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Abstract We investigate the ground state of a uniaxial ferromagnetic plate with per-
pendicular easy axis and subject to an applied magnetic field normal to the plate. Our
interest is in the asymptotic behavior of the energy in macroscopically large samples
near the saturation field. We establish the scaling of the critical value of the applied
field strength below saturation at which the ground state changes from the uniform
to a multidomain magnetization pattern and the leading order scaling behavior of the
minimal energy. Furthermore, we derive a reduced sharp interface energy, giving the
precise asymptotic behavior of the minimal energy in macroscopically large plates
under a physically reasonable assumption of small deviations of the magnetization
from the easy axis away from domain walls. On the basis of the reduced energy and
by a formal asymptotic analysis near the transition, we derive the precise asymptotic
values of the critical field strength at which non-trivial minimizers (either local or
global) emerge. The non-trivial minimal energy scaling is achieved by magnetization
patterns consisting of long slender needle-like domains of magnetization opposing
the applied field.
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1 Introduction

Ferromagnetic materials offer a fascinating example of physical systems capable
of producing an extraordinarily rich variety of spatial patterns (Hubert and Schifer
1998). By a pattern in a ferromagnet one usually understands a stable spatial distribu-
tion of the magnetization vector in the sample. This definition reflects the mesoscopic
nature of the magnetization patterns: they are observed on length scales significantly
exceeding the atomic scale (making the definition of the magnetization per unit vol-
ume meaningful), yet they are susceptible to small random fluctuations due to thermal
noise, with the noise providing a selection mechanism for observable patterns.

On the mesoscopic level, the theory describing the spatio-temporal dynamics
of the magnetization patterns in ferromagnetic materials is formulated in terms
of partial differential equations (with a possible addition of stochastic forcing,
Brown 1963) for the magnetization vector M = M(r, ¢) (Landau and Lifshits 1984;
Lifshits and Pitaevskii 1980; Hubert and Schifer 1998). At the center of the the-
ory is the micromagnetic energy functional £[M] describing the contributions of
different physical interactions (for specifics, see the following section) (Hubert
and Schifer 1998; DeSimone et al. 2000; Kohn 2007). Magnetization patterns
are viewed as global or, more generally, local minimizers of £, forming mainly
due to the competition of the exchange, anisotropy, and the magnetostatic in-
teractions, with the applied external field playing a significant role (Hubert and
Schifer 1998; Landau and Lifshits 1984). Because of the non-local nature of the
magnetostatic forces, their effect can depend significantly on the geometry of the
ferromagnetic sample (DeSimone et al. 2000, 2002; Hubert and Schifer 1998;
Kohn 2007).

In bulk crystalline materials the local anisotropy energy and the short-ranged ex-
change energy act jointly to favor magnetization distributions in the form of extended
magnetic domains in which the magnetization vector stays nearly constant, separated
by domain walls, where the magnetization direction changes abruptly. It was already
realized in the pioneering works of Landau and Lifshitz (1935) and Kittel (1946)
that, while the structure of the domain walls may not be significantly affected by the
long-range magnetostatic forces, these forces should determine the relative spatial
arrangement of the domains with different orientation of the magnetization. In fact,
since the total magnetostatic energy increases faster than volume as the size of the
system increases, in large samples the effect of long-range magnetostatic interactions
becomes dominant. As a result, the magnetization patterns develop rapid oscillations
to cancel out the induced magnetic field and form intricate structures, which are gen-
erally referred to as branched domains, even though the actual topological branching
of the domains is not really required.

Despite a long history of observations of branched domain structures in fer-
romagnetic materials (Hubert and Schifer 1998) and related systems (see, e.g.,
Strukov and Levanyuk 1998; Landau and Lifshits 1984; Prozorov et al. 2005;
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Prozorov 2007; Shur et al. 2000), mathematical understanding of the branching phe-
nomenon started to emerge only recently with the ansatz-free analysis of energy-
minimizing structures (Choksi et al. 1999, 2008a) (there is, of course, an extensive
literature of ansatz-based studies; see, e.g., Privorotskii 1972; Gabay and Garel 1985;
Kaczér 1964). In particular, for bulk crystalline ferromagnets in the absence of an
applied field, the first rigorous analysis of the branched domain structures was per-
formed in the work of Choksi and Kohn (1998). They studied a sharp interface version
of the micromagnetic energy and were able to obtain matching (in the sense of scaling
with the sample thickness) upper and lower bounds for the energy of minimizers of
the reduced energy. We note that the connection of the sharp interface energy to the
full micromagnetic energy in the limit of high anisotropy was recently established in
Otto and Viehmann (2010). The results of Choksi et al. (1999) suggest that the energy
minimizers of the sharp interface micromagnetic energy are in some sense not very
different from the branched domain ansatz used as a trial function to calculate the up-
per bound of the energy of the minimizers. The latter shares many common features
with the branched domain structures observed in experiments (Hubert and Schéfer
1998). Since then, similar results have also been obtained for models describing type-
I superconductors in the intermediate state (Choksi et al. 2004, 2008a) and diblock
copolymers undergoing microphase separation (Choksi 2001; Choksi et al. 2008b;
Muratov 2010).

Note that the presence of a moderate applied magnetic field does not alter the
situation qualitatively. On the other hand, if a very strong external magnetic field is
applied to the sample, then it will obviously overwhelm all other effects and result
in a uniform magnetization pattern in the direction of the applied field. It is then
clear that a bifurcation from the uniform to a nonuniform magnetization pattern will
occur when the field strength is gradually reduced. We point out that this transition
would typically occur via nucleation and growth of new domains and is, therefore,
accompanied by a hysteresis. In other words, in a certain range of applied fields one
should find coexistence of different types of patterns. Their relative stability and the
transition pathways between them are, therefore, important questions to be addressed.
Note that these questions also naturally arise in various other problems of energy-
driven pattern formation, such as type-I and type-II superconductors and Ginzburg-
Landau models with Coulomb repulsion (Choksi et al. 2004, 2008a; Aftalion and
Serfaty 2007; Muratov 2010).

Main Results

We investigate the properties of the magnetization patterns in bulk uniaxial crys-
talline ferromagnets in the presence of an external magnetic field applied along the
material’s easy axis. We are interested in the transition to non-trivial energy minimiz-
ers occurring near the saturation field in ferromagnetic plates with perpendicular easy
axis.

In Sect. 3, we establish the scaling behavior of the minimal energy in dependence
of the plate thickness and the external field. The precise result is stated in Theo-
rems 3.1 and 3.2. As a consequence, we get that in macroscopically large plates the
transition from the monodomain to the multidomain magnetization pattern occurs

@ Springer



924 J Nonlinear Sci (2011) 21:921-962

Fig. 1 A sketch of the refining a)
needle configuration. (a) The
projection of one period of the = e
domain pattern on the i
x1xp-plane. = e
(b) A three-dimensional sketch el S
of one period of the domain

pattern. Shaded regions indicate . —
the domains of magnetization

opposing the applied field b)

when the strength Hey; of the applied field satisfies

AK? (4L 3
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L2M.(K + 47 M2) AK

HS—HextN{ (L.1)

where Hy = 47 Mj is the saturation field. We refer to Sect. 2 for the precise definitions
of the physical parameters in (1.1). For smaller applied fields the excess energy of the
minimizers per unit area in macroscopically large plates is

E LAK2M? Hoo\ Hou\~1)7
el PN Y P I Y . . (1.2)
Area K + 47 M2 Hy H,

In particular, the energy per unit area of the plate scales as L3 with the plate thickness
and linearly (up to a slow logarithmic dependence) with the deviation of the applied
field from the saturation field. This energy is achieved by trial functions consisting
of periodic patterns of slender needle-like disconnected domains of magnetization
opposing the applied field. In each unit cell of such a trial function, the magnetization
pattern refines toward the plate boundaries in a self-similar fashion (see Fig. 1). This
class of magnetization patterns is, therefore, a natural candidate for the precise form
of the energy minimizers (see also Fig. 2).

In Sect. 4, we further investigate the asymptotic behavior of the energy in macro-
scopic samples. Under a physically reasonable assumption that the magnetization
vector does not deviate strongly from the easy axis, we rigorously derive a reduced
energy, whose minimum agrees asymptotically with the sharp interface version of
the energy; see Theorem 4.1. The obtained result assigns a mathematical meaning to
the p*-method for computing the energy contributions away from the domain walls
in a magnetization pattern, which was proposed more than half a century ago in the
physics literature (Williams et al. 1949). The obtained reduced energy, given by (4.2),
practically coincides with that of an infinitely hard material in which the strength of
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Fig. 2 Side views of
magnetization domain patterns
refining toward the boundary in
bulk cobalt crystals: (a) in the
absence of the magnetic field
and (b) in the applied field at
60% to saturation. From Hubert
and Schifer (1998), with
permission

magnetostatic interaction has been suitably renormalized. The latter explains why the
behavior of minimal energy in both hard and soft materials is the same up to a certain
factor in the macroscopic limit. Also note that, for the same reason, the energy per
unit area becomes essentially independent of the saturation magnetization M in soft
materials with fixed value of Hex/ Hs; see (1.2).

In Sect. 5, we perform a formal asymptotic analysis of the reduced energy in (4.2)
and establish a precise asymptotic behavior of the critical field Hc,, at which the
only minimizer (global or local) is expected to be the uniform state, and the critical
field Hc,, at which non-trivial minimizers emerge; see Theorem 5.1. It turns out that
asymptotically for macroscopically large plates,

H AK2 A2 L2 M4\ )3
1= 200~ oy In( = s )4 (1.3)
H T\ L2MH(K 47 M2) AK

where Cp ~ 0.4368 and C ~ 0.5403. At H ~ H,,, the magnetization patterns are
expected to consist of slender, approximately radially symmetric needle-like domains
spanning the entire plate thickness and separated by large distances compared to the
needle radius. Equation (1.3) is obtained from a reduced one-dimensional expression
for the energy of needles; see (5.4). Solving the respective Euler—Lagrange equation
exactly, we obtain the precise shape of the needle and, correspondingly, the expres-
sion in (1.3).

Structure of the Paper and Notation

The paper is structured as follows. In Sect. 2, we present the micromagnetic energy
functional and introduce its sharp interface version. In Sect. 3, we prove matching
upper and lower bounds for bulk samples near the critical field. In Sect. 4, we derive
a reduced model that captures the leading order energy in the macroscopic limit. In
Sect. 5, we perform a further reduction of the energy and find the precise location of
the transition to non-trivial minimizers by solving the reduced minimization problem
exactly.

