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We analyze the transient dynamics leading to the establishment of a steady state in reaction-diffusion
problems that model several important processes in cell and developmental biology and account for
the diffusion and degradation of locally produced chemical species. We derive expressions for the
local accumulation time, a convenient characterization of the time scale of the transient at a given
location, in two- and three-dimensional systems with first-order degradation kinetics, and analyze
their dependence on the model parameters. We also study the relevance of the local accumulation
time as a single measure of timing for the transient and demonstrate that, while it may be sufficient
for describing the local concentration dynamics far from the source, a more delicate multi-scale
description of the transient is needed near a tightly localized source in two and three dimensions.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793985]

I. INTRODUCTION

Several problems in biophysics of cells and tissues re-
quire an analysis of reaction-diffusion equations that model
the concentrations of molecules involved in intra- and extra-
cellular processes. In addition to describing the spatial pat-
terns of concentrations of these molecules across the domain
modeling a cell or a tissue, one is commonly interested in the
kinetics of concentrations at a given location within the sys-
tem. Here, we consider single-variable problems in which the
concentration starts from zero and monotonically approaches
a steady state distribution. This dynamics is predicted by the
so-called source, diffusion, and degradation (SDD) models
that account for the diffusion and degradation of locally pro-
duced chemical signals.1–9 Let C(r, t) and Cs(r) denote the
instantaneous and the steady state concentrations at distance r
from a radially symmetric source, respectively. The approach
of C(r, t) to its steady state level Cs(r) at a given location
can be completely characterized using the local relaxation
function

ρ(r, t) = Cs(r) − C(r, t)
Cs(r)

, (1)

which starts from the value of unity and approaches zero for
all locations. The difference between the values of this func-
tion at two consecutive times t1 < t2, ρ(r, t1) − ρ(r, t2), can
be viewed as the fraction of the steady state level that has
been accumulated between t1 and t2. Clearly, the time deriva-
tive of the relaxation function is related to the fraction of
the steady state level accumulated between t and t + dt, this
fraction equals −(∂ρ(r, t)/∂t)dt. Based on this observation,
Berezhkovskii et al. defined the local accumulation time τ (r),
which provides a time scale for accumulation of the steady

state level at a given location:10, 11

τ (r) = −
∫ ∞

0
t
∂ρ(r, t)

∂t
dt. (2)

Local accumulation times were calculated for a number of
biophysical models, resulting in convenient characterizations
of the concentration dynamics as a function of position and
problem parameters, such as the rate constants of diffusion
and degradation.10–14

All the previous works mentioned above analyzed several
kinds of SDD models in one space dimension. Here, we eval-
uate the local accumulation times for linear SDD models in
two and three dimensions and compare the results with those
in one dimension. We demonstrate that the local accumulation
time provides a meaningful characterization of the local kinet-
ics when the size of the source is much larger than the length
scale for signal degradation and/or when this length scale is
much smaller than the distance from the point of interest to the
boundary of the source. However, a more detailed description
of the kinetics based on the analysis of the relaxation function
is required when these conditions are not satisfied.

Our paper is organized as follows: In Sec. II, we write
down the SDD models in which a diffusible chemical is pro-
duced at the boundary of circular or spherical sources. Next,
in Secs. III and IV, we derive local accumulation times for
these problems and analyze their dependence on the size of
the source. Following this, in Sec. V, we ask a more gen-
eral question related to the extent to which local accumulation
times can be used to characterize local relaxation kinetics in
SDD problems. Finally, in Sec. VI, we summarize our find-
ings and draw conclusions.
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II. RADIAL SDD MODEL

The simplest multidimensional generalization of the
canonical linear one-dimensional SDD model is given by the
following initial boundary value problem:






∂C

∂t
= D

(
∂2C

∂r2
+ n − 1

r

∂C

∂r

)
− kC,

−D
∂C

∂r
(R, t) = Q,

C(r, 0) = 0.

(3)

Here, D is the diffusion coefficient, Q is the flux at the bound-
ary of an n-dimensional radially symmetric source, k is the
linear degradation rate, r ≥ R and t ≥ 0. Throughout the rest
of the paper, we assume that the flux Q is time-independent,
which can be interpreted as an instantaneous establishment of
constant ligand secretion rate from the surface of a spherical
cell.1

As we mentioned in the Introduction, at long times the
solution of the problem in (3) approaches the steady state,
which is described by the following problem:






D

(
d2Cs

dr2
+ n − 1

r

dCs

dr

)
− kCs = 0,

−D
∂Cs

∂r
(R) = Q, Cs(∞) = 0.

(4)

Moreover, for each r the concentration C(r, t) approaches its
steady state value Cs(r) monotonically from below. The time
scale of this approach, however, depends in a rather non-
trivial way on the position r and parameters k and D. The
analysis that follows aims to quantify these dependencies.

III. LOCAL ACCUMULATION TIMES

In this section, we derive local accumulation times for
solutions of (3) in different space dimensions. In the case of
n = 1, the result was first obtained in Ref. 10 and reads

τn=1(r) = r − R

2
√

Dk
+ 1

2k
. (5)

For a reference, we also give the well known expression for
the stationary profile of concentration:

Cs,n=1(r) = Q√
Dk

exp(
√

k(R − r)/
√

D). (6)

In what follows, we will use an alternative definition of local
accumulation time

τ (r) =
∫ ∞

0
ρ(r, t)dt, (7)

which can be obtained from the original one by integration by
parts and is somehow more convenient for the analysis.

We now present a basic formalism for obtaining the
local accumulation time in arbitrary dimension. Let w(r, t)

= Cs(r, t) − C(r, t). Then from (3) and (4), we have





∂w

∂t
= D

(
∂2w

∂r2
+ n − 1

r

∂w

∂r

)
− kw,

∂w

∂r
(R, t) = 0,

w(r, 0) = Cs(r).

(8)

Next, we set

W (r) =
∫ ∞

0
w(r, t)dt, (9)

which is well defined because of exponential decay of the in-
tegrand for each r. Then, the local accumulation time takes
the form

τ (r) = W (r)
Cs(r)

. (10)

Integrating (8) with respect to time and taking into account
that w(r, t) approaches zero as t → ∞, we obtain the follow-
ing boundary value problem:






D

(
d2W

dr2
+ n − 1

r

dW

dr

)
− kW = −Cs,

dW

dr
(R) = 0, W (∞) = 0.

(11)

Solving problems (4) and (11) and substituting the result into
(10), we obtain the local accumulation time as a function of r
and all the model parameters.

Let us now apply this formalism to the case of dimen-
sions two and three. In the case of n = 2, we obtain, after
some tedious algebra, the following expressions for the sta-
tionary concentration profile and the local accumulation time,
respectively:

Cs,n=2(r) = Q√
Dk

K0(
√

kr/
√

D)

K1(
√

kR/
√

D)
, (12)

and

τn=2(r) = R

2
√

Dk

(
K2

1 (
√

kR/
√

D) − K2
0 (

√
kR/

√
D)

K1(
√

kR/
√

D)K0(
√

kR/
√

D)

)

+ 1
2k

∫ √
kr/

√
D

√
kR/

√
D

s

((
K1(s)
K0(s)

)2

− 1

)

ds, (13)

where K0(r), K1(r) are modified Bessel function of the second
kind.15 This expression may be approximated with an accu-
racy better than 2% by the following simpler expression for
all values of the parameters:

τn=2(r) ≈ 1
2k

(
1/ ln[e + 2

√
De−γ /(

√
kR)]

+(1 +
√

kr/(4
√

D))/ ln[e1/4 + 2
√

De−γ /(
√

kr)]

−(1+
√

kR/(4
√

D))/ ln[e1/4 + 2
√

De−γ /(
√

kR)]
)
,

(14)

where γ ≈ 0.5772 is the Euler’s constant. A simpler approx-
imate expression can further be obtained for τ n = 2(r) for not
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FIG. 1. Dependence of the local accumulation time on r in different space
dimensions obtained from (5), (13), and (17) with D = 1, k = 1, and R = 0.1.

too small values of r:

τn=2(r) ≈ r − R

2
√

Dk
+ R + 0.31

√
D/k

2k(R + 0.62
√

D/k)
, (15)

which gives the asymptotic behavior of τ n = 2(r) as r → ∞
to within 1% accuracy. In practice, this formula also gives a
good approximation to τ n = 2(r) in the whole range of r ≥ R
for R ! 0.1

√
D/k.

In turn, in the case of n = 3 we have, after some algebra,

Cs,n=3(r) = QR2 exp(
√

k(R − r)/
√

D)

rD(1 +
√

kR/
√

D)
, (16)

and

τn=3(r) = r − R

2
√

Dk
+ R

2k(R +
√

D/k)
. (17)

The obtained expressions for τ (r) are plotted in Fig. 1, as
functions of r for a particular value of R which is equal to one-
tenth of the diffusion length

√
D/k. Note that the curves cor-

responding to τ n = 1(r) and τ n = 3(r) are straight lines with the
slope (4Dk)−1/2, and the curve τ n = 2(r) essentially coincides
with a straight line with the same slope. The latter conclu-
sion remains valid for all larger values of R, while for smaller
R some deviations from a linear dependence develop for ex-
tremely small r and R compared with the diffusion length. We
also find that the graphs of τ (r) for different n remain ordered
for all values of R, i.e., we have τ n = 3(r) < τ n = 2(r) < τ n = 1(r)
for all r ≥ R and all other parameters fixed.

IV. DEPENDENCE OF THE LOCAL ACCUMULATION
TIME ON THE PARAMETERS OF THE SDD MODEL

In this section, we discuss the dependence of local accu-
mulation times obtained in Sec. III on the parameters of the
model and give a biophysical interpretation of these results.

As one might expect, for points located sufficiently far
from the boundary the local accumulation time is asymptoti-
cally the same irrespectively of the dimension. Indeed, from
(5), (13), and (17) we have for all n

τn(r) ≈ τ̄ (r) = r

2
√

Dk
, r ' R and r '

√
D/k. (18)

This can be explained by the fact that for distances exceed-
ing the diffusion length

√
D/k away from the boundary the

dynamics of concentration is effectively one-dimensional. Al-
ternatively, from the probabilistic point of view a particle that
is created at the boundary at time T > 0 will reach a neighbor-
hood around a point at distance r ' R away from the bound-
ary at time T + t with probability approximately

P ∝ e−kt−R2/(4Dt), (19)

where the first term in the exponent gives the survival proba-
bility of the particle at time T + t and the second term gives
the approximate conditional probability of finding a Brown-
ian particle at distance r at time T + t, given that the particle
was at the boundary at time T.

Clearly, for r '
√

D/k the right-hand side of (19) is
sharply peaked precisely around τ̄ given by (18). This implies
that for t < τ̄ no particle will yet have a chance to reach the
neighborhood of the point and, hence, the concentration will
be far from the steady state value. On the other hand, when
t > τ̄ with high probability there will always be a particle
starting at time T = t − τ̄ and finishing at time t in the neigh-
borhood of the considered point. Hence, τ̄ given by (18) pro-
vides the characteristic time of the establishment of the steady
concentration. We note that for discrete stochastic SDD mod-
els a similar observation was recently made in Ref. 13.

However, the local accumulation time in the vicinity of
the boundary depends crucially on the dimensionality of the
problem. For example, at the boundary, i.e., when r = R, we
have the following expression for the local accumulation time
in one space dimension:

τn=1(R) = 1
2k

. (20)

Note that this expression is independent of both the diffusion
constant D and the radius R of the boundary, and is simply
proportional to the degradation time. At the same time, in two
and three space dimensions, the local accumulation time de-
pends rather sensitively on all the parameters of the problem,
including the boundary radius. Indeed, for the most biophysi-
cally interesting case of n = 2 the local accumulation time at
the boundary is given by

τn=2(R) = R

2
√

Dk

(
K2

1 (
√

kR/
√

D) − K2
0 (

√
kR/

√
D)

K1(
√

kR/
√

D)K0(
√

kR/
√

D)

)

≈ 1

2k ln[e + 2
√

De−γ /(
√

kR)]
. (21)

From this expression, one can see that the local accumulation
time is proportional to 1/|ln R| when R " √

D/k, while, as
expected, the dependence on R becomes weak for R ! √

D/k

and, to the leading order, coincides with (20). Similarly, in the
case of three space dimensions we have

τn=3(R) = R

2
√

k(
√

D +
√

kR)
, (22)

and so the local accumulation time is proportional to R for
R " √

D/k, while for R ! √
D/k it becomes independent of

R and coincides with the expression in one space dimension.
The dependencies of τ n(R) in all the three cases are shown
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FIG. 2. Dependence of the local accumulation time on R at the source bound-
ary in different space dimensions obtained from (20), (21), and (22) with D
= 1 and k = 1.

graphically in Fig. 2, where without loss of generality we put
D = 1 and k = 1.

It is clear from the above discussion and Fig. 2 that when
the boundary radius is much smaller than the diffusion length,
R )

√
D/k, the concentration almost immediately reaches

its steady state profile at the boundary in two and three space
dimensions. This is in contrast to the one-dimensional case,
where the local accumulation time at the boundary is inde-
pendent of R and, hence, remains finite for all R. Moreover,
the behavior of the local accumulation time for fixed r as
R → 0, i.e., when the boundary can be replaced by a point
source, is rather sensitive to the dimensionality of the prob-
lem and is rather non-trivial. According to (13), in two space
dimensions we have

τn=2(r) ≈ 1

2k ln(2
√

De−γ /(
√

kr))
, r "

√
D/k, (23)

which implies, in particular, that the local accumulation time
is proportional to 1/|ln r| as a function of the distance to the
point source sufficiently close to the source. At the same time,
in three space dimensions, we have

τn=3(r) = r

2
√

Dk
, (24)

which is valid for all values of the parameters. Surpris-
ingly, this formula coincides with (18) obtained earlier as the
asymptotic limit of the local accumulation time for r → ∞
for the entire range of r. We will get back to this issue in
Sec. V.

Similarly, the dependence of the local accumulation time
on the degradation rate k is far from obvious. According to (5),
(15), and (17), in the limit of large values of k the local accu-
mulation time is independent of the dimension. On the other
hand, for small values of k the result sensitively depends on
the dimensionality. In one space dimension we have, accord-
ing to (5), that τ n = 1 obeys (20), implying that τ n = 1 ∝ k−1

asymptotically as k → 0 with all other parameters fixed. For
n = 3, on the other hand, we have τ n = 3 ∝ k−1/2. The most in-
tricate case turns out to be n = 2, in which, according to (13),
we have τ n = 2 ∝ k−1|ln k|−1. These results are summarized in
Fig. 3 for a particular choice of r and R.
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FIG. 3. Dependence of the local accumulation time on the degradation rate
for D = 1, R = 1, and r = 2 in different dimensionalities.

V. A MORE DETAILED CHARACTERIZATION
OF THE LOCAL KINETICS IN THE SDD MODEL

In Sec. III, we have obtained closed form analytical ex-
pressions for the local accumulation time in the radially-
symmetric SDD model. We found that the dependence of
this quantity on the model parameters can be quite different
for different spatial dimensionalities. In particular, when the
radius of the boundary is smaller than the diffusion length√

D/k, the dependence of the local accumulation time on the
distance to the boundary given by (20), (21), and (22) to the
leading order is very different in one, two, and three dimen-
sions, and also different from the expected diffusive behavior
τD ∼ (r − R)2/D near the boundary. Therefore, further under-
standing of the relaxation process occurring in this situation
is necessary.

Let us examine the behavior of the relaxation function
ρ(r, t) on t for fixed r ≥ R in more detail. In the case of n = 1,
one can, in fact, obtain a closed form expression10 for ρ(r, t),
which can be written using the definition in (18) as follows:

ρ(r, t) = 1
2

erfc
{√

kt

(
1 − τ̄ (r − R)

t

)}

+ e4kτ̄ (r−R)

2
erfc

{√
kt

(
1 + τ̄ (r − R)

t

)}
, (25)

where erfc(x) is the complementary error function.15 The
graphs of ρ(r, t) as a function of t for different values of r = r0

fixed are presented in Fig. 4. It is not difficult to see from (25)
that when r0 − R " √

D/k, we have ρ(r0, t) ≈ erfc(
√

kt). In
particular, in this regime the relaxation function depends only
weakly on r0 and its characteristic time scale coincides with
τ n = 1, which depends only on k to the leading order.

On the other hand, when r0 − R ! √
D/k, the situation

changes qualitatively. Indeed, as can be seen from Fig. 4,
for large enough values of r0 there exists a delay of order
τ̄ (r − R) in the onset of the establishment of the steady profile
of concentration. Furthermore, the dynamics occurs within a
time window of order

√
τ̄/k " τ̄ . As the value of r0 is in-

creased, the transition from ρ(r0, t) ≈ 1 to ρ(r0, t) ≈ 0 be-
comes sharply concentrated around t = τ̄ . The latter can be
seen from (25) by realizing that for large values of r0 the
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FIG. 4. Dependence of the relaxation function ρ(r0, t) on time for r0 = 0, 1,
5, 10, 15 in one space dimension, obtained from (25) for R = 0, D = 1, and
k = 1.

second term in the curly brackets becomes negligible, and the
first term approximates a step function with the threshold at
t = τ̄ . Thus, the onset of the steady concentration profile suf-
ficiently far from the boundary has an on/off character, with
the switching time given by τ̄ ≈ τn=1. Therefore, far from the
boundary (in comparison with the diffusion length

√
D/k),

the quantity τ n = 1 gives a sharp time of the establishment of
the steady concentration.

Note that the expression for τ n = 1 when r − R '
√

D/k

coincides with the corresponding expressions for τ n = 2 and
τ n = 3 to the leading order, see (18). In fact, as we explained
in Sec. IV, the probabilistic reason for this phenomenon is
common in all dimensions. Therefore, for r − R ! √

D/k

the relaxation process to the steady morphogen concentration
profile will have the same on/off character as in one space di-
mension. This can also be seen from the diffusion-transport
equation satisfied by ρ:

ρt + v · ∇ρ = D∇2ρ, v = −2D∇ ln Cs, (26)

which follows directly from (3) and (4). Indeed, by (6), (12),
and (16), we have Cs ∝ exp(−

√
k(r − R)/

√
D) for r − R

! √
D/k, which implies that |v| ≈ 2

√
Dk there. Therefore,

for large values of r the level sets of ρ are advected with con-
stant velocity 2

√
Dk = r/τ̄ away from the source.

Let us now consider the other regime of r, R " √
D/k

in dimensions two and three. When R → 0, the solution for
ρ(r, t) may be easily found in integral form using Fourier tech-
niques. Figure 5 shows the dependence of ρ(r, t) on t for some
r = r0 )

√
D/k fixed in three dimensions. From this figure,

one can see that the character of the relaxation to the steady
state in this case is quite different from the one-dimensional
case (compare with the thick line in Fig. 4). The value of ρ(r0,
t) quickly drops from 1 on the diffusive time scale τD ∼ r2

0 /D.
Following that, the relaxation proceeds slowly up to the reac-
tion time scale τ k ∼ k−1. During this period, we have ρ(r0,
t) ∼ (τD/t)1/2 (see the dashed line in Fig. 5). In other words,
in contrast to the one-dimensional case the dynamics of the
level set ρ(r0, t) = 0.5 may be very different from that of, say,
ρ(r0, t) = 0.05. This is why in this case, the local accumula-
tion time is not representative of the time scale of the dynam-
ics of the level set ρ(r, t) = 0.5. For the parameters of Fig. 5,
the time t = τ n = 3 corresponds to ρ(r0, t) reaching the value
of about 0.1, i.e., to 90% of the steady concentration. Thus,
in three dimensions the relaxation process is characterized by
the presence of multiple time scales.

In the considered regime in three dimensions, the re-
laxation proceeds first by establishing a diffusion-dominated
quasi-steady state at distance of order

√
Dt around the source,

followed by the expansion of this region up to the diffusion
length

√
D/k. This is due to the fact that, in contrast to one

and two dimensions, in three dimensions there exists a steady
state for (3) even in the absence of degradation. The fact that
τ n = 3 ' τD has to do with the heavy tail of the distribution of
the probability density φ = −∂ρ/∂t ∝ t−3/2 for τD ) t ) τ k.
More than one time scale is, therefore, necessary to describe
the approach of the concentration to its steady state at long
times in the considered case.

