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Abstract. Propellant mass gauging is one of the key technologies required to enable
the next step in NASA’s space exploration program. At present, there is no reliable
method to accurately measure the amount of unsettled liquid propellant in a large-
scale propellant tank in micro- or zero gravity. Recently we proposed a new approach
to use sound waves to probe the resonance frequencies of the two-phase liquid-gas
mixture and take advantage of the mathematical properties of the high frequency
spectral asymptotics to determine the volume fraction of the tank filled with liquid.
We report the current progress in exploring the feasibility of this approach in the case
of large propellant tanks, both experimental and theoretical. Excitation and detection
procedures using solenoids for excitation and both hydrophones and accelerometers for
detection have been developed. A 3% uncertainty for mass-gauging was demonstrated
for a 200-liter tank partially filled with liquid for various unsettled configurations, such
as tilts and artificial ullages.

1. Introduction

The ability to quickly and accurately gauge the amount of the available propellant in
a large-scale cryogenic propellant tank is one of the basic requirements to a successful
tank design [1]. Under settled conditions, a wide range of mass gauging techniques
are available [2–4]. These techniques usually work by determining the location of the
liquid/gas interface in the tank with the help of, e.g., wet/dry sensors, and using it to
infer the liquid propellant volume from the knowledge of the tank geometry. However,
propellant mass gauging becomes a significant challenge under microgravity conditions,
since in this case both the location and the shape of the propellant are a priori unknown.

At present, several advanced techniques for propellant mass gauging under reduced
gravity conditions have been developed, including the radio frequency mass gauging
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(RFMG) technology [2, 5, 6] and Modal Propellant Gauging (MPG) technique [7, 8].
Both techniques use proprietary pattern matching algorithm to compare the measured
radio waves (RFMG) or acoustic (MPG) resonance frequencies with a database of the
eigenfrequencies measured or computed under various assumptions about the liquid
configurations. The best match thus obtained is used to predict the fill level. The
pattern-matching techniques were demonstrated to perform well under fully settled
conditions and are currently considered among the best to operate under microgravity
conditions in large-scale propellant tanks. At the same time, the results of low-g testing
exhibit strong temporal variability, indicating a significant amount of sloshing and/or
fluid motion driven by capillary forces. As a consequence, the predicted fill level oscillated
wildly, essentially precluding a possibility of an accurate fill level measurement.

The differences between the settled vs. unsettled RF mass-gauging performance
of pattern-matching methods are not surprising, since there exists a fundamental
mathematical difficulty, common also to many other inverse problems, in using spectral
information alone to infer the shape of heterogeneous wave-carrying media [9,10]. Such
inverse problems are notoriously ill-posed (for a discussion of various mathematical issues
in closely related contexts, see, e.g., [11, 12]). In particular, any kind of regularization
of the continuum model required to infer the shape of the ullage from the spectral data
would also suffer from strong sensitivity to noise. As a consequence, for small but fixed
amount of noise the pattern-matching performance would be expected to degrade above
a certain noise-dependent level of spatial resolution. This imposes intrinsic limits on the
accuracy of pattern-matching approaches in general, even when measurements can be
done very accurately.

An alternative to the pattern-matching techniques, which does not suffer from the
aforementioned limitations, is a mass-gauging approach based on spectral invariants
with respect to the propellant configurations in the tanks. In what follows we outline
the corresponding approach to use sound waves to probe the resonance frequencies of
the two-phase liquid-gas mixture and report initial experimental results on inferring
the volume fraction of the tank filled with liquid, taking advantage of the mathematical
properties of the high frequency spectral asymptotics, invariant with respect to the liquid
configuration.

2. Spectral asymptotics for an acoustic cavity

In his famous mathematical work from 1911, H. Weyl proved that the high frequency
asymptotics of the spectrum of the Laplacian in a three-dimensional spatial domain with
Dirichlet boundary conditions depends on the domain only through its volume [13–15].
Ever since, Weyl’s analysis has been greatly expanded and now provides rigorously
justified asymptotic expansion formulas for the large eigenvalue asymptotics in the case
of various differential operators and boundary conditions (for a recent review, see [16]).
We note that sharp asymptotic expansion formulas for the eigenvalue problems involving
heterogeneous media have been established only fairly recently and constitute a major
advance in the mathematical analysis of partial differential equations [17].

Below we illustrate the Weyl’s asymptotic formula arising from the studies of a
propellant tank with thin walls filled with a heavy liquid propellant, such as liquid
oxygen (LOx) or kerosine. For simplicity, we assume that the liquid has the shape of
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a simply connected bounded domain Ω ⊂ R
3, partially in contact with the tank walls.

The portion of the wall which is in contact with the liquid will be denoted by ∂Ω−, and
the liquid/gas interface is denoted by ∂Ω+. The boundary of the liquid is the union of
the liquid/wall and gas/liquid surfaces: ∂Ω = ∂Ω− ∪ ∂Ω+.