We will denote a generic point in space by x = (x1, x2, x3) = (x1, x1), where x|
is the component in the direction of the easy axis and x] = (x2, x3) is the projection
onto the plane normal to the easy axis. Similarly, we will denote the component of a
vector v € R? in the direction of the easy axis by v| and its projection to the plane nor-
mal to the easy axis by v| = (v2, v3). The spatial gradient is similarly separated into
the components along and perpendicular to the easy axis, respectively: V = (91, V).
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We use the symbols ~, <, and 2 to indicate that an estimate holds up to a universal
constant, i.e., a constant that is independent of all parameters of the problem. For
example, A ~ B means that there are universal constants ¢, C > 0 such that cA <
B < CA. The symbols « and > indicate that an estimate requires a small universal
constant. For example, if we say that A < B for ¢ < 1, this is a short way of saying
that for every § > O there exists a constant &y > 0 depending only on §, such that
A < §B, whenever ¢ < gg. By the symbol >~ we indicate asymptotic equivalence of
two expressions: e.g., by writing A >~ B for ¢ < 1 and A < 1, we mean that for every
8 > 0, there are &g, Ao > 0 depending only on §, such that |[A/B — 1| < § for all
& <egp and all A < X¢. The symbol = is used for numerical rounding or in heuristic
arguments.

2 Physical Model and Sharp Interface Energy
Micromagnetic Energy Up to an additive constant, the micromagnetic energy for

a monocrystalline uniaxial ferromagnet (see, e.g., Hubert and Schifer 1998), using
CGS units is given by

5[M]=/ (i|VM|2+ L|MJ_|2—Hext'M> d&*r
& \2M2 2M?
1 V-M() V- M’ 1
+_/ f (I‘) (r)d3rd3r’+—/ |Hext|2d3r' (2'1)
2 Jr3 Jr3 Ir—r'| 87 )3

Here, 2 C R? describes the region of space occupied by the ferromagnetic material,
and the magnetization vector M : R? — R? satisfies [M| = M in 2 and M =0
outside. Also, A is the exchange constant, M is the saturation magnetization, and K
is the uniaxial anisotropy constant. The subscript “_L” denotes the components of a
vector in the plane normal to the easy axis. The terms in the energy, as they appear in
the formula, are:

The exchange energy, favoring a uniform magnetization.

The anisotropy energy, favoring alignment of the magnetization with the easy axis.
The Zeeman energy, favoring alignment with the external field Hey;.

The stray field energy, describing long-range Coulomb interactions of the “mag-
netic charges” V - M.

5. A constant term, representing the leading order behavior of the minimal energy
near the saturation field (added for convenience).

b NS

Geometry of the Sample We consider a plate of constant thickness L, whose sur-
faces are oriented in the direction normal to the easy axis. To simplify the issues asso-
ciated with the treatment of the lateral boundaries of the sample, we assume periodic-
ity with period £ in the plane normal to the easy axis. We hence write 2=(0,L)xT,
where T = [0, £)? is a torus with periodicity £. However, the periodicity assumption
is not essential, as long as the energy of the minimizers is extensive in £; i.e., we
have inf€ = O(L£2) as £ — co. As we will show below, this will be the case. Also,
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the external field is assumed to be in the direction of the easy axis (and hence also
normal to the material surface):

Hext = Hex €1,
where ey is the unit vector in the direction of the easy axis.

Rescaling ~ As usual, we first define the exchange length lex = /A /(4w M2) and the
dimensionless quality factor Q = K/(4n Msz) (Hubert and Schifer 1998). Introduc-
ing m = M/Ms, hext = Hext /(47w Ms), £ = L/L, and measuring lengths and energy
in units of L and 27 MS2L3, respectively, we can then rewrite (2.1) as

12
5[m]=/ %Ivm|2+Q/ ImLIZ—/ (Zhext-m+h~m—hgxt), (2.2)
oL Q I7]

where £2 = (0, 1) x T is the rescaling of .5 with T = [0, 6)2, and |m| = x, where
Xxs52 denotes the characteristic function of §2. The dimensionless stray field h is de-
fined as the unique (see, e.g., Choksi and Kohn 1998) solution in L?(R x T; R%)
of

Vxh=0, V-h=-V-m inRxT, 2.3)
where (2.3) is understood in the distributional sense.

Sharp Interface Energy In abulk uniaxial material, the magnetization is expected to
lie mostly in the direction of the easy axis, i.e., m & +e;. The regions with different
orientations of the magnetization are expected to be separated by thin Bloch walls
(Hubert and Schifer 1998, p. 215). A Bloch wall is characterized by a transition

layer of thickness w ~ Q_%lex in which the magnetization rotates in the wall plane,
thus avoiding the creation of a stray field. Taking advantage of the observation in
Kohn (2007, p. 367) one can directly estimate the anisotropy and exchange terms in
the energy from below for any & > 0 fixed as

12
/ (%IVm|2+Q|mL|2)ze/ V], 2.4)
m_ =5 \ L ED
with the notation m = me; +m  and where we have introduced
21
e= %@ (2.5)

In fact, the one-dimensional Bloch wall profile attains equality in (2.4) (see Hubert
and Schifer 1998), which implies that the term on the right-hand side of (2.4) should
actually well approximate the term on the left-hand side for the energy minimizers.
The condition of validity of this approximation is that the wall thickness w remains
much smaller than the characteristic length scale of the magnetization pattern. In
particular, one should have w <« L. This condition is achieved for sufficiently thick
plates. In fact, large thickness is also a necessary condition for multidomain patterns

@ Springer



928 J Nonlinear Sci (2011) 21:921-962

to be observed in ferromagnetic materials (Hubert and Schifer 1998). Therefore, in
the present context one is naturally interested in the asymptotic behavior of energy
for large values of L or, equivalently, in the limit ¢ — 0 with all other dimensionless
parameters fixed.

Dropping the gradient term in (2.2) where |m_ | < § and combining it with (2.4),
one can see that

E[m] 28/ |Vmi| + Q0 |mJ_|2_/ (2hext~m+h~m—h§m). (2.6)
my[|>8 Im |<$ 2

This motivates the introduction of a sharp interface energy, in which the gradient-
squared term in (2.2) is replaced by the total variation of m| (see also Choksi and
Kohn 1998; Choksi et al. 1999). However, we note that the sharp interface energy is
basically a tool to approximate the behavior of the full physical energy in (2.2) and,
therefore, can be tailored to our advantage. We choose the sharp interface energy in
the form

E[m]=e/Q|Vm?|+Q |mL|2+82Q/{ Im |2
|

{lm_ |<38} m, |>6)

- / (2hexe - m+h-m —h2,). 2.7)
2

Here 0 < § « 1 is an arbitrary “cutoff” parameter, whose precise value is inessential
(hence the index § is dropped from the definition of E), and m? is the truncated
version of m:

1—-682,  mi(x)>1-—282%,
mix)={mx), —1+8<mx) <1-4, (2.8)
1482, mi(x)<—1+8%

The advantage of using m‘i in (2.7) instead of m is that, consistently with (2.6), the
interfacial term does not contribute to the energy away from the domain walls, where
m1 ~ £1. Importantly, E provides an ansatz-free lower bound for £:

Em] > (1-8*)Em], 2.9)

which can be easily seen by retracing the arguments leading to (2.6). Furthermore,
since in the limit ¢ — 0 the transition regions between different directions of m are
expected to become O (s Q™) thin and the inequality in (2.6) to become an equality
for minimizers, in view of arbitrariness of § one should expect that inf £ >~ inf E for
& < 1. In the following, we will prove that this relation holds in the sense of scaling;
i.e., for sufficiently small & > 0, we have inf€ ~ inf E.

Critical External Fields Clearly, when the applied field ke is sufficiently large,
the minimal energy configuration will be such that all magnetic moments are aligned
with the field, i.e., m = e x . For smaller external fields, the minimizer is attained by
other configurations. The external field strength at which the uniform magnetization
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m = e X loses its optimality is denoted by A, . Let us also note that appearance and
disappearance of patterns as a function of the control parameter in systems of this
kind is often accompanied by a hysteresis. Therefore, non-trivial critical points of the
energy may persist even for fields larger than h,. The critical field at which these
critical points disappear will be denoted by /.

The saturation field &g is defined similarly in terms of the relaxed energy. In our
setting, it is the variant of £ where the surface energy is not penalized, i.e.,

grel[m]—Qf |mJ_| _/ (Zhext m+h-m-— hext)

The set of admissible functions for & is given by all m satisfying jm| < 1 in §2. This
relaxed constraint in the above calculation can be justified by looking at small-scale
oscillations of m. It is related to the fact that & is non-convex; see, e.g., Dacorogna
(2008), Kohn and Strang (1986). One expects that the relaxed energy gives the leading
order behavior of the minimal energy, i.e.,

lim inf &[m]= inf &.[m].

e—0|m|=1 m|<1

The saturation field strength /g is defined as the field strength at which m = e x
loses its energetic optimality in terms of the relaxed energy &1 and is expected to be
close to h¢, when ¢ <« 1.

To understand better the behavior of &, let us first introduce the notation for the
average of a quantity f = f(x, x2,x3) over T at fixed x; € R. We use the notation
fxy) = le fT f(x1,-). We note that the solutions of (2.3) have the following basic
properties (the proof is by an elementary integration by parts).

Lemma 2.1 Leth e L2(R x T; R3) be a solution of (2.3). Then

hi(x)) =—mi(x1) forae. x; €R, (2.10)

/h-m:—/ |h|?, / |h|2§f Im|%. 2.11)
2 RxT RxT 2

Using (2.10) and (2.11), one easily computes that

2. 1()) (2.11) 2
Eralm] / (hexc + 1) / (hexe — 1) 2.12)

where we have used Jensen’s inequality in the second inequality. Hence,

0, 0<hex <1,
Erellm] > mf /(hext_ml) _: = flext = (2.13)

52(1 - ext) hexe > 1.
On the other hand, equality in (2.13) is achieved by using the trial function m =
min{1, hexi} €1 x. Therefore, m = ej x> is the minimizer of (2.13) if and only if

hext > hg = 1, which is precisely the saturation field.
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Since we are interested in the bifurcation from the uniform to a patterned mag-
netization occurring near saturation, we introduce a parameter A which measures the
deviation from saturation:

hext=1— A, (2.14)

where 0 < A < 1 means the applied field is just below the saturation threshold. One
question we want to address is how to calculate A, and A, corresponding to the
critical fields A, and A, .

Reformulation of the Sharp Interface Energy We now derive an expression for en-
ergies £ and E in new variables which make our analysis more convenient. We intro-
duce

u=m— (1 —A)xpe, v=h+(1—-X)xpe;. (2.15)

Then, using Lemma 2.1, (2.14), (2.11), and (2.15), one gets

2.10
/(héxt—h-m—zhext~m)=/ |v|2—2<1—x)/<v1+u1>(=)/ vz,
2 RxT 2 RxT

Therefore, we can rewrite the energy E from (2.7) as follows (with a slight abuse of
notation, we view E from now on as a function of u instead of m):

E[u]:s/ |W‘{|+Q/ |uL|2+/ |v|2+82Qf lui >, (2.16)
Q {lus]<d) RxT {juLl=5)

where, as before, ] and u; denote the components of u along and normal to the easy
axis, respectively, u‘f = m‘f — 14 A, and v solves

v=—Vo, Ap=V-u inRxT. (2.17)
The set of admissible functions for (2.16) is given by
A={ueBV(R xT;R): [u+ (1 — M xeel| = xo}.

Similarly, the expression in (2.2) can be rewritten as

2
5[u]:8—/ |Vu|2+Q/ Iul|2+/ v[2. (2.18)
40 Ja 2 RxT

For simplicity of notation, we take the same admissible class A for £ as well, setting
E[u] = 400, whenever ulo & H' ().
3 Scaling of the Energy in Bulk Samples

In this section, we investigate the scaling behavior of the energy of minimizers in the
case of bulk samples corresponding to the limit &€ — 0. The main part of this section
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will be concerned with the sharp interface energy E defined in (2.16). The connection
to the diffuse interface energy £ is then shown in Sect. 3.5.

The model has three dimensionless parameters: €, A, Q. In particular, we are in-
terested in the case of macroscopically large samples near critical fields, i.e., ¢ < 1
and A < 1. Our result shows that for sufficiently small ¢ and A with fixed Q there
are exactly two different scaling regimes, each corresponding to a particular pattern
of magnetization attaining the minimal energy scale. Introducing

Q

=5 3.1)

14

we have the following result for the sharp interface energy E.

Theorem 3.1 Let A < y?|InA|? and £ > y*%s%)ﬁ%ﬂner%. Then for ¢ < 1 and

A K 1, we have

Lo E[u] ~ mi {22, y3e3alnAl3)

— inf E[u] ~min{A“, y3&3A|lnA|3}.

02 yeA v

The first regime corresponds to a uniform magnetization along the applied field,

while the second regime is achieved by the magnetization patterns which refine self-
similarly toward the surfaces of the plate. Note that, as long as Q 2 1, the particular
value of Q does not affect the scaling of the minimal energy. This indicates that
the restricted model corresponding to Q = o0, i.e., when m = +e| x, captures the

essential features of the general model in (2.16). On the other hand, for Q < 1 the
anisotropy only has the effect of renormalizing the minimal energy scaling by a factor

of Q%. This will be further discussed in Sect. 4 with the help of a reduced sharp
interface model.

Combining the results in Theorem 3.1 with (2.9) and the constructions of Sect. 3.5,
the full micromagnetic energy £ satisfies the same scaling.

Theorem 3.2 Let A < y?|InA|? and £ > y*%e%)ﬁ%ﬂner%. Then for ¢ < 1 and

A K 1, we have

W=

1
1 A2, A< Ing|3,
75 inf Elul~ JordSyieding|

2 ueA y%e%MlnM%, JorxZy

3g

wl—

3|
2 1
3¢3|lneg|3.

This theorem implies that for small enough values of A(¢) the minimal energy
scaling is achieved by a uniform magnetization pattern (the monodomain state:
m = e; x), while for sufficiently large values of A(¢) the optimal energy scaling is
achieved by a self-similarly refining domain pattern, as ¢ — 0. The transition occurs
at A, ~ y%e% |h’18|%.

The analysis techniques we employ in this section go back to the work of Choksi
and Kohn (1998), Choksi et al. (1999), who analyzed the energy of ferromagnetic
plates in the absence of a magnetic field. In our analysis we identify the optimal
dependence of the minimal energy on the parameter A, which is not addressed in
Choksi and Kohn (1998), Choksi et al. (1999). In our analysis, we also apply tools
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from related works in the framework of type-I superconductors (Choksi et al. 2008a).
There the authors derive the scaling of the energy for the type-I superconductor near
the critical field. We note that the superconductor model is more rigid, since there the
two different phases are described by the characteristic function x, which only takes
the discrete values O and 1 and a divergence-free magnetic field B, whereas in our
model the magnetization m is allowed to take all values on the unit sphere.

3.1 Preliminaries

In this section we collect some useful results before addressing the proof of the upper
and lower bounds in the next two sections.

Control on (2.16) yields information about #; and v; on each slice; as expected,
the stray field favors zero average of 1| on each tangential slice:

Lemma3.3 Lerue Aandletve LEZ(R xT: R3) satisfy (2.17). Then for every c; > 0
and ¢ > O there exists a constant ¢ > 0, such that, if E[u] /62 < cA2, then we have

1
/ 1| dx; < ¢3r% (3.2)
0

Furthermore, there exists I < (0, 1) with |I| > 1 — ca, such that for all a € 1
it (@)| < cih. 3.3)

Proof We first note that in terms of u and v, in view of (2.10), we have v; = —u; for
a.e. a € R. By Jensen’s inequality, it then follows that

1
62/ |ﬁ1|2dx1=/ |ﬁl|2=/ |V|2§/ v < Elul,
0 2 2 2

and (3.2) follows. Inequality (3.3) follows from (3.2) by an application of Fubini’s
theorem. O

The main ingredient for the proof of the lower bound is an estimate that charac-
terizes the transition energy, i.e., the cost for the magnetization to vary between a
tangential slice {a} x T and its value zero outside of the sample. The idea to estimate
such transition energies was introduced in Kohn and Miiller (1994) and has been
subsequently applied in, e.g., (Choksi et al. 2004, 2008a).

Lemma 3.4 (Transition energy) For every u € A there exists I C (0, 1) with |I] > %,
such that for all a € I and for all € H'(T), we have

1 _1
‘/ le)ﬁEz[u](V VYl 2 + 1Vl 2emy)-
{a}xT

Proof Let us first assume that u € C2°(R x T), with u = 0 outside of [—1, 2] x T. Let
v be defined by (2.17). Noting that ¥ does not depend on x; and using integration by
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parts, for any a € (0, 1) and b € (—2, —1), we then get

/m(a, ~)1/f=/ /81(u1(x1,~)1/f)dX1
T b JT
(22)_f /VJ_'UJ_(XI»')del—/ /VJ_'VJ_(XI»')del
b JT b JT
—/ /31v1(x1,-)1/fdx1
b JT

=f /uml,-vadxwf fu(xl,o-vwwq
b T b T

+ / v1(a, ) dxy — / o1 (b, ). (3.4)
T T

By Fubini’s theorem, there exists b € (—2, —1) and I < (0, 1) with |/| > % such that,

foralla eI,
/ |v1|2+/ i 5/ v ]2 (3.5)
{a}xT {b}xT RxT

The statement then follows for all a € I from (3.4), (3.5), an application of the
Cauchy—Schwarz inequality, and (2.16).

Now consider a general u € A. In this case, u can be approximated by a sequence
of functions w’/ € CX(R x T) such that w/ = 0 outside of [—1,2] x T and such
that w/ — win L?(R x T; R%) and [ 1 |Vu/| > [ 1 |Vul; see, e.g., Evans and
Gariepy (1992). By (2.11), we also have v/ — v in L?>(R x T; R?), where v/ denotes
the stray field of u/. Taking a subsequence, if necessary, we also have convergence
w —u, v/ > vin L2({a} x T; R3) for a.e. a € R. Using this approximation, the
lemma follows. O

We will also use the following technical lemma (from Choksi et al. 2008a,
Lemma 3.1) similar to a result originally proved by De Giorgi (1955, Lemma II).

Lemma 3.5 Let S C T be a set of finite perimeter, and let r > 0 be such that r|0S| <
3—‘|S |. Then there exists an open set S C T with the following properties:

(i) There is a considerable overlap of.S_’ with S, in the sense of |S N S| > %|S|.
(ii) For all t > 0, the set S' = {p € T : dist(p, S) < t} satisfies |S'| < |SI(1 +
(t/r)®.

3.2 Ansatz-Free Lower Bound

In this section, we present the proof for the lower bound. We need to show the fol-
lowing.
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Proposition 3.6 (Lower bound) For e < 1 and A < y, we have

€i2 uiglE[u] pe min{)?, y %S%AHHM 5 }
Proof Following the ideas in Choksi et al. (2008a), we argue as follows. Recall that,
in view of Lemma 3.4, the energy is bounded below by a Sobolev-type norm of
negative order on u, evaluated on a generic tangential slice {a} x T. In this proof, we
combine this with control that we have on the surface energy and anisotropy energy
on a generic slice. The proof is divided into five steps.

Step 1: Identification of tangential slice 'We will argue by contradiction. Hence, we
may assume that the energy does not satisfy the lower bound; i.e., there exists u € A,
such that

Elu] < 2 min{22, y5e3alnAl3}, (3.6)

for some ¢ < 1 and A < y. We choose a € (0, 1) such that the assertions of Lem-
mas 3.3 and 3.4 hold. By Lemma 3.3 and by Fubini’s theorem, we may then assume
that a is furthermore chosen such that

|1 (a)] < A, (3.7
1 1
E (3.6) A2 y3A|lnAl3
[ g2 e2min{—, &} (3:8)
{a}xT & & e3

N

E ( A2 y3edanAl3
ud 7} 3.9)

/ luy | % Ezmin{—,
{a}xT 0 0 0

Step 2: Structure of magnetization We next analyze the magnetization on the slice
A :={a} x T in more detail. In view of the upper constructions, we expect that the
regions where the magnetization points in the negative x1-direction are small needle-
shaped domains. Therefore, the restriction of m to the slice is expected to be negative
on a number of small circular domains. In the following, we give a precise version of
this heuristic picture. We define the set A4 (where m points “to the right,” i.e., in the
direction of e;. The notation “to the right” is in accordance with the figures.) and the
set A_ (where m points to the left), respectively, by

1
A+:={x€A:EA<u1§)\}, A_={xeA: 24+ r<u;<-1+4+1}.
It is also convenient to define a transition region Ao (where m also points to the right)
1
Apg = xeA:—l+k§u1§§A .

We first note that when m| > 0, we have |uL|2: |mL|2 = 1—m% >l—-mi=A—uy,
i.e.,

lui>>1—u; inAgUA,. (3.10)
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We claim that the region A_ of “reversed magnetization” is concentrated on a set
with total area of order A£2, and that the transition region is small. More precisely,
we claim that

|Afl~ €, Aol < €2 JA_|~AL (3.11)
Indeed, by (3.10), we have |uL|2 > % in Ag, and so

E (39 A\¢?
— K — <£2

A0 o~

’

where we also used that by assumption Q >y 2 A. Choosing ¢ = 1]—6 in Lemma 3.3,
and in view of |Ag| + |A4+| = 02— |A_|, we get

1 2(3.3) 2
—e S [ = T RIA (140 + 144]) = —1A- |+,
A

50 |A_| < {Z1* < €2 and, therefore, | A4 | > 2. Similarly,

I, 5,63 1
M = = u S21A- [+ | () = SAAL]
16 A Ao 2
(3.10) s 1.5 CE 1 ,
< 2A |+ | lurlf = A <2A |+ —— M
Ao 4 Q 4

(3.9) 1
< 2|A_|— guz.

Hence, |A_| > 45 A€2, and so |A_| ~ A£2. This concludes the proof of (3.11).

Step 3: Identification of a regularized region In the previous step, we showed that
the reversed magnetization region A_ occupies a small fraction of A. By the upper
bound constructions of Lemma 3.8 below, we would expect that A_ is divided into
a controlled number of similar size circular domains. The construction also suggests
that, in the core region of the plate, the typical radius r of these circular domains and
the typical distance a between them are given by

wl—

1
e3 &

y3AZ|InA|3

r=— e
y3|Ini|3

In the following, we use the co-area formula and the isoperimetric inequality to get
a rigorous variant of the above heuristics. We replace A_ by a larger set S, since
we cannot exclude a concentration of surface energy on d A_. We claim that there is
ce (—%, —%) such that the set

S={xeA:u <c} (3.13)
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satisfies

|S| ~ r€2, (3.14)

1 1
A2 y3AllnAl3
u} (3.15)

38 ,
[0S] <« ¢ m1n{—,
P

Indeed, by (3.13) wehave A_ CSC A_UA(, where Aj:={x e A: —1+A1<u; <
—%} C Ag. Then by (3.9), (3.10), and the assumption A < y, we have |A6| < M2,
and (3.14) follows by (3.11). Furthermore, by the co-area formula:

/|VM1|=/Hl({xeA:ul(x)zt})dt,
A R

and Fubini’s theorem, there exists ¢ € (—%, — i), such that S satisfies

1 1
(338) A2 y3allnal3
|aS|§f Vi < gzmm{_, &}
A & e3
Estimates (3.14) and (3.15) together with (3.12) yield
r|aS| < |S]. (3.16)

Heuristically, the estimate in (3.16) means that S, roughly speaking, splits into a
collection of disks of diameter much larger than r. This disagrees with the expectation
from the upper construction and will lead to a contradiction.

We next replace S by another set S, still satisfying all the relevant properties of S.
Additionally, it grows in a controlled way upon “thickening.” More precisely, in view
of (3.16) and by Lemma 3.5, there is a set S with

1 G
RaNESIN > 02 (3.17)
and such that, for all # > r, the ¢-neighborhood S of S satisfies

2 (3.14) 34242
- t Yyt
|St|§—2|5| < 7 -
r r

(3.18)

Step 4: Definition of a suitable test function We now define a logarithmic cutoff
v € HY(T), with 0 < < 1, around S. Let

1, forO<t<r,
¥ (x1) =o(dist(x1,5)), wherep(t):=1{ a5, forr<t<a,  (3.19
0, fora <t,

with r and a defined in (3.12). A direct computation, following (Choksi et al. 2008a),
then yields

e ) ¢?
< —— and Vi * < : 3.20
/TwN a0 /TI vl S 2] (3.20)
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For the reader’s convenience, we show the first estimate in (3.20); the proof of the
second inequality proceeds similarly. Since ¥ = 1 on S, and since |8§t| = % |§l|, we
have

f¢=|§|+/ (p(t)|8.§"|dt=—/ o' (1)|S"|dt
T 0 r

G18) 02 a rg202 2~
< 7/ tdr < CL .
r2|lna/r| Jo rZ|ln A| [InA|

Step 5: Proof of the lower bound We are now ready to give the proof of the lower
bound. It is based on application of Lemma 3.4 and on a duality argument, using the
test function . We claim that

re? < —/ ma (3.21)
A

Since ¥ =1 and u; < —% in §, and since ¥ > 0 and u; < A in A, it follows for
A < 1 that

1 _ (3.14),(3.17)
—/unﬁ:—/ unﬁ—/ u11p2—|SﬂS|—A/w > Al
A SNS A\(SNS) 4 A

Application of Lemma 3.4 then yields

G.21) | 1
PYARES _/;‘Ml‘/fsEz[u]<_1”VW”L2(T)+ ||W||L2(T)>
)/2
1

(3200 02 2
< Elu)[ ——— +¢%) .
~ [ ](Vazlln)»l >

‘We hence obtain

Eu] 2 2 min{y22a?|in ], 22} 27 (2 min{y 5e343 InAl, 22},

contradicting (3.6). This concludes the proof of the proposition. g
3.3 Sharp Interface Constructions

In this section, we present constructions that achieve the optimal scaling in Theo-
rem 3.1. We have two different regimes. For smaller values of A, the optimal scaling
of the energy is achieved by a uniform configuration, while for larger values of A,
the optimal scaling is achieved by a self-similar structure. Note that the constructions
in Choksi and Kohn (1998) do not yield the optimal energy near the saturation field.
Instead, our constructions are an adaptation of constructions introduced in Choksi
et al. (2008a) for a model of type-I superconductors. While our constructions have
a similar self-repeating structure to that of Choksi and Kohn (1998), the definition
of the involved functions is different due to the constraint |m| = xg in our model.
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Our constructions are also different from those of Choksi et al. (2008a) in the geom-
etry of the magnetic domains, and are intended to better mimic the behavior of the
minimizers. The main result of this section is the following proposition.

Proposition 3.7 (Upper bound) Suppose that . < y?[InA|>. Then for ¢ < 1 and
A K 1, the scaling of the minimal energy E is bounded above by

€i2 uiglE[u] < min{kz, y %S%AHHM 5 }
Let us remark that the logarithm in the scaling of the energy is a consequence of the
fact that the leading order contribution of the stray field energy is given by interaction
on tangential slices, where the stray field potential behaves logarithmically.
We first note that by choosing the uniform magnetization u = Aej xo, we im-
mediately recover the upper bound KLZ infye 4 E[u] < A%. The cross-over to the mul-

tidomain regime occurs at A ~ y 3 s% [InA| 3. It hence remains to construct an optimal
upper bound, if A is larger than this threshold. In the remaining part of this section, we
present such a construction. The corresponding estimates are then given in Sect. 3.4,
thus completing the proof of Proposition 3.7.

Before going into the details of our constructions, we recall some other con-
structions that have been proposed in the literature over the years (for simplic-
ity, we will only discuss the case Q ~ 1). The first estimates of the minimal en-
ergy for the bulk uniaxial ferromagnets go back to the work of Landau and Lif-
shitz (1935) and Kittel (1946). Those constructions were proposed for zero ap-
plied field. In fact, the Landau-Lifshitz construction cannot be easily extended to
the case when the domains opposing the applied field occupy only a small vol-
ume fraction of the sample. However, the Kittel construction can be modified to ac-

count for small volume fraction, resulting in an energy scaling E£~2 ~ 8%k|ln)»|
(Kooy and Enz 1960). However, since it consists of a “striped” domain pattern,
its interfacial energy turns out to be too high at small A. This issue can be ad-
dressed by modifying the geometry of the domains into a lattice of cylindrical “bub-

bles,” whose energy may be estimated as E£™% ~ 71 (Cape and Lehman 1971;
Druyvesteyn and Dorleijn 1971). A comparison of this estimate with the result of
Proposition 3.6 shows that, although the bubble construction provides a slight im-
provement over the stripe construction, it is highly non-optimal in its scaling behav-
ior with respect to ¢. In fact, any domain configuration in which the domain walls
are aligned with the easy axis cannot do better in terms of energy, and so refinement
toward the boundary is inevitable for sufficiently small & to reduce energy (Choksi
et al. 1999). On the other hand, if a tree-like branched domain structure is used (see
Choksi et al. 2004, Sect. 4.3 for the construction in the case of type-I superconduc-

tors), it is not difficult to show that the energy will scale as E£~> ~ ¢ 333 . Once again,
comparing this with the result of Proposition 3.6, one sees that, while the considered
configuration gives the optimal scaling in terms of the dependence of the energy on ¢,
it is highly non-optimal in terms of A. These observations indicate that the minimiz-
ers of £ may not have the geometric characteristics of any of the domain patterns
considered above when ¢ <« 1 and A < 1. In the following we present a construction

@ Springer



J Nonlinear Sci (2011) 21:921-962 939

closure transition cells core cells transition cells closure
cells cells

Fig. 3 A side view (in the xx,-plane) of a sample partition containing 16 core cells with 4 generations
of refining cells on each side

which achieves the scaling in Proposition 3.6, thus demonstrating that this scaling is
optimal.

We begin by fixing the basic geometry. The geometry is an adaptation of a recent
self-similar construction for the type-I superconductor model (Choksi et al. 2004).
However, contrary to the construction in Choksi et al. (2004), our construction in-
cludes closure domains; they are necessary to achieve the optimal scaling of the en-
ergy in the case of soft materials, i.e., when O < 1. Based on this geometry, we
construct two different magnetization configurations u*F and uSF. The first config-
uration uF avoids anisotropy energy entirely and is optimal for Q > 1. The second
configuration uSF avoids most of the stray fields and is optimal for Q < I.

Sample Geometry We divide the material plate into three spatial regions: the core
region, the transition region, and the surface region; see Fig. 3. These regions form
five layers symmetrically with respect to the plate’s mid-plane. By this symmetry, it
is sufficient to describe the constructions only in the left half of the sample, i.e., for
0<ux <3

The core region is partitioned into equal rectangular cells with height /¢ in the
normal direction (x1-direction) and length ag in both tangential directions. These cells
are adjacent on the left to a system of M layers of self-similar cells in the transition
and surface regions that refine from the core region toward the boundary (see Fig. 3).
Each generation of cells is described by its height /; in the normal direction and
its extension a; in both tangential directions, with j =1, ..., M. We also define a

parameter r; = Ala j/~/2m, which will be the maximum needle radius in the j-th
generation of cells. In every generation, the width of the cells decreases by a factor
of 3, i.e.,

aj rj
aj+1 = ? and rip1= ? (322)

In particular, the number of cells is multiplied by a factor of 9 in each new generation.
The algorithm is terminated after M iterations. We will specify ay, {h;}, and M in
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Fig. 4 Refinement toward the
sample boundary (two
generations are shown)

the sequel. In particular, these parameters will be chosen such that the union of all
cells exactly covers 2, i.e.,

M
ho+2) hj=1. (3.23)
j=1
We differentiate between core cells (which for simplicity of notation we identify with
generation 0), transition cells (generations 1,..., M — 1), and closure cells (genera-
tion M).

Globally, the geometry of the construction consists of a collection of needles
rescaled to fit into the collection of cells just constructed, refining in the direction
of the boundary; see Fig. 4. We capture the region occupied by the needles by the
characteristic function x € BV(R3, {0, 1}), which will be specified in the sequel. We
thus give the definition of x on a rescaled cell,

2
Z=[0.h]xK, K=|-22 (3.24)
K b 2 K 2 b .

with height 7 and width a. We furthermore denote the tangential boundary of the cell
by 01 Z :=[0, h] x dK . The corresponding “maximum needle radius” r is defined by

A\ 2
r= <§> a. (3.25)

The definition of x on any cell with arbitrary extension (in the left side of the sample)
is then given by a rescaling and a translation of this cell.

Geometry of a Transition Cell Consider a transition cell Zqys first. The cell geom-
etry is characterized by nine needles; see Fig. 5(a). The largest needle is located in
the center of the cell and grows into the positive x-direction, while the other needles
are smaller and grow in the negative x;-direction. All needles are axially symmet-

ric around their corresponding center lines given by x| = xjf), i=1,...,9. The

large needle is located in the center of the cell, i.e., xj_l) = 0. The radii of the needle
cross sections on tangential slices are functions of x;. The radius of the large needle
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Fig. 5 Geometry of a unit cell: (a) transition cell; (b) closure cell

is denoted by p1(x1) := p4+(x1). The radii of the eight small needles are given by
pi(x1) :=p_(x1) fori =2,...,9. The characteristic function yx is defined by

9

X i= > H(piGep) =[x —xV]) for (x1,x1) € Zims. (3.26)
i=1

where H is the Heaviside function, i.e., H(s) =1 for s > 0 and H(s) =0 for s <0.
It remains to specify the radii p4+ for the large and small needles.

At the tangential faces (i.e., at x; = 0 and x; = h) of the cell, the needle radii are
defined by

1
p+(0) = p_(0) = 3" p—(h) =0, p4(h)=r,

respectively. This means that at x; = O all needles have the same radius. At x| = A,
the radii of the small needles are zero. We choose p-+, such that, throughout the cell,
the cross-sectional area of the needles is constant, i.e.,

2 2 1 2
oy (x1) +8mp(x1) = E)»a . (3.27)

To avoid further complicating the constructions, we assume that the profile of the
small needles is conical at the tip:

hp—(x1)=r(h—x1), for(l—a)h<x<h, (3.28)

where 0 < o < 1. The precise value of « is inconsequential; in fact, for the zero
anisotropy configuration uF it could even be taken as zero. In view of (3.27), (3.28)
defines p4(x1) for (1 — @)h < x; < h. Furthermore, on most of the cell, i.e., for
0 <x1 < (I —a)h, we choose p to be the linear interpolation connecting the values
of py at x;1 =0 and x; = (1 — «w)h. In turn, p_ is defined by (3.27). Note that, as
a consequence of the conical profile at the tip of the small needles (see (3.28)), it
follows that

3

| / / < r
Py (x1) p,(xl)ywz for all x; € [0, A]. (3.29)
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Geometry of a Closure Cell In any closure domain cell Z, there is only one large
needle along the center of the cell; see Fig. 5(b). The radius pcs(x1) satisfies the
conditions p1s(0) = 0 and pc1s(h) = r. Analogously to the above construction for the
transition cell, we choose a needle shape with a conical tip. Define

x(x1,x1) := H(peis(x1) — |x1|) forx € Ze. (3.30)

In particular, we also have
|l 1) 5% for all x; € [0, h]. (3.31)

Geometry of a Core Cell 1In each core cell Z.qe, the function y is assumed to be a
characteristic function of a straight cylinder with the radius equal to that of the needle
on the adjacent side of the transition cell. The overall geometry of the magnetization
pattern for one core cell and three refining generations is presented in Fig. 1. In the
sequel, we give two different magnetization configurations, uF and uSF, based on
the geometry described above.

The Magnetization uF  We first define the anisotropy-free configuration uAF by
uAF(x) = ()L —2x (x))el in Zcore, Zirns» Zels (3.32)

and zero outside £2. Note that the stray field of u*F is created by surface charges on
the needle interfaces and at the sample surface. We next define an auxiliary field vAF.
In every transition cell Zyg, we define

VA= —Vi¢ in Zms, (3.33)

where ¢ is a solution of
Alg=V-u* inZys and 9, 9=0 ondy Zyms. (3.34)

Note that vAF is uniquely defined, since by (3.26) and (3.27) we have

/u‘?F(xl,xL)de_zo Vx; €0, k], (3.35)
K

implying the solvability condition for (3.34), in view of the fact that uAF = u’l“:el.

Also note that the corresponding field ¥AF is the approximation of the stray field
assuming that magnetostatic interactions in tangential slices are dominant.
In closure domain cells, (3.35) does not hold. Hence, in this case we define ¥AF by

VAF =V 9| —01p2e; in Za, (3.36)

where V| ¢ approximates stray field interaction in tangential directions, while 91>
approximates stray field interaction in the normal direction. We define ¢ as a solution
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of
1
Algr=V-utf — —2/ V-ut(x),%)d%, inZys and
a“ Jg (3.37)
0y, 1=0 ondyZs.
The function ¢, is defined as a solution of
2 1 AF ~ ~ .
Blgpz(xl)=—2 V-ur(x1,x1)dx; inZgs and
a“ Jg (3.38)

012 =0 on{x; =0} x K.

Similarly to (3.34), up to a constant, problems (3.37) and (3.38) are indeed uniquely
solvable for ¢; and . Finally, we set vAF = 0 in the core cells Zcore and outside £2.

The Magnetization uw5Y Here we construct an approximately stray field-free mag-
netization uSF. Although it would be natural to consider u = uF 4 ¥AF as a trial
function, in view of the fact that V - u = 0 in this case, this function is not admissible;

i.e., it does not belong to A. For this reason, using the construction of uAF and vAF

above, we define an auxiliary function VSF.

P @) = (1= 1= [F0°) (@@ + (1= Dxeer) in Zims,  (3.39)

P ) 1= (1= 1= [P 0*) (@) + (1 = e er)
+ 51 (x)er  in Ze. (3.40)

As will be shown in Sect. 3.4, this definition is well-posed, since in our construction
|VAF| « 1. Therefore, we set

SF = At 4 9AF - 5F, (3.41)

u \4 v

It can be easily checked that, by our definition of ¥5F we have uSF € A. Furthermore,
uSF is constructed to have small stray field (see Sect. 3.4).

Localization of the Stray Field Note that our constructions are such that
V. utf+v.94F =0 and V.- uF+Vv.3%F =0, (3.42)
in R x T. We will use this information to localize the estimates for the stray field

energy (for the original idea in the context of ferromagnets, see Choksi and Kohn
1998). Let us note that, for every vector field u and its stray field v (in the sense of

(2.17)), we have
/ |V|2=inf/ ¥, (3.43)
RxT vV JRxT
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where the infimum is taken over all fields v € L?(R?; R?) satisfying
V.¥4+Vou=0 (3.44)

distributionally. This motivates us to define, for any u € A and for any v € L?(R x
T; ]R3), the energy

E[u,ﬂ:g/ |vu§|+Q[ IuL|2+/ v2. (3.45)
2 2 RxT

Hence, we have E[u] < E [u, V], whenever v satisfies (3.44). In view of (3.42), it then
follows that

)< B BT =BT G4

The advantage of the quantity E is that it is local in both of its parameters. We hence
define the restriction of E on any set A C R x T by

Em[u,v]:e/ |Vu‘}|+Qf |uL|2+f|€|2.
AN ANS2 A

3.4 Estimates

In this section, we give the estimates corresponding to the self-similar needle con-
struction described in the previous section, thus completing the proof of Proposi-
tion 3.7. We will prove the following lemma.

Lemma 3.8 (Needles) Suppose that y%e% |1n)»|% <A < y?|InAl%. Then, for ¢ < 1
and A K 1, the scaling of the minimal energy E is bounded above by

Lot By <y 3edamald (3.47)
02 uc A ~Y ' ’

In view of (3.46), it is enough to give the estimate (3.47) in terms of the localized
energy E, defined in (3.45), using the approximate stray fields ¥AF and ¥5F defined
in the previous section. Before giving the proof of Lemma 3.8, we estimate the re-
striction of E onto a single transition or closure domain cell. We note that, as long
as hg is bounded away from 1, the estimates for the core cells trivially result in the
same upper bounds as for the transition cells. Therefore, in the following we do not
include explicit arguments for the core cells.

We first give the estimates for uF.

Lemma 3.9 (Energy of a transition cell for u?F) Consider a transition cell Zyys with
height h and maximum needle radius r. Suppose that the needle is slender, in the
sense of r < h. Then

4
- rtlni
E\Zins [uAF, VAF] <erh+ |h l ,

where utF is defined in (3.32) and AF ig given by (3.33).
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Proof By the definition of uf, we immediately get the following estimate for the

surface energy:
a/ |w“F]~ef Vx| <erh,
Ztms Ztms

where we used that by assumption r < . It remains to give the estimate for the stray
field part of the energy. In view of (3.32), we get

o

332 i
Vvt O gyt = Z (i 1) = | = x]) a1 01 (x), (3.48)

where § is the Dirac §-function. We expect a logarithmic blow-up near each of the
needles. This motivates us to decompose ¢, defined in (3.33), by ¢ = e© 4 M),
where ¢© is given by

9
0O x0) =) 20 0d1 D H (|3 = x1] = pi(x1)) In L”()' (3.49)
X1

i=1 lx1 —

and where, as before, H is the Heaviside function. For the moment, let us assume
that the leading order contribution to the stray field energy is due to ¢ In view of
(3.49), it is easy to calculate

4 6

2 _ rolnA| 4 _ T
/ Vig@ < ——— and [Vie@" < . (3.50)
Ztm% h trns h

where we recall that by (3.25) we have |1n(§)| ~ |In 1|. We then get

(350) Al
~AF|2 (333) 5 2 [In Al
/ V4] =/ VLol s/ Vi s ——
erns Zlms le'llS

It remains to check that the energy contribution related to ¢! is of lower order.
Indeed, from the definition of ¢ and @@, it follows that 1 satisfies

AJ.SOU) =0 inZys and aluﬁo(l) = _aVJ_(p(O) on 1 Zums-

In particular, at the boundary of the cell we have

9
1800 (329) ;2
19,0V <D pldpl B sz, (3.51)
= loi — x| ha

It then follows by standard elliptic estimates that

(351) 4

2 4 rHnal
/ VD) <hf |9y, 0| <
Zims 01 Zirans

This completes the proof of Lemma 3.9. U
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Lemma 3.10 (Energy of a closure domain cell for u?F) Consider a closure cell Zgs
with height h and maximum needle radius r. Suppose that the needle is slender in the
sense of r <K h. Then

- 4lna
E\ 7, [0*F. 95F] S erh + % 2, (3.52)

Proof The estimate for the energy in the closure domain cells proceeds similarly to
that for the transition cells. We decompose ¢ = (pfo) + <p§1), where the function ¢(©

is given by

Pels(x1)
lxil

0 (1, x1) = 20015 (x1)1 pets (e H (1x 1| — pets(xr)) In

As in the proof of Lemma 3.9, it can be shown that the contribution of the energy
related to @1 can be neglected. Hence, in the following, we only give the estimates

for the functions (pfo) and ¢;. A straightforward calculation then yields that we have
the following bound on the surface energy:

8/ |Vu‘f’AF| <erh,
Zels

where we used that by assumption r < A. Similarly to the arguments in the previous
lemma, one can also show that

4 6
2 _ r7|lnA| 4 T
/ Vi s —= and / Vip' < . (3.53)
Zls h Zeis h
Furthermore, from (3.38) and (3.48) we get |01¢2| < A, and so
f 0192]* S Arh. (3.54)
Zis

In view of (3.53) and (3.54), the stray field energy is estimated by

(3.33) 4

~AF|2 2 r*|lnA|

f 47 5/ A +/ ol S At (35S)
cls Zeis Zis

This concludes the proof of Lemma 3.10. g

We next give the estimates for uSF.

Lemma 3.11 (Energy of a transition cell for uSF ) Consider a transition cell Zyms
with height h and maximum needle radius r. Suppose that the needle is slender, in
the sense of r K h. Then

4 6
~ - InA
E |2, [0 V] Serh + % + ;7 (3.56)
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Proof We use the notation of the proof of Lemma 3.9; in particular, we decompose
0 =9 + oW1 with 9@ being the dominant term given by (3.49). We first note
that by construction |V | Sr/h < 1 (see (3.49)), so uSF is well defined in Zips.
Therefore, the surface energy can be estimated as before:

a/ [Vul St =s/ (Vud | S erh. (3.57)
trns trns

The estimate for the anisotropy energy of uSF follows from

4
2 (3.39) r*|lnA|
/ Juff (=f |Vw|2§/ VO S GS)
Ztms Z[ms Zlms

In order to estimate the stray field energy of uSF, we note that, in view of (3.39), we
have [¥3F (x)| < |V ¢(x)|%. Hence,

A (%50) /6

[ BT weerts [ vl S
Ztms Ztms Ztms

The above estimates together yield (3.56). U

Lemma 3.12 (Energy of a closure domain cell for uSF) Consider a closure cell Zs
with height h and maximum needle radius r. Suppose that the needle is slender in the
sense of r < h. Then

4
- InA
EIqu[ SF. VSF] <erh+ Qr[InA| i|z | + 3 —l—)» 2h.

Proof Asin Lemma 3.11, the function uSF is well defined, since |V 1| <r/h < 1.
Using the slenderness condition and the fact that by construction [91¢2] S A K 1,
we again get (3.57). Similarly, (3.58) also holds for the anisotropy energy. Finally,
in view of the definitions (3.36), (3.37), (3.38), and (3.41) and in view of (3.53) and
(3.54), the stray field energy is estimated by

o . , (3:53).(3.54) 6 )
/ 75 / IVLeil +/ dip2l” S 5+ Ah
Zeis Zis Zels h

The above estimates together conclude the proof of Lemma 3.12. |
We are now ready to give the proof of Lemma 3.8.

Proof of Lemma 3.8 In view of (3.46), it is enough to give an estimate in terms of
the energy E instead of E. As before, consider either a transition or a closure cell
Z with dimensions 4, a and maximum needle radius r. The energies of the configu-
rations uAF, ¥AF or uSF, ¥5F are estimated in the previous lemmas. In the following,
we will write u, ¥ for a configuration representing either uF, vAF or uSF, ¥5F. For a

moment let us assume that all needles are slender, in the sense of r < h. In view of
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Lemmas 3.9-3.12, for any transition cell Zy,s and any closure domain cell Z.s with
the above dimensions, we then have the following estimate:

5 4Ina
E‘Zlms [u7 i;] S 8rh + w F and

(3.59)
- - yré|inA| )
E‘chs[u,v]fsgrh—f—T_i_ﬁ_‘_k h

Balancing the first two terms on the right-hand sides of (3.59) yields the optimal
height for both transition and closure domain cells as a function of the maximum
needle radius r:

h=yZe2r2[InAl2. (3.60)

With this choice of & for each cell, the estimates in (3.59) become

6
E\zp [0, 91 S y2etr %|lnk|2+h_ and

6 (3.61)

Eizy w915y 282r2|1n,\|z+h +ar2h,

Given any initial height A for the first generation of cells, we use (3.60) to corre-
spondingly choose the width of the first generation of cells. The width of the follow-
ing generation of cells is inductively defined by (3.22) and (3.60). We terminate the
algorithm after M generations of cells as soon as closure domain cells are not too
expensive in the sense of

yr}f,,|1n)»|

Arghy S (3.62)

hm
We choose the initial height 21 = k1 (M) such that (3.23) is satisfied, i.e., such that the
cells exactly cover §2. Since in view of (3.22) and (3.60), & ; is a geometric sum, as
expected we must have 41 ~ 1 independently of M. In view of (3.60) and (3.62), we
then get the following estimates for the needle radius for the first and last generation
of cells:
3
P~ and oy~ = (3.63)
y3|lnA|3 A

Note that the termination criterion (3.62) is equivalent to r M/ h? M < Vlln T Since in
view of (3.22) and (3.60) r;/ h; is monotonically increasing in j, we get

2

ri A
L < forall0 < j < M. (3.64)
12~ yln]
Let us assume for the moment that
r] yr4|lnk|
—3§— forall0<j <M. (3.65)
hj hj
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In this case, in view of (3.61), the total energy is estimated by

o 113 1 G639
Zy2£2rj2|ln)»|2 < yles
=0

1 ~ . 1 1
z_ZE[“’V]Sa_f _ AlnAl3.
J

In order to complete the proof, it remains to check three consistency criteria. We first
need to verify (3.65). Indeed, (3.65) follows from (3.64) and our second assumption
on A. Secondly, we need to check that our algorithm allows for at least one generation
of cells, i.e., M > 1. In order to see this, we note that M > 1 is equivalent to 3 > 1.
By our first assumption on A, we have

M (322) 1 (363 A > A > 1,

12 1~ 1 2 1
™ y3&3|InA|3  y3e3|lng|3

Finally, we need to check that the cells are indeed slender in the sense of r; < h;.
This follows from (3.64) and our assumptions on A. This concludes the proof of
Lemma 3.8. O

3.5 Constructions for the Full Energy

In this section, we give the proof of Theorem 3.2. In order to do so, it remains to give
a diffuse interface version of the upper constructions in Sect. 3.3.

We first consider the case of a hard material, i.e., Q = 1. Hence, we will con-
struct a diffuse interface version @F of the magnetization uF. It is enough to show
the construction for a single needle. For simplicity, consider a closure cell Z s with
height 4 and width a. We recall that, for sharp interfaces, we defined uAF by (3.32),
where the shape of the needle is described by the characteristic function x in (3.30).
Now, we define the transition layer

S={(x1,x1) € Zais : [IxL] — pets(x1) —d (x| <w(x)}, (3.66)

where the functions w(x1) and d(x;) are the thickness and the displacement of the
diffuse interface, respectively, given by

2
wxy) = é pas(r),  d(xy) = —pcls(xl)(l —J1- 35—2r2) (3.67)

We recall that in the present units the quantity e Q! is just the typical width of Bloch
walls, as described in Sect. 2. We also note that by our assumptions s Q~! < r and,
therefore, |d(x1)| < w(x1) <K pcs(x1), for all x; € (0, k) and all cells. Indeed, by our
assumptions y 2> A2 [Inx|~! >> A. Therefore, by (3.63) the inequality holds for the
closure cell, in which r is the smallest.

Let the “mollification of the Heaviside function” H € W (R) be given by
H(t) =0in (=00, —11, H(t) = 2(t + 1) € [-1,1], and H(t) = 1 in [1, 00). Fur-
thermore, let Hg(r) := H (¢ /R). Analogously to (3.30), we define

X1, x10) = Hygep (peis(1) +d(x1) — |x1])  forx € Zes.
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We then define @2F as follows. First we set

~AF =A—2x(x) inZgs and wu, :=0 outside of S.
Inside the transition layer, we define uﬁF, such that |a LF| ensures that u € A, and
that the vectors e, x|, and uj\_F form a right-handed triplet. A straightforward cal-
culation shows that our choice of d(x;) ensures charge neutrality on every slice; i.e.,
S #F (1, x1)dxy =0 forall x; € [0, h].
In the above construction the exchange and anisotropy energy are supported only
in the transition layer S. One easily obtains

h /o2
/<4Q’V AF|2 +Q|~AFI> /O (%Jrgpm(xl)w(xl))dxl~grh.

In estimating the stray field vAF of GAF, we can follow the same arguments as for uAF,

modifying the definition of <p§0) to be the radially symmetric potential due to charges
V - 0AF rather than V - uAF. It is easy to see that all the estimates remain unchanged.
Comparing the above estimates with those in (3.52), it follows that the localized
diffuse interface energy E[@*F, ¥AF] for a single cell, based on the construction GAF,
is not larger in terms of scaling than the localized sharp interface energy E[u’F, vAF]
of the optimal sharp interface construction in Sect. 3.3.

The function @F can be defined throughout £2 by applying the above construction
to every needle in the self-similar geometry described in Sect. 3.3. The corresponding
estimate for aAF follows. Lastly, we note that the construction in the case of a soft
material (Q < 1) proceeds analogously. This concludes the proof of Theorem 3.2.

4 Reduced Energy

The analysis of Sect. 3 provides the scaling of the minimal energy in the limit of
thick samples or, correspondingly, when ¢ — 0. While the analysis does not require
any assumptions about the minimizers (the analysis performed is ansatz-free), the
results obtained give only a rough idea about the structure of the minimizers. It seems
natural to expect that the minimizers should look like the trial functions used in the
construction of the upper bounds. Yet, the precise shape of the domains, as well as
the precise constants in the asymptotic behavior of the minimal energy, cannot be
captured by the analysis above, since it does not address the leading order constant in
the scaling of the energy.

In this section, under the assumption that the magnetization is mostly aligned with
the easy axis and that the geometry of the minimizers is slender, we derive a reduced
sharp interface energy, which should provide the leading order behavior of energy for
& < 1. Our aim is to reduce the energy minimization of E to a two-step process. In
the first step, we fix the “shape” of the magnetic domains and construct the energy-
minimizing configuration of the magnetization away from the domain walls. In the
second step, we minimize the obtained, reduced energy, which depends only on that
shape. We note that the heuristic idea of computing the combined contribution of the
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magnetostatic and anisotropy energies away from the domain walls has been known
as the p*-method in the physics literature (Williams et al. 1949; Hubert and Schifer
1998). Below, we assign a precise mathematical meaning to this idea and provide its
rigorous justification under specific assumptions. Finally, we point out that while in
this paper we are interested in the case of the applied field near saturation (A < 1),
we expect the obtained reduced energy to be valid independently of the applied field,
even in zero applied field (A = 1).

We first introduce the characteristic function x representing the shape of the do-
mains where the magnetization vector is not aligned with the external field,

xx)=1 ifm;(x) <0, xx)=0 ifm;(x)>0. “.1)

The reduced energy which is derived in this section is then given by
Eo[x] =28/ Vxl+ V/ n(xe —2x) (=45 0xe —2x).  (42)
2 RxT

where the operator Ay is defined by

Ag = (xe+v(1—xe))AL+yd,
with constant y defined earlier in (3.1). The admissible class of functions x for Ej is
Ao={x € BV(Rx T; {0,1}) : x =0in (R x T)\2}.

Note that Ap ~ A in £2, when acting on functions that vary slowly in the easy
axis direction, compared to the directions normal to the easy axis. There is a second
equivalent formulation for (4.2). A straightforward calculation yields that (4.2) can
be written as

Eo[x]:/\2€2+28f |Vx|—4A/ X +4y/ nx(—ag)ax. @43
2 2 RxT

Notice that by lower semicontinuity and coercivity, the minimum of the energy Ey is
attained in Ag (see also Choksi and Kohn 1998, Theorem 1.2).

We first note that, up to the leading order constant, the reduced energy E( has the
same scaling of minimal energy as E; i.e., for A < y2|InA|? and ¢ sufficiently large,
we have

i inf Eg[x]~ rnin{)x2 %sgkllnﬂ%}

gz xe .A() 0 X ’ y N
It can be checked that this result follows by a slight modification of the proof of
Theorem 3.1 (replacing u1 with Axo — 2x).

In order to show the asymptotic equivalence of the minimum energies for E and
Ey, including the leading order constant, we need to make an assumption on the
magnetization m. If we assume that the magnetization vector m does not deviate
strongly from the easy axis throughout the sample and, furthermore, that the geometry
of the magnetization configuration is slender, we can show that the minimal energies
for Eg and E essentially agree to the leading order.
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Theorem 4.1 Let ¢ < 1 and y > §, where 0 < § K 1 is the same as in (2.16). Then
(i) For every u € A satisfying \u_| < 8 there exists x € Ao, such that
1
E[u] > (1 —82)Ep[x].
(ii) For every x € Ao, for which the unique solution $ € H'(R x T) of

Ao@p=yd1(Axe —2x) (4.4)

satisfies |V@| < Q8, there exists u € A, such that
1
Eolx]> (1—82)E[ul.

Theorem (4.1) is proved at the end of this section via Propositions 4.2 and 4.3.
However, before stating and proving Propositions 4.2 and 4.3, it is instructive to
present a formal derivation of E( (see also Williams et al. 1949).

We note that both the anisotropy and the external field favor alignment of the
magnetization with the easy axis. We hence expect that m &~ +e; in £2 and should,
therefore, have u| &~ A — 2 there. In view of |m| = xg, this motivates us to write u
in £ in the form

uz(x—1+(1—2X),/1—|uL|2)e1+uL=()\—2x)e1+uL+o(|uL|2).

For m_ | = |u_ | < 1, to the leading order, (2.16) then turns formally into

E[u]:Zsf |VX|+Q/ |uL|2+f v, 4.5)
22 2 RxT

Here, the function v satisfies
v=-Vg, Ap=01(Axe —2x)+VL-up inRxT. (4.6)

Following our approach, we minimize (4.5) in two steps. First we take the mini-
mum with respect to u; with x fixed. In the second step we minimize the result with
respect to all admissible characteristic functions x. It is not difficult to see (see the
proof of Proposition 4.2 for details) that for fixed x the sum of the last two terms in
(4.5) is minimized when

u =-0 'xeVié.
Substituting this relation into (4.6), we find that
PG+ A1e=010xe —2x)+VL-uL =31(xe —2x) — 0 ' x0 410,

which is precisely (4.4). Finally, substituting the expression for ¢ in (4.4) into (4.5), it
then follows that E[u] >~ Eq[ x ], where the reduced energy Ey is given by (4.2). Here
we took into account that A is an invertible operator. Thus, to the leading order, the
energy of minimizers of E should coincide with that of E.
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Observe that the reduced energy Eg[ x ] just derived has a form very similar to that
of the sharp interface energy E in the case of infinite anisotropy, Q = cc. Indeed, in
the latter case the magnetization vector m is restricted to take only two values in £2:
m = *e;. For such magnetization configurations, the sharp interface energy (2.16)
becomes

EAF[u]:S/ |w§|+/ dur (=A™ ") du,
2 RxT

which coincides with (4.2) for y = 1, since in this case u; = Axe — 2x. On the
other hand, noting that for slender magnetization configurations we have —A~! ~
—Aél ~ —AII, one should expect

EAFzzsf |Vu<|+f]R 3 (rxe —2x)(=A7Ha(xe —2x), (4.7)
2 xT

Eo’—v28/Q |VJ_X|+V/R h0xe —20(-A7")00xe —2x),  (4.8)
xT

where x in (4.7) and (4.8) is given by (4.1). It is easy to see that, up to a multiplicative
factor, the expression in (4.8) coincides with that in (4.7) after rescaling x; and x3

with y_%. Similarly, the energy per unit area, according to (4.8), is y% times the
expression in (4.7). Thus, the two energies approximately agree with each other for

QO > 1, and the minimal energy per unit area is smaller by a factor Q% for 0 « 1
(see (3.1)). The latter is due to the fact that in this case the effective magnetostatic
interaction is weakened by a factor of Q, since the stray field is shielded by small
deviations of m from the easy direction, creating magnetic counter charges. These
arguments provide a physical explanation of the apparently surprising fact that the
scalings of the energy of non-trivial minimizers for both hard and soft materials agree

up to a factor of Q% (see also Williams et al. 1949; Hubert and Schifer 1998). Let us
also point out that the energy in (4.7) and (4.8) is, in turn, a three-dimensional analog
of the energy studied in Kohn and Miiller (1994). While the connection of the latter
with the micromagnetic energy was recently pointed out in Otto and Viehmann (2010)
for hard ferromagnetic materials (Q >> 1), the same connection for soft materials
(Q < 1) is a novel observation of the present paper.

We now give a rigorous derivation of the relationship between the reduced en-
ergy Eo and the sharp interface energy E under a few assumptions which appear
quite natural physically. Theorem 4.1 is an immediate consequence of the following
two propositions (for the lower and upper bounds, respectively). We begin with the
analysis of the lower bound for E[u] in terms of Eg[x].

Proposition 4.2 Let y > §, where 0 < § < 1 is the same as in (2.16), let u € A, and
let |luy| <$6.Then E[u]l > (1 — 8%)E0[X], where x is given by (4.1).

Proof Letus write u =u©® +u® and ¢ = 9@ + ¢V, where ¢ is defined in (2.17),
and

u? =xo{G.—20e1 —07'Vie®},  4pP=Vv.u@ @9
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This is always possible, since ¢@ is uniquely solvable in terms of x. Indeed,
eliminating u® in the second equation in (4.9) via the first equation in (4.9), one
immediately sees that ¢© solves the same equation as ¢ in (4.4). Then, after a
straightforward computation, using (2.17) and (4.9), the bulk part of the energy
Epuk[u]l = Q [, lui >+ SRt |[V|? can be written as

Bantw =0 [ [ul? = 0 VigO 4 [ [9(p o)
RxT
Z/Q(Q’uﬂ)’z"‘ Q_1|VL<P(O)|2+231<P(0)u§1))

e[ (VeOP 9P
RxT

Using the Cauchy—Schwarz inequality, we obtain

Ebu]k[u]>/ (140~ XQ)’VMD(O)} +/ |31<P(0)|2
RxT

—2(/ 1010 /|u(”|> (4.10)

Now, recalling (2.15) and (4.1), one can see that in §2 the angle between the vector
m and the vector m(lo)el, where m(10) is the first component of the vector m©® =
u@ 4 (1—21)ey, does not exceed 7. Note that by (4.9) we have |m§0)| = 1. Therefore,

since |m| = 1 as well, the magnitude of the projection of the vector u = m — m©®

onto e; does not exceed 1, and uﬁl)e 1 points in the direction opposite to m( e 1. From

this we conclude that |u11)| =1—/1—|u;|?2 < |ul|? so by assumption we have

|u§1) | <&Juy|. On the other hand, it can be easily seen that the non-local part of Eg
equals the sum of the first two terms in (4.10):

y/ N Oxe —20(=Ag")00xe —2x)
RxT

|
=__/ ROPWEC
Y JRxT

1
= ——/ eO(ya+ 1 -y)xedi)e®
Y JRXT

o L LR
RxT 2

where in the last step we used integration by parts. Therefore, by the Cauchy-
Schwarz inequality,

1 1
2 2 1 1
2(/|al<p(°>|2f|u§”|2) §2<E0[X]52/ |ul|2) <260 P EZ[X1E¢ [ul,
2 2 2
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Combining the above estimates with the fact that

/Q|w§|=2(1—52)/9|vx|,

we arrive at
2 2 i1 3
Elu] >2¢(1—68%) | |Vx|+ Epuxlul > (1 —8%)Eolx]1—28Q 2E2[u] E[x],
Q
which yields the statement. g
We next give the proof for the upper bound for E[u] in terms of Eg[x].

Proposition 4.3 Let x € Ay, and let |V @| < Q8, where ¢ is given by (4.4), for some
0 <8 K y. Then there exists u € A with lu_| <8, such that Eo[x] > (1 — 8%)E[u].

Proof Setp©® =@ andu=u® +u®, where u® = yo((A —2x)e;1 — 01V, ¢©),
and u'V) = ugl)el ensures that |u(0) +u® 41— M xeel| = xo. Then (p(O) solves
Ap©® = v . u® and by assumption |u<11)| < 072|V19©|2. The proof is then ob-
tained by retracing the calculation in the proof of Proposition 4.2, noting that in this

case uj}) = 0. We will only need one extra estimate for ¢! solving Ap) =V .u,

Integrating by parts and applying the Cauchy—Schwarz inequality, we obtain

f Ve[ = —/ w(”Aw“):—/ oo
RxT RxT RxT

1
=/ 310 < (/ |V¢‘1)|2/ |u(1>|2)2.
2 AV o

Squaring both sides and using the above estimate for |u(11) |, we find that

/Q|V<p(l)|2§Q_252/9|V¢<p(°)|2552Q_1E0[X],

which completes the proof. g

5 Transition to Non-trivial Minimizers

As we showed in Theorem 3.2, there is a change in the scaling behavior of the mini-
mum energy due to the appearance of non-trivial minimizers of £ at A ~ y Se3 [Ine| 3,
In this section we analyze the nature of this transition in more detail. Specifically, we
are interested in locating the precise critical value of A (corresponding to the critical
applied field away from saturation) at which this transition occurs. We also address
the structure of the domain patterns near the transition point.
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As a first step, based on an asymptotic study of the reduced energy Eq, we derive
an even further reduced energy Egp. We will formally show that near the transition
point, in rescaled variables, it is appropriate to consider the energy

h N\ 2
EOO[A]zfo { ! (d—A> —A+x/mi}ds, (5.1)

27 \ dE

where the set of admissible functions is
A={AeH'((0,h):A>0, A(0)=A(h)=0}.