In two dimensions, the situation is even more compli-
cated, since in this case no steady state exists for (3) in the
absence of degradation. Consider again the most delicate case
of R → 0. As in three dimensions, ρ(r0, t) first quickly
drops from unity on the diffusive time scale τD. After that,
in the range of τD ) t ) τ k the function ρ(r, t) reaches a
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r 0
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t
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FIG. 5. Dependence of the relaxation function ρ(r0, t) on time for r0 = 0.01 in three space dimensions, obtained from the numerical solution of (3) with D
= 1 and k = 1. In (a), ρ(r0, t) is plotted on the linear scale. In (b), ρ(r0, t) is plotted on the log-log scale. The dashed line in (b) indicates the t−1/2 dependence.
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quasi-steady state, which vanishes beyond the length scale of
order

√
Dt . Hence, the solution at point r0 fixed is expected

to behave as

ρ(r0, t) ≈ ln(kt)
ln(kr2

0 /D)
, τD ) t ) τk. (27)

Indeed, at time t ! τD the concentration profile will
be C(r, t) ≈ − 1

2π
ln(r/

√
Dt). At the same, from (12) we

have Cs(r) ≈ − 1
2π

ln(
√

kr/
√

D) for r " √
D/k. Substituting

these expressions into the definition of ρ in (1), we obtain
(27). Then, it is clear from (27) that the decay of ρ(r0, t) is
extremely slow. Furthermore, the value of ρ corresponding
to t = τ n = 2 is, therefore, ρ ≈ ln | ln(kr2

0 /D)|/| ln(kr2
0 /D)|.

This value is intermediate between the one-dimensional case
(where ρ ∼ 1 for t = τ n = 1) and the three-dimensional case
(where ρ ∼ r

1/2
0 k1/4/D1/4 for t = τ n = 3). The probability den-

sity φ = −∂ρ/∂t in this case is given by φ ≈ 1/(t | ln(kr2
0 /D)|)

which, once again, has a heavy tail.

VI. CONCLUSIONS

In conclusion, we have extended the results of
Refs. 10 and 11 to higher-dimensional SDD models under
an assumption of radial symmetry. We obtained exact closed
form expressions for the local accumulation times in the SDD
models and analyzed their dependences on the model param-
eters. We found that when the radius of the source boundary
R is not too small when n = 2, and for every R when n = 1 or
n = 3, the local accumulation time in n dimensions is essen-
tially given by the following expression:

τ (r) ≈ 1
2k

[
r − R

λ
+ ηn

(
R

λ

)]
, λ =

√
D

k
, (28)

where λ is the diffusion length and 0 ≤ ηn(x) ≤ 1 are some
explicit functions, see (5), (15), and (17). Moreover, when the
distance from a given point to the source boundary exceeds
the diffusion length λ, the expressions for the local accumu-
lation times in higher dimensions essentially coincide with
that for the one-dimensional problem, regardless of the size
of the source. Furthermore, we found that in this case the
relaxation function ρ(r, t) at a fixed position r behaves ap-
proximately as a step function in t, and thus in the limit of
large distances from the source boundary the steady state pro-
file is established in an essentially on-off manner at time τ (r).
Therefore, in this regime the local accumulation time τ (r) pro-
vides a good measure of the timing for the establishment of
the steady state at a given location r.

At the same time, when the size of the source is smaller
than λ and the location of the point is also within λ from the
source boundary, the kinetics of the concentration at a given
location is more complicated and cannot in general be de-
scribed using a single time scale. In this regime, the kinet-
ics consists of three stages: first, a quasi steady-state is es-
tablished on a diffusive time scale r2/D, then the relaxation

proceeds algebraically in three dimensions or logarithmically
in two dimensions until the time scale of the reaction is
reached, finally, an exponential relaxation to the steady state
occurs beyond the reaction time scale k−1. This is in con-
trast with one-dimensional linear SDD problems, in which
the relaxation is always exponential near the source bound-
ary. Thus, dimensionality may play a different role for the
relaxation kinetics in one, two, and three space dimensions.

Finally, we note that while the relaxation kinetics in the
problems with first order degradation may, in principle, be
completely characterized via the exact solution of the cor-
responding linear parabolic problem (although this may not
be very practical), the situation becomes considerably more
complicated in the presence of nonlinear feedbacks. In fact,
as we showed in the case of one-dimensional problems with
higher-order degradation kinetics,14 the character of the de-
pendence of the local accumulation time on the model param-
eters may change dramatically in nonlinear problems. Fur-
thermore, in contrast to the linear models considered in this
paper, the relaxation to the steady state for models with higher
order degradation occurs in a self-similar fashion far from the
source.16–18
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