The spectral asymptotics deals with the eigenfrequency counting function N(f) =
∑

∞

l=0
θ(f − fl), where θ(x) is the Heaviside step function. Note that we have fl =

c
√
λl/(2π), where λl are the eigenvalues of the Laplacian defined on the spatial domain

occupied by the liquid with the corresponding boundary conditions. For this problem,
Weyl conjectured [15], and several authors later proved [18,19] ( for reviews, see [9,16])
that

N(f) =
4π|Ω|f3

3c3
− π|∂Ω+|f2

4c2
− π|∂Ω−|f2

4c2
+ o(f2), f → ∞, (1)

where |Ω| is the volume of Ω and |∂Ω±| is the area of ∂Ω±. Observe that the leading
order term in the above formula is proportional to the liquid volume and is independent

of the liquid shape. Thus, measuring the eigenfrequency counting function N(f) and
fitting it to the functional form in Eq. (1) can in principle yield the liquid volume to
arbitrary precision, provided the counting function is known accurately up to sufficiently
high frequencies.

The asymptotic formula in Eq. (1) forms the basis of our mass gauging approach.
Its utility is evaluated for a number of typical propellant tank geometries for which the
spectra can be derived in closed form analytically. We note that for general propellant
geometries and mixed boundary conditions, solving the acoustic eigenvalue problem, also
known as the Zaremba eigenvalue problem, is a significant challenge, both analytically
and numerically (for some recent progress, see [20]). We postpone the studies of more
general unsettled propellant geometries to future work.

3. Analysis of the spectral asymptotics for the cylindrical geometry

3.1. Acoustic eigenfrequencies

We consider a cylindrical propellant shape of radius R and height H, with the gas in
contact with the liquid at the settled bottom horizontal surface. Modes fl in the liquid
can be calculated using the pressure release (vanishing acoustic pressure) condition over
the liquid boundary ∂Ω. The expression for Weyl’s asymptotic formula from Eq. (1)
becomes:

N(f) =
4π2R2Hf3

3c3
− π2R2

2c2

(

1 +
H

R

)

f2 + o(f2), f → ∞. (2)

Choosing R = 2.5 m, H = 4 m and velocity of sound c = 181 m/s corresponding to
LOx in a large tank, we obtain the theoretical eigenfrequency counting function shown
in Fig. 1 (a). One can see an excellent agreement between N(f) from counting the exact
eigenmodes fl (dashed line) and the asymptotic prediction in Eq. (2) (solid line), for the
frequency range yielding the first 400 eigenfrequencies.
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Figure 1. Model calculations: (a) Counting function for a cylindrical tank, R = 2.5m,
H = 4m filled with LOx; (b)Error in inferred volume as a function of the cutoff
frequency; (c) Averaged error in the range between a lower cutoff and the upper cutoff
fmax = 1kHz as a function of the lower cutoff. Error is seen to be < 2% for N > 300.
Averaged error is < 0.3%. .

3.2. Comparison with Weyl’s asymptotics

Here we discuss the accuracy of the approximation in more details. Coming back to
Figure 1, in panel (b) we see the relative error in the volume inference as a function of
the upper cut-off frequency fmax oscillates around zero as fmax increases. The error is
calculated as ε = (Vw − V )/V · 100%, where V is the actual volume of the propellant
V = πR2H and Vw is the value inferred using the best fit to Weyl’s formula. The error
is seen to fall below 3% for N(fmax) > 400. Oscillations of the error with the cut-off
frequency is a generic feature of the convergence and is observed in other geometries
(boxes, spheres) and boundary conditions (Neumann, i.e., a rigid wall). This gives
an idea that averaging of the inferred volume over the oscillations can accelerate its
convergence to the actual value. Figure 1 (c) displays the result of such an averaging.
The error is averaged over the interval between the upper cut-off fmax and a lower cut-off
fmin as a function of fmin. Indeed, the averaged error fall below 0.3% for N > 200.

3.3. Peaks resolution

If the number of resolvable peaks were unlimited, one could arrive at arbitrarily small
error in volume with the mode counting technique. In reality the resolution is limited by
the dissipation and other factors such as temperature inhomogeneity of the fluid. The
contribution of the latter factor depends on the specific situation, is negligible close to
thermal equilibrium and is not considered here. The tests reported below were performed
under conditions very close to thermal equilibrium, where the effect of inhomogeneity
was small. The dissipation of the acoustic waves occurs both in the bulk of the liquid
or gas and in the boundary layer near the wall. The bulk contribution is generally
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negligible and the boundary layer dissipation will determine the available resolution in
thermal equilibrium. We obtain the following condition for the resolution, expressed in
terms of the maximal number of peaks Nmax resolved for the given tank of characteristic
linear dimension L ∼ V 1/3 and fluid properties:

N ≪ Nmax ≡
[
√

ν

cL
+

√

χ

cL

(

cp
cv

− 1

)]−6/5

. (3)

where µ is the kinematic viscosity, χ = κ/(ρcp) is the thermal diffusivity, κ is the thermal
conductivity, cp is the isobaric heat capacity and cv is isochoric heat capacity of the gas
or liquid. Similar calculations show that the relative width contribution from bulk
dissipation scales as L−1 and that generally Nmax|bulk ∼ (Nmax|boundary)3/2, justifying
neglecting the bulk dissipation. Eq.(3) implies that the resolved N will increase and
the error will decrease with the characteristic size of the tank L for similