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Abstract

The effect of small-amplitude noise on excitable systems with strong time-scale separation is analyzed. It is found that
vanishingly small random perturbations of the fast excitatory variable may result in the onset of a deterministic limit cycle
behavior, absent without noise. The mechanism, termed self-induced stochastic resonance, combines a stochastic resonance
type phenomenon with an intrinsic mechanism of reset, and no periodic drive of the system is required. Self-induced stochastic
resonance is different from other types of noise-induced coherent behaviors in that it arises away from bifurcation thresholds,
in a parameter regime where the zero-noise (deterministic) dynamics does not display a limit cycle nor even its precursor. The
period of the limit cycle created by the noise has a non-trivial dependence on the noise amplitude and the time-scale ratio between
fast excitatory variables and slow recovery variables. It is argued that self-induced stochastic resonance may offer one possible
scenario of how noise can robustly control the function of biological systems.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Self-induced stochastic resonance; Coherence; Excitable systems; Large deviations; Noise-controlled

1. Introduction ishingly small noise, whereas no such oscillation arises
in the absence of noise. The periodic forcing changes
Small random perturbations may have dramatic ef- which state is temporarily the most favorable energeti-
fects on dynamical systems and lead to the emergencecally. Due to the noise, the system is able to reach this
of new dynamical behaviors which, surprisingly, can most favorable state by activated hopping events. The
be deterministic in suitable limifd]. Stochastic reso-  rate of the hopping depends mainly on the energy bar-
nance is a well-known examp, 14]. A system driven rier to be crosse,6], and the barrier height varies
by a weak periodic forcing will oscillate precisely with  in time due to the forcing. As a result, in a suitable
the period of the driving force in the presence of van- limit as the period of the forcing goes to infinity and
the amplitude of the noise to zero, the hopping takes
"+ Corresponding author. Tel. +1 973 596 5833. place precisely when its rate matches the frequency of
E-mail addressmuratov@nijit.edu (C.B. Muratov). the driving force. This is the resonance phenomenon
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whose net effect is a synchronization of the system constructive role in the deterministic dynamics it initi-
with the forcing. ates. A similar mechanism has been reported recently
In this standard mechanism of stochastic resonance,by Freidlin in the pioneering pap§2]. Here we show
the periodic forcing plays an essential role. Yet in re- its ubiquity in randomly perturbed excitable systems.
cent years there has been numerical and experimen-(Self-induced stochastic resonance may, for instance,
tal evidence that small random perturbations can also explain the results observed in the numerical experi-
trigger transition to a deterministic periodic behavior ments with the FitzHugh—-Nagumo model performed
even in the absence of periodic drive on the system. in [15]).
The corresponding mechanisms have been tetamed Excitable systems arise in a wide variety of areas
tonomous stochastic resonan&4,14] or coherence which include climate dynamics, chemical reactions,
resonancg8,13]. They both arise in systems close to lasers, ion channels, nerve cells, neural systems, car-
the threshold of bifurcation toward a periodic behav- diovascular tissues, etc. and are especially common in
ior. Above the bifurcation threshold, a limit cycle is  biology [7—9]. One can think of them as dynamical
present, but below threshold the intrinsic oscillation is systems possessing a rest state, an excited state, and a
only a transient feature observed while the system re- recovery state. In the absence of perturbations, an ex-
laxes toward its equilibrium state. In such situations, citable system remains in the rest state. Small pertur-
the noise can temporarily push the system above the bations create only small amplitude linear responses.
bifurcation threshold and thereby trigger a cycle. If the Larger perturbations, however, cause large-amplitude
period of this cycle is much larger than the time-scale dynamical excursions during which the system goes to
overwhichitistriggered by the noise, the ratio between its excited state, then its recovery state, before return-
the variance of the period and its mean is very small, ing to the rest state. Generally, the excited phase is fast
i.e. the phenomenon displays a high degree of coher- whereas the recovery phase is slow because they arise
ence. The resonance phenomenon in these mechanismas a result of the competition between positive and neg-
refers to the possibility to optimize the degree of co- ative feedbacks operating on very differenttime-scales.
herence by adjusting the amplitude of the noise, which As a result, the slow recovery motion in an excitable
is quite different from its original meaning in standard system can generally be described as a motion on a
stochastic resonance. In particular, both in autonomous slow manifold that the system quickly reaches after a
stochastic resonance and in coherence resonance théarge excursion in the excited state.
time scale associated with the rate of noise-activated We shall be interested in excitable systems whose
hopping does not have to match the intrinsic periodic excitatory variables are perturbed by small amplitude
time-scale of the system (it just has to be smaller than random perturbations. In these situations, we show
this time-scale to guarantee coherence). As a result,that noise systematically triggers a new large excur-
noise plays a rather passive role in these mechanismssion while the system is in the slow recovery state. The
In addition, the constraint that the system be close to trigger mechanism involves a barrier crossing event by
bifurcation requires fine-tuning of the control param- which the system escapes the slow manifold associ-
eters. Thus, one may wonder if there is a more robust ated with the recovery state and whose rate depends on
way by which noise can create deterministic periodic the position of the system on this manifold. As a re-
behavior in the absence of periodic driving force. sult, the hopping always arises precisely when its rate
In this paper, we show that there exists indeed a ro- matches the recovery time-scale. This is the stochas-
bust mechanism, which we terself-induced stochas-  tic resonance part of the mechanism. It is combined
tic resonanceby which small noise can trigger tran- with a mechanism of reset provided by the excited
sition to a deterministic periodic behavior in systems state which mitigates the periodic forcing necessary
away from bifurcation threshold, i.e. in a parameter in standard stochastic resonance and instead makes it
regime where the zero-noise (deterministic) dynam- self-induced. Indeed, after the large excursion in the ex-
ics of the system does not display a limit cycle dy- cited state triggered by the hopping event, the system
namics nor even its precursor. In addition, we show goes back to the state of slow recovery motion and the
that the noise amplitude works as a control parameter phenomenon can repeat itself over and over again. The
for the coherent motion, hence the noise plays a truly result is the emergence of a deterministic limit cycle
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induced by the noise whose amplitude and frequency I

are controlled by a parameter involving the amplitude

of the noise and the ratio between the fast excitatory "8

and the slow recovery time-scales. Yo
The remainder of this paper is organized as follows.

In Section2 we explain the mechanism of self-induced

stochastic resonance in the context of excitable system.

We establish in which limit the mechanism arises and

express the period of the limit cycle in terms of the

noise amplitude and the ratio of time-scales in the

system. In Sectior8 we demonstrate the feasibility

of the mechanism on the example of the Brusselator.

In this system, a complete analysis is possible which rig. 1. peterministic flow generated 16§). HereA = 0.7 anda =

we corroborate by a series of careful numerical 0.01. The thick curves are the andv-nuliclines, respectively. The

experiments to illustrate how the coherence of the slow manifold of the recovery state is the (v) portion of theu-

mechanism can be made arbitrarily high, how the noise nuIIcIing. The excited state c_orresponds to the_ part of the phage space

. to the right of theu (v) portion of theu-nullcline. Note thatu is

can be used as a'control paramete.r, etc. In Sedtlon shown on a logarithmic scale.

we compare self-induced stochastic resonance with

coherence resonance to stress the differences between

) . ; .~ arise on the time-scale of order 1, and their dynam-
the two. Finally, some concluding remarks are givenin . . . . .
Sections ics is governed by the equation farin Eq. (1) with

v frozen (except, perhaps, in some part of the excur-
sion whenu turns over to go back to the recovery state,
see below). The recovery state corresponds to a slow
motion on the manifold defined by the stable solution
branch off(«, v) = 0 containing the rest state defined
by f(u, v) = g(u, v) = 0 (se€Fig. 1foranillustration).

