operates in the limit
α, ε → 0, with the value ofε logα−1 fixed, we per-
formed further numerical studies of the model at
smaller values of the parameterα to verify its pre-
dictions. Our first simulation was performed at the

same values ofA andε logα−1 as inFig. 2, but with
α = 0.001, an order of magnitude smaller. The results
are shown inFig. 5. From this figure, one can see a
significant improvement of coherence (the computed
value ofσT /T � 0.08 here), in agreement with our pre-
diction that the coherence becomes perfect in the limit
α → 0. Also, the mean interspike intervalT is now
Fig. 6. The effect of varying the noise amplitude: r
esults of the simulations atα = 0.0001,A = 0.7.
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Fig. 7. The effect of varying the noise amplitude (continued): results of the simulations atα = 0.0001,A = 0.7. (Recall that the apparent size
of the fluctuations around the stable branch of theu-nullcline is accentuated by the logarithmic scale we use foru.)

within ∼ 20% of the value given by Eq.(19). Simula-
tions show that decreasingα further consistently im-
proves the agreement with the theory (we verified this
down toα = 10−6).

We next investigate the effect of varying the noise
amplitude on the parameters of the limit cycle. The
simulations are performed atα = 0.0001 andA = 0.7

and are shown inFigs. 6 and 7. Our first prediction is
that forε < εc, which in the limitα → 0 is given by Eq.
(22), no coherent oscillations will exist. This is what
we observe in the simulations whenε � 0.0025, see
the first row inFig. 6. Here, instead of a periodic spike
train we observe a Poisson sequence of spikes. On the
other hand, atε = 0.003 the behavior rather abruptly
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changes to almost periodic, consistent with our theory
(for this value ofα the predicted value ofεc = 0.002,
within reasonable agreement with the observations).

Increasing the noise amplitude, we see that the
period and the amplitude of the observed periodic
limit cycle decreases, while the spike train maintains
a high degree of coherence, see the two lower panels
of Fig. 6. One can also see from the phase portrait in
the lower panel ofFig. 6 that the trajectory leaves the
u-nullcline at a particular point below the equilibrium
(u0, v0) via a noise-activated process, consistent with
our mechanism. This is seen more dramatically at
larger values ofε, seeFig. 7. Clearly, the location of the
equilibrium has no effect on the value ofv� at which

the trajectory escapes theu-nullcline. Remarkably,
however, the limit cycle maintains its coherence even
for ε = 4 (then the noise is no longer weak, but
�V (v�)/ε is still large, which suffices for our theory
to apply). One can also clearly see that noise indeed
controls the parameters of the limit cycle. For example,
the period and the amplitude of the limit cycle changes
several-fold in the simulations inFigs. 6 and 7, while
the degree of coherence is essentially unchanged.
In other words, the noise amplitude really acts as a
control parameter for the oscillatory behavior of the
system.

Finally, we verify the robustness of our mechanism
by showing that it does not require tuning of the param-
Fig. 8. Tuning is not required for the mechanism: resu
lts of the simulation atα = 0.0001,A = 0.3, ε = 0.6.
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eters and can be realized far from bifurcation points.
To this end, we takeα = 0.0001 andA = 0.3, which
is about three times smaller thanAω. The results of the
simulation withε = 0.6 are shown inFig. 8. Note that
for these values ofAone needs stronger noise to induce
the oscillations (for example, the predicted value ofεc
at these parameters isεc � 0.14). Once again, we see
a coherent almost periodic spike train, with a clearly
defined value ofv� which is significantly lower than
v0, consistent with our theory.

4. Comparison with coherence resonance

As explained before, self-induced stochastic reso-
nance arises away from the Hopf bifurcation atA = Aω

and the limit cycle it induces can be controlled by
the parameterβ = limε,α→0 ε logα−1 ∈ (βc, ∞) (re-
call that the constraintβ > βc guarantees that the sys-
tem hops out of the slow manifold of the recovery state
and back into the excited state before reaching the
steady state). Self-induced stochastic resonance per-
sists in the limit asA → 1, which is the limiting value
of Aω asα → 0 (see Eq.(8)), provided thatβ > 0 in
this limit (in fact, this is true even whenA > 1). How-
ever, asA → 1, a limit cycle can also be established
whenβ = 0, but by a mechanism different from ours
and closer to coherence resonance.

Indeed, suppose thatA → 1− first and then let
α −1

t t
l y
s
t this
n

T

S jec-
t
B s
n nt, a
v ory
t ited
s k
t

m

led to Eq.(23), the period of the limit cycle is given by
Tω in the limit asα → 0. It is also clear thatTω will be
the period of the emerging limit cycle asA → 1+. So,
the noise plays a rather passive role in this mechanism
of coherence resonance since the limit cycle induced by
noise right before bifurcation is essentially the same as
the one that will be established right after bifurcation,
and its periodTω given in Eq.(23) depends onα only
and not onε.

5. Concluding remarks

In summary, we have shown that a vanishingly small
noise in excitable systems with strong time-scale sepa-
ration can induce a transition to a limit cycle behavior.
The mechanism, which we term self-induced stochastic
resonance, is robust as it arises away from bifurcations,
and it leads to a limit cycle whose period and amplitude
can be controlled by the noise. This is different from
other mechanisms like coherence resonance which are
less robust as they require the system to be close to bi-
furcation and lead to a limit cycle which is essentially
the same as the one that emerges after bifurcation and
cannot be controlled by the noise.

We believe that self-induced stochastic resonance
may have important implications in several areas.
Consider for instance, coupled excitable systems. Our
analysis indicates that in such systems the level of
the noise, both extrinsic and intrinsic, may be used
a to a
( ider
a lls.
U all
a ike.
T al in-
p nary
r vel
s e, the
c ode.
T de,
s r the
d tem
i side
r

pa-
t s
t for-
, ε → 0 in a way thatβ = limα,ε→0 ε logα = 0. In
his limit, the steady state is (u0, v0) = (1, 1), the poin
ocated at the top of theu-nullcline, which is neutrall
table. Starting fromv = 0, integrating Eq.(10)shows
hat the deterministic trajectory reaches the top of
ullcline in finite timeT = Tω, where

ω = 3α−1. (23)

inceβ = 0, the noise is too weak to make the tra
ory hop from theu-nullcline before it reaches (u0, v0).
ut once the trajectory reaches (u0, v0), since there i
o energy barrier to overcome to escape this poi
anishingly small amount of noise allows the traject
o take off and perform a large excursion in the exc
tate described by Eqs.(17) and (18), then return bac
o v = 0 on theu-nullcline and complete the cycle.

Since the motion described by Eq.(17) and (18)is
uch faster than the one described by Eq.(10) which
s an information carrier and be transformed in
quasi-)deterministic signal. As a prototype, cons
system of all-to-all positively coupled excitable ce
nder the action of the noise of sufficiently sm
mplitude each cell will occasionally generate a sp
hese spikes will have random phases, so their tot
ut on each individual cell may average to a statio
andom signal of low intensity. Now, if the noise le
uddenly increases due to an external disturbanc
ells may switch to the noise-assisted oscillatory m
his will further increase the effective noise amplitu
o that the oscillatory mode may persist even afte
isturbance is removed. In colloquial terms, the sys

n a dormant state may wake up from the out
attle.

In a similar way, our results may be applied to s
ially distributed excitable media[9]. In these system
he analog of the noise-activated event will be the
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mation of a radially symmetric nucleus, leading to sub-
sequent initiation of radially divergent waves[9,10,12].
In the wake of such a wave the system will undergo re-
covery. It is clear, then, that the system will be most
recovered at the position where the wave was initiated.
Hence, the new wave will be initiated again at the same
spot, with the dynamics repeating periodically. This
suggests that the well-known phenomenon of target
pattern formation in two-dimensional excitable media
[9] might have an alternative interpretation in terms of
noise-driven periodic wave generation.
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