The function A(£) is simply the rescaled area of the cross section of a single needle
as a function of the rescaled coordinate along the needle. The single parameter / can
be understood as a measure for the effective thickness of the plate. It is defined by

13
h=———— (5.2)
ey?ini(yie s)
A detailed derivation of the reduced energy Egy and the precise definition of the
quantities A and & in terms of the original quantities is given in the next subsection.
The advantage of the energy Ep is that it can be explicitly minimized and its
minimizers can be explicitly computed. We identify two critical values, denoted as
hi and hY, with hf < hY for the thickness of the rescaled slab, at which transitions
in the qualitative behavior of the critical points of Egg occur. Basically, the result is
that the uniform state is the unique global minimizer whenever the effective thickness
h of the sample satisfies 2 < h}. Furthermore, the uniform state is even the unique
critical point as long as & < hg. The precise statement is as follows.

Theorem 5.1 Let hjy = w~/2 and let h} > h{j be the unique solution of the system of
equations

F(pm) =0 and G(ppn)=hj, (5.3)

where the functions G and F are defined in (5.8) and (5.9), respectively. Depending
on the value of h, we then have the following alternatives:

1. If h < b, then A =0 is the unique global minimizer of Eqo, and there are no
other critical points of Eqy.

2. If hg < h < h}, then A = 0 is the unique global minimizer of Eqo, but there exist
non-trivial critical points of Ey.

3. If h = hY, then there are two global minimizers, given by A =0 and by the unique
positive solution of (5.5) vanishing at the endpoints.

4. If h > h7, then the uniqu_e positive solution of (5.5) vanishing at the endpoints is
the unique minimizer of Eqp.

Furthermore, the unique positive critical point A, of Eqy obeys Ap(£) ~ E*3 for
h = h§ and Ap(§) ~ & for h > hy.
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Thus, the transition from trivial to non-trivial minimizers of EOO occurs precisely
when h = h}. Numerically, the critical values of the parameter & are

hi~ 4443, hIx6.113.

In terms of the original energy &£, the statement of Theorem 5.1 has the following
interpretation. In view of (5.2), the critical values A and i} of & define the respective

critical values of A:
1 1
X* — Vh32 3 )'L* — yhTz 3
0 3 ’ 1 3 ’

with the meaning that if one chooses A = Aes [Ine| 3 , then the global minimizer of
& will be trivial when A < A}, and non-trivial when A > 1}, for fixed A and y as
& — 0. Similarly, the trivial minimizer is expected to be the unique critical point of
E for A < )_»3 when ¢ — 0. Thus, the transition to non-trivial minimizers for ¢ < 1 is

- 2 1 .. oL
expected to occur at A = A} =~ ATe3|Ing|3. We would similarly expect the transition

to non-trivial minimizers to occur at this value of k’f in all the energies: Eg, E, and €.
We note that A} can be rigorously shown to give the asymptotic upper bound for the
critical value of A at which non-trivial minimizers emerge by constructing suitable
trial functions out of the non-trivial minimizers of Eqg. However, since the arguments
in this section are based on certain assumptions on the geometry of the magnetic
domains, the arguments are not rigorous in terms of a lower bound for A7.

5.1 Isolated Needles

In this section, we present a formal asymptotic derivation of Eoo in (5.1). At the
onset of the transition from uniform magnetization to a patterned state as the applied
field is reduced, it seems natural to expect the appearance of thin slender needle-
shaped domains of magnetization opposing the applied field. Under this assumption,
it is possible to further reduce the energy E( to obtain precise information about the
shape of these domains.

The starting point of the analysis in this section is the reduced energy Ey in the
form of (4.3). We are interested in the magnetization configuration in the form of
a single needle. More precisely, we assume that the configuration consists of a sin-
gle needle-shaped domain in a sufficiently large sample (i.e., £ = 1). In particular,
supp x looks like the characteristic function of a prolate ellipsoid of radius rop < 1,
extending across §2 in the direction of the easy axis. The crucial observation for the
analysis in this section is that, due to the slender geometry, the dominant stray field
interaction is restricted to slices normal to the easy axis. However, this interaction is
logarithmic and hence does not see the precise shape of the magnetic domains (a sim-
ilar phenomenon occurs in a related model, see Muratov 2010). In fact, for a domain
pattern described above, to the leading order in ry < 1 the Green’s function G g of
the operator —A ¢ can be approximated by G¢ given by

[Inrg|

Golr) =—

8(x1).
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Indeed, G gives the leading order behavior of the Green’s function for the operator
—Ag = —A] . Then the non-local term in the definition of Ep may be written as

I

nr 1
0|/ //31X(X1,I‘L)alx(xl,rl)dzlldzrldxl
2 Jo JrJr

lInrg| (! 2
2 o1 | x(xp,ro)dry ) dxy,
T Jo T

where we recall that T = [0, £)? is the torus with periodicity £. This motivates us
to define the function A : [0,1] — R by A(x1) = fo(xl, -), denoting the cross-
sectional area of the needle in the slice at x;. Then (4.3) becomes

/ 81x(—Aél)81X ~
RxT

1
2y 11
Eo[x]%k2€2+f (2.9/ Vo xldry — daa g 2YImrol nrO'lA/|2>dx1,
0 T T

where we again have used slenderness of the needle in the sense of |, o IVxlI =
/ o V1 x|. Minimizing the interfacial contribution of the energy at each x; for fixed
cross-sectional area then leads to the following expected behavior for minimizers:

inf Eo[x]~ 22€% + inf Eqo[ Al
X
where Eq is given by

! 2yl
EOO[A]=/ <4sﬁA5—4xA+M|A’|2)dxl. (5.4)
0 b4

. - L2 1
Note that, according to (3.63), at the transition, where A ~ y3¢3|Ine|3, we expect
1 1 1 1 . .
ro ~ &3y~ 3|lng|”3 and, hence, |Inrg| = |In(y/e)3|. Using these two scalings and
by introducing the rescaled variables

_ A2 . by -
A=A, §=hxi, E[A] = —— EoolAl,
) 4e

we obtain the energy Eqo in (5.1). Finally, since A©)>0o0r A(h) >0 implies that
there is a charge layer at the plate’s surface, causing a lot of stray field energy, to the
leading order the minimizers of Eq are expected to satisfy A(0) = A(h) =0.

5.2 Needle Shapes and Critical Fields

In this section, we investigate the minimizers of Eqg and give the proof of Theo-
rem 5.1. We first assume that there exists a positive critical point A, (&) € HO1 (0, h))
of Eg, i.e., Ay > 01in (0, k). By standard ODE theory, A; € C2((0, h)) satisfies the
Euler-Lagrange equation for (5.1), i.e.,

ld%,:_“r N

. dg? NI

for & € (0, h). (5.5)
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Note that (5.5) admits a first integral

1 (dAR\? - -
E(T;) 4 Ay —JnA,=7C forfe(0.h). (5.6)

where C € R is an arbitrary constant. Evaluating (5.6) at £ = 0 and in view of
Ap(0) =0, we have C > 0. Evaluating (5.6) at the maximum point of A ylelds
max Ay, > 7. Furthermore, we note that the solution of (5.6) is monotone in (0, 2)

and takes its maximum at £ =

It is convenient to introduce the rescaled needle radius p (&) = (A, (£)/7) 5 where,
in view of the discussion above, the maximum p,, = p(h/2) satisfies p,, > 1. Inte-
grating (5.6) over (0, %), a straightforward calculation yields

h pm pdp
E‘ﬁfo T~ f(sec (1 =200 + 2/pnton D). 67)

Here we have used the fact that C = pp, (o — 1), which follows by evaluating (5.6)
at &£ = h/2. In particular, for any given i > 0 a positive critical point of Eg exists if
and only if 7 = G(p,,) for some p,, > 1, where

Gpm) = 2(sec™ (1 = 200) +2y/pn (o — 1) ). (5.8)

dG(pm) 4V 2)0711 (pm

2om—
monotonically increasing for p, > 1, with G(1) = 71\/5 and G(p,) — o0 as
Pm — 00. In particular, a non-trivial critical point of Eqo exists, if and only if
h>hi:= 7+/2. Since for every local minimizer the Euler-Lagrange equation holds
in every interval of positivity, this also shows that for every & < A, the only critical
point of Egg in HOl ((0, b)) is A = 0. This completes the proof about the existence or
non-existence of non-trivial critical points in 1 and 2 of Theorem 5.1.

Let us now consider the global minimizers of Eqo, which exist, in view of the
coercivity and lower semicontinuity of Eqy, for all i > 0. We first calculate the energy
of the needle profile calculated in the first part of the proof. For this, we define

(94N 4 _ 2ne
<d§> s e

Differentiating (5.8), one gets that > 0; i.e, G(py,) is strictly

_ 1
F(pom) := Ego[An] = ;/(;

An explicit computation then yields

F(pm) = ——= (3 = 40m(pm — 1) pm(pm—l)+%sec—l(1—2pm>. (5.9

T
V18
Once again, differentiating this function with respect to p;,, one gets (”;E)—im) =
4m/203 (pm=1)3
- 20m—1
with F (1) = nz/(z\/_) and F — —oo as £ — oo. By the monotonicity of G, it then
follows that Ego[Ay] is strictly decreasing in & for & > k). In particular, for A7 > hg

< 0, so that F(py,) is strictly monotonically decreasing for p,, > 1,
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Fig. 6 (a) Parametric dependence of needle height on the radius, obtained from (5.8). (b) Needle energy
as a function of radius, obtained from (5.9)

Fig. 7 The needle shape at
h = h7, obtained from (5.5)

defined by (5.3), we have Eqo[A;] > 0 for h € (hj, h%) and Eg[Ax] < O for all
he (h*f, 00). In particular, for i € (0, h’l‘), the only global minimizer of Eq is given
by A =0. The dependences of & and EoolAp] on Pm are shown in Fig. 6.

We now claim that for 4 > h} the global minimizer A is unique and is given by
A = Ay,. Indeed, we first note that A is not equal to 0. In view of the above estimates
on Eg[A], every interval of positivity contains a point x* with A(x*) = . By
strict monotonicity of Egol[Ap] as a function of A, it is also clear that £ =0 and
£ = h are boundary points of the intervals of positivity of A. Suppose that A =0
on I = [&1,&] € (0, h) where & < &;. By the above reasoning, it follows that there
exist points &/ € (0, 1) and &} € (&2, h) such that A(§]) = A(£}) = . It follows that
A defined by A := 7 in (&/,&5) and A := A outside of (&1, &)) has lower energy than
A, contradicting the assumption that A is a minimizer. This shows that A > 0in (0, /)
and hence A = Ay,. This completes the proof of 14 in Theorem 5.1.

In view of (5.6) and (5.7), an explicit calculation yields the following parametric
equation for the needle profile for 0 < & < %:

1 . 4
¢ = —(2Viom —Dow + ™! (o = DEVGon = pom +0- D))

= 2/m = o+ p = D) +cot” (2/Gom = D) )

see Fig. 7. In particular, one easily checks that for 0 < £ « 1 the behavior of the
radius p of the needle near the tip is given by

p(E)~ET forh>h} and p(E)~E3 forh=h. (5.10)

This concludes the proof of Theorem 5.1.
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