In the absence of the noise, the excited state can only be
a transient state, and the trajectory quickly approaches
the slow manifold of the recovery state, and then pro-

0.6

0.4

0
0.1

2. The general mechanism of self-induced
stochastic resonance

A generic excitable system consists of a set of exci-
tatory and recovery variables, denoted, respectively by
u andv, whose dynamics is governed by:

= f(u,v)+ /o, ceeds on the time-scate ! along this manifold and
b = ag(u. v) (1) into the globally attracting steady state.
= o8, v), With the introduction of the noise, the situation

Heref andg are the nonlinearities; is the ratio of the ~ changes. The trajectory may leave the recovery state
time-scales, and we have added some external noise and go back to the excited state by escaping the slow
with amplitudee perturbing the excitatory variables. manifold in theu direction via a noise-activated pro-
The noise may have different physical origins. Here €ess. We will assume that for small noisex 1, such

we will assume thay is external white-noise, i.e. a Process happens at Kramers rié]:

Gaussian process with mean zero and covariance:

—AV(v)
, / k=v exp() <1, 3)
(n(On()) = 8(t — 1') 2 €
different kinds of noise can be used and lead to quali- whereAV(v) is somev-dependent energy barrier to be
tatively similar results. crossed to initiate the escape from the slow manifold,

Whena « 1, there is a large time-scale separation andv is some characteristic frequency independent of
in the deterministic part of the dynamics governed by ¢. As a result, the system will perform an excursion in
f and g. This is consistent with the excitatory vari- the excited state driven mainly by the deterministic part
ablesu being fast and the recovery variabledeing of the dynamics. After this excursion, the trajectory
slow. Thus, the large excursions in the excited state lands again somewhere on the slow manifold of the
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recovery motion. The dynamics canthen proceedalong The mechanism described above does not require
the slow manifold until another escape happens, and sothe system to be close to bifurcation, and therefore it is
on. This process may lead to a truly deterministic limit robust against parameter changes as lor{§)adefines
cycle in a suitable limit because of the following two an accessible point on the slow manifold. In addition,

mechanisms. since the dynamics in the recovery state is much slower
than the one in the excited state, the period of the limit
2.1. Resonance mechanism cycle will be dominated by the time it takes the system

to go from the point it lands on at the slow manifold

The interplay between the escape events and the mo-0 v. where it leaves it again. But sinag depends
tion along the slow manifold requires that their time- on the amplitude of the noiseand the ratio of time-
scales be comparable. Assume that the energy bar-scalex through(5), botha ande can be used as control
rier AV(v) in Eq. (3) decreases as one approaches the parameters for the period of the limit cycle.
steady state by the dynamical path along the slow man-
ifold (this amounts to assuming that the escape events
become easier as the system approaches the stead$. The Brusselator
state). Then by Ed3), the escape rate is a very rapidly

increasing function ob whene is small. Suppose that To demonstrate the feasibility of the self-induced

&, a — 0in away that: stochastic resonance mechanism discussed in Section
1 2, we will consider the Brusselat@t1]:

eloga™t — B 4)

for some finiteB. Then escape from the slow manifold
will occur with probability one at the point = v, on
this manifold, where, satisfies:

(6)

i=1+u?v— 1+ Au + /e,
b = a(Au — u?v),

whereu andv are scalars and is a control parameter.

AV(v,) = B, (5) This is of the form(1) for the nonlinearitiesf = 1 +

u?v— (1+ Au andg = Au — u?v.

provided that this equation has a solution on the acces-  The Brusselator is a prototypical excitable system

sible part (i.e. the stable branch) of the slow manifold. whena « 1andA < 1. This canbe seen fromits phase

For small but nonzere ande, escape occurs with prob-  portrait shown inFig. 1 for a particular choice of the

ability close to one in the vicinity of the point= v, parameters. Whea < 1, the nullclines of6) intersect

where AV(v,) = eloga!. Indeed, before reaches  on the stable branch of thenullcline, so the flow is

v, the slow recovery motion is so much faster than always into the unique equilibrium point

the escape rate that the system has no time to hop be-

fore it reaches,. But as soon as has passed,, the (uo0, vo) = (1, A). (7)

escape rate becomes so much faster than the recover

motion that the system must hop. Thus, the matching

of time-scales implied b{b) is precisely the resonance

mechanism in standard stochastic resonghdet].

¥\Iote that the slow manifold of the recovery state is
essentially the part of the-nulicline located at the left
of thev-nulicline (seeFig. 1. It is also clear from the
figure that sufficiently large increases in tingariable
away from equilibrium will result in large excursions

2.2. Reset mechanism into the excited state. Fot > A,,, where

This is inherent to the excitable character ofthesys- 4 — 14 4, (8)
tem. After alarge excursion in the excited state initiated
from v,, the trajectory returns to the slow manifold at the system exhibits a Hopf bifurcation: the steady state
a point which leads again t@, by the slow recovery  (ug, vo) = (1, A) becomes unstable and a limit cycle
motion. Then the process will repeat itself indefinitely emerges even in the absence of noise.
in a sequence of recovery and excited states and the We begin by presenting results of the numerical sim-
dynamics of the system will indeed be a limit cycle. ulations of Eq(6) with a representative set of values of
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u T T T U
(a)

Fig. 2. Numerical solution of6). The parameters ard: = 0.7,« = 0.01,¢ = 0.1. (a) The time series with the nearly periodic spike train. (b)

The phase plane plot showing the corresponding (almost) deterministic limit cycle in gray. The thick solid linesuaranithe-nullclines,
respectively. The dashed line shows the predicted limit cycle, with the escape part shown by a solid line with an arrow. Note that the apparent
size of the fluctuations of the trajectory around the slow manifold (stable branchwithiécline) is accentuated by the logarithmic scale used

for the variableu.

the parameters—Iater in Secti82 we perform sim- spikes are occurring in an almost periodic fashion, with
ulations with different parameters. We uge= 0.01, their amplitude and other characteristics being approx-
¢ = 0.1 which are reasonably small values. We also imately the same at each time. This is corroborated by
takeA = 0.7 which is not close to the Hopf bifurcation  the phase plane portraktig. 2(b) which shows a nearly
observed a#l,, >~ 1, see Eq(8). We integrate Eq(6) limit cycle behavior in theiandv variables. The overall
using a forward Euler scheme with adaptive time-step dynamics confirms the scenario in Sectim large

to fully resolve the fast excursion in the excited state. excursion in the excited state is followed by a slow mo-
Fig. 2(a)shows the time series for one realization of tioninthe recovery state by which the system tries to go
the noise. This figure shows a train of large amplitude back to the steady stateq, vo) = (1, A). But it never
spikes in the excitatory variable. It is striking that the succeeds as the noise systematically triggers new ex-
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Fig. 3. The mean interspike distantén (a) and its standard deviatier in (b), as a function of the noise amplitudeConsistent with{4) we
measure in units of I/ loga~1. In (a), the standard deviation is also shown as errorbars. In all @ase8.7, and the full curves correspond
to the same value af as inFig. 2 Note the high degree of coherence that can be achieved wiesmall, while at the same timeshows

significant dependence on the noise amplitede

cursions in the excited state before the system reachedution of Eq.(6). Also, in Fig. 3(b) we show the ratio
(o0, vo)- These excursions arise in a predictable fashion o7/ T, which characterizes the “signal-to-noise ratio”

whenv is aroundv, < vg.
To further quantify the degree of coherence of the

phenomenon, we have analyzed the statistics of the in-

terspike time intervals as a function of the noise ampli-
tudee for different values of the time-scale separation
ratio «. For the purpose of this analysis, we define as
a spike any excursion with an amplitudg,ax > 10.
Fig. 3(a@) shows the mean interspike interfiaand its
standard deviatioar obtained from the numerical so-

for the interspike distance.

For very small values of the spikes have the char-
acter of a Poisson process singe/T — 1 ase — 0
with « fixed (see the errorbar arféig. 3(b)). They
represent rare incoherent large-amplitude fluctuations
away from the equilibrium point. Similarly it can be
seen that for large noise amplitudes, when the noise is
no longer weak, the spike train also looses coherence.
However, the data plotted iRig. 3(b) clearly show
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that for the considered values@there exists a broad is frozen on theD(1) fast-time scale, and on this time-

range ofe where the ratier/ T is low, signifying high scale, the dynamics is governed by the equatiorufor

degree of signal coherence (egr/ T islessthan 0.2  in Eg. (6) in which v enters as a fixed parameter. It is

for 0.01 < ¢ < 1 whena = 0.001). Also, the degree  convenient to think of this equation as the motion of a
of coherence increases asdecreases. At the same particle in the potential, i.e. write it as:

time, the value ofl shows significant dependence on

¢, while o7 does not (as seen, e.g., from the errorbars). ; = — avg”’ v) + en, (11)
u
3.1. Analysis whereV(u, v) is given by:
o . 1 1
Now we present a quantitative explanation of these V(u, v) = —évu3 +50+ Au? —u (12)

observations, consistent with the general scenario given
in Section2. Our analysis uses a combination between This potential is shown ifrig. 4 for different values
multiple-time perturbation techniques with matched of v. It has the shape of a left-slanted S, with a local
asymptotics to describe the fast excitatory excursions minimum atu = u_(v), the intersection ob = const.
and the slow recovery motion, and large deviation the- with the stable (left) branch of thenulicline defining

ory to describe the mechanism of escape from the slow the slow manifold and a local maximumat= 11 (v),
manifold. The latter part of the analysis is complemen- the intersection ob = const. with the unstable (right)
tary to the rigorous analysis performed by Freidlin in branch of this nulicline. Therefore, evenin the presence
[2] on a different system and we refer the reader to this of a small noises « 1, the system stays confined near

paper for more mathematical details. this slow manifold and it can only escape via a noise-
activated hopping event whose rate at givemas the
3.1.1. Recovery state and escape form of Eq.(3) [6]:

Suppose first that the noise is absent in &), 1 —AV(v)
e = 0. Thenwhem « 1 the system relaxes quicklyto k(v) = 2—\/ 1+ A2 —d EXp< ) (13)
u = u_(v), whereu_(v) andu, (v) are the stable and i €
the unstable branches of thenulicline, respectively.  where AV (v) = 2[V(uy(v), v) — V(u_(v), v)] is ex-

Solving 0= 1+ u?v — (14 A)u for u: plicitly given by:
1+ A++/(1+ A2 -4 1+ A)? — 4]¥?
us(v) = Crar-s @  ave = G AT 14)
2v 3v
and insertingz_(v) in the equation for in Eqg. (6) the energy barrier to be overcome. It is easy to check
gives: that AV(v) is a decreasing function aof on the en-

26(A — ) tire interval O< v < (1+ A)2/4, i.e. the rate in Eq.
V= . (10) (13), while very small where « 1, is a very rapidly
1+A-20+/(1+ A2 -4 increasing function of. We can now apply the stan-
dard stochastic resonance argument recalled in Section
2. There is a precise value,= v,, such that the rate
matches th&(«) inverse time-scale on which the slow
recovery motion governed by Eq®) and (10)arises.
Thus, Eq(14) givesAV(v) to be inserted into E(q5),
ie.

Eq. (10) together withu = u_(v) specifies the slow
recovery motion to leading order arising on thgx 1)
time-scale whew « 1.

When the noise is present but small in amplitude,
e « 1, Egs.(9) and (10)are not valid all the way up
to (uo, vo) on the slow manifold (in fact, this point is
never reached), but they still govern the slow recovery [(1 + A)2 — 4v,]%/?
motion until the well-defined point, where escape 302 - (15)
from this slow manifold arises. To see this, det> 0 *
in Eqg. (6) assuming thati and v are O(1). Then the fixes v, as a function off = lim,,_,0eloga—t, and
equation forv reduces ta = 0 which indicates thait Egs.(9) and (10)are only valid before reacheg,.
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)
"

T T T

Fig. 4. The potential iff12), up to a constant, as a functionwfor various values of. The barrier decreases afcreases.

3.1.2. Excited state and reset the fall of the trajectory onto the-nullcline with fixed
After the trajectory escapes the neighborhood of the v = 0 (asymptotically) according to:

stable nullcline ab = v,, it continues moving toward

increasing values ofi corresponding to the excited

state. Atthis point the effect of the noise becomes negli- \,:ith the asymptotic initial condition(0) = umax

gible. With the increase af, the effective time-scale of Following the excursion in the excited state, the sys-

vdecreases (see H@)), sowhen the systemundergoes (e starts over again the slow recovery motion gov-

a large excursion in the excited state, the time-scales (eq asymptotically by Eq€9) and (10)with initial
of these two variables can no longer be separated. On ., qitionv = 0.

the other hand, whem = O(«~1) andv = 0(1), Eq.
(6) can be simplified by neglecting all the terms except
u?v. The resulting system of equations is:

u=—1+ A)u, v=0. (18)

3.1.3. Characteristic of the limit cycle
Since the system spends most of the time on the slow

i =u?v b = —auv, (16) manifold, asymptotically the period of the limit cycle
) ) . will be equal to the tim@ (v, ) it takes to go fromv = 0
with the asymptotic boundary conditiong-oc) = 0, tov = v, by Eq.(10). This time is explicitly calculated

v(—00) = v,. This is equivalent to: by integrating Eq(L0):

T()=a L |A+v. — VAT A2 —dv, +1+ %(1 — A)log ((A *izf)l)(_AAfl +V (%)ﬂ .

(19)
Note also thap in Eq. (15) must satisfy:

i = u?(v, — ow), V= v, — ou, a7

: . L B € (Bc, ) (20)
which can be solved exactly to give the transition layer
for the rising part of the spike. It shows that in the with
spikeu rises toumax = @~ 1v, > 1 on the time-scale 3 2 3/2
ofa <« 1, whilev approaches zero asymptotically. This g, = (1-4)" _ [(d+4)"— 4vo] (21)

) . 2 2
is then followed by a return to the recovery state, i.e. 34 3ug
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since the attainable values@bn theu-nullcline lie in

the interval O< v < vg = A. In more colloquial terms,
this means that for a fixed value af« 1 there is a

critical amplitude of the noise for the establishment of

the limit cycle behavior:
(1-4)°

¢~ 342loga-1°

(22)

No limit cycle behavior is possible whethi < Sc. As

B approacheg; from above, we have, — vg, and

T(v.) — oo. Therefore, if one fixes the parameters in
the deterministic part of the dynamics there is a transi-
tion to a limit cycle behavior at a critical value of the

amplitude of the noise.

Summarizing the results of this section, we have
shown the feasibility of the mechanism of self-induced
stochastic resonance on the specific example of the
Brusselator. Small noise perturbations of the excitatory
variable induce a transition to a deterministic limit cy-
cle whose characteristics are controlled by the noise
amplitude and the time-scale ratio according to the
value ofg = lim, 4,0 € log o~ L. The limit cycle is es-
tablished away from the bifurcation, i.e. for valuegtof
which do notneedto be close to the critical valuyg—

1 asa — 0, see Eq(8). On the other hand, the limit
cycle is observed only if the noise is above the critical
value given by Eq(22). We now proceed to corroborate
these predictions via further numerical experiments.

T T T T T T T
u u— | v
600 s e 46
500 | 45
400 - 4
300 4 3
200 | 4 2
100 4
0 - A T T ; ay oy i
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
(a) t
1
0.8 [ -
06 [ -
f=3
04 .
02 -
0
(by 01 1000

Fig. 5. Numerical solution of the stochastic differential equationfer 0.001, ¢ = 0.067, A = 0.7. The nuliclines are shown with thick solid
lines, the predicted limit cycle is shown by the dashed line, with the escape part shown by a solid line with an arrow.
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3.2. Numerical validation same values of andeloge! as inFig. 2, but with
a = 0.001, an order of magnitude smaller. The results
Since the proposed mechanism operates in the limit are shown inFig. 5. From this figure, one can see a

a, ¢ — 0, with the value ofcloga~? fixed, we per- significant improvement of coherence (the computed
formed further numerical studies of the model at valueofor/T >~ 0.08 here), in agreementwith our pre-
smaller values of the parameterto verify its pre- diction that the coherence becomes perfect in the limit

dictions. Our first simulation was performed at the « — 0. Also, the mean interspike intervalis now

T T T T T T T 1
€ =0.0025

6F u

100.u, v

0.4

02

0 5 10 15 20 25 30 35 40 0.1 1 10 100 1000 10000

0.8

041

100.u, v

0.2

1
1000 10000
ot u

100 u, v

I ST SR ST P

0 2 4 6 80000 10 12 14 16 18
ot

100 1000 10000

Fig. 6. The effect of varying the noise amplitude: results of the simulatioms=26.0001,4 = 0.7.
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Fig. 7. The effect of varying the noise amplitude (continued): results of the simulations &0001,A = 0.7. (Recall that the apparent size
of the fluctuations around the stable branch ofudhrulicline is accentuated by the logarithmic scale we useifor

within ~ 20% of the value given by E¢19). Simula- and are shown ifrigs. 6 and 7Our first prediction is
tions show that decreasingfurther consistently im-  thatfore < e¢, whichinthe limite — Ois givenby Eq.
proves the agreement with the theory (we verified this (22), no coherent oscillations will exist. This is what
down toa = 1075). we observe in the simulations wherg 0.0025, see

We next investigate the effect of varying the noise the first row inFig. 6. Here, instead of a periodic spike
amplitude on the parameters of the limit cycle. The train we observe a Poisson sequence of spikes. On the
simulations are performed at= 0.0001 andA = 0.7 other hand, at = 0.003 the behavior rather abruptly
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changes to almost periodic, consistent with our theory the trajectory escapes thenullcline. Remarkably,
(for this value ofw the predicted value of; = 0.002, however, the limit cycle maintains its coherence even
within reasonable agreement with the observations). for ¢ = 4 (then the noise is no longer weak, but
Increasing the noise amplitude, we see that the AV(v,)/¢ is still large, which suffices for our theory
period and the amplitude of the observed periodic to apply). One can also clearly see that noise indeed
limit cycle decreases, while the spike train maintains controls the parameters of the limit cycle. For example,
a high degree of coherence, see the two lower panelsthe period and the amplitude of the limit cycle changes
of Fig. 6. One can also see from the phase portrait in several-fold in the simulations iRigs. 6 and 7while
the lower panel ofig. 6that the trajectory leaves the the degree of coherence is essentially unchanged.
u-nulicline at a particular point below the equilibrium In other words, the noise amplitude really acts as a
(u0, vo) Via a noise-activated process, consistent with control parameter for the oscillatory behavior of the
our mechanism. This is seen more dramatically at system.

larger values of, seeFig. 7. Clearly, the location of the Finally, we verify the robustness of our mechanism
equilibrium has no effect on the value of at which by showing that it does not require tuning of the param-
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Fig. 8. Tuning is not required for the mechanism: results of the simulatien=20.0001,4 = 0.3,¢ = 0.6.
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eters and can be realized far from bifurcation points.
To this end, we take = 0.0001 andA = 0.3, which

is about three times smaller thdp,. The results of the
simulation withe = 0.6 are shown irFig. 8 Note that
for these values gk one needs stronger noise to induce
the oscillations (for example, the predicted value of

at these parametersds ~ 0.14). Once again, we see
a coherent almost periodic spike train, with a clearly
defined value ofy, which is significantly lower than
vo, consistent with our theory.

4. Comparison with coherence resonance

As explained before, self-induced stochastic reso-
nance arises away from the Hopf bifurcatiosat A,
and the limit cycle it induces can be controlled by
the parameteg = lim. 4 .oeloga™! € (B¢, o) (re-
call that the constrairg > Sc guarantees that the sys-
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led to Eq.(23), the period of the limit cycle is given by
T, inthe limitasae — 0. It is also clear that, will be

the period of the emerging limit cycle as— 1*. So,

the noise plays a rather passive role in this mechanism
of coherence resonance since the limit cycle induced by
noise right before bifurcation is essentially the same as
the one that will be established right after bifurcation,
and its periodr, given in Eq.(23) depends om only

and not ore.

5. Concluding remarks

In summary, we have shown that a vanishingly small
noise in excitable systems with strong time-scale sepa-
ration can induce a transition to a limit cycle behavior.
The mechanism, which we term self-induced stochastic
resonance, is robust as it arises away from bifurcations,
and it leads to a limit cycle whose period and amplitude

tem hops out of the slow manifold of the recovery state can be controlled by the noise. This is different from
and back into the excited state before reaching the other mechanisms like coherence resonance which are
steady state). Self-induced stochastic resonance perless robust as they require the system to be close to bi-
sists in the limit asA — 1, which is the limiting value ~ furcation and lead to a limit cycle which is essentially
of A, asa — 0 (see Eq(8)), provided thai > 0 in the same as the one that emerges after bifurcation and

this limit (in fact, this is true even whea > 1). How- cannot be controlled by the noise.
ever, asA — 1, a limit cycle can also be established We believe that self-induced stochastic resonance

wheng = 0, but by a mechanism different from ours may have important implications in several areas.
and closer to coherence resonance. Consider for instance, coupled excitable systems. Our
Indeed, suppose that — 1~ first and then let analysis indicates that in such systems the level of
a, & — 0inaway thap = lim,. .o¢ loga=t=0.1In the noise, both extrinsic and intrinsic, may be used
this limit, the steady state iag, vo) = (1, 1), the point as an information carrier and be transformed into a
located at the top of the-nullcline, which is neutrally ~ (quasi-)deterministic signal. As a prototype, consider
stable. Starting from = 0, integrating Eq(10) shows a system of all-to-all positively coupled excitable cells.

that the deterministic trajectory reaches the top of this Under the action of the noise of sufficiently small
nullcline in finite timeT = T,,, where amplitude each cell will occasionally generate a spike.

These spikes will have random phases, so their total in-
put on each individual cell may average to a stationary
random signal of low intensity. Now, if the noise level
suddenly increases due to an external disturbance, the
tory hop from theu-nulicline before it reaches, vo). cells may switch to the noise-assisted oscillatory mode.
But once the trajectory reachag(vp), since there is  This will further increase the effective noise amplitude,
no energy barrier to overcome to escape this point, a so that the oscillatory mode may persist even after the
vanishingly small amount of noise allows the trajectory disturbance is removed. In colloquial terms, the system
to take off and perform a large excursion in the excited in a dormant state may wake up from the outside
state described by Egdl7) and (18)then return back  rattle.

T, = 3o L. (23)

Sincep = 0, the noise is too weak to make the trajec-

to v = 0 on theu-nullcline and complete the cycle.
Since the motion described by Hd.7) and (18)is
much faster than the one described by @) which

In a similar way, our results may be applied to spa-
tially distributed excitable medi@]. In these systems
the analog of the noise-activated event will be the for-
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mation of a radially symmetric nucleus, leading to sub-
sequentinitiation of radially divergent wavi@10,12]

In the wake of such a wave the system will undergo re-

covery. It is clear, then, that the system will be most

recovered at the position where the wave was initiated.
Hence, the new wave will be initiated again at the same

spot, with the dynamics repeating periodically. This

suggests that the well-known phenomenon of target

pattern formation in two-dimensional excitable media
[9] might have an alternative interpretation in terms of
noise-driven periodic wave generation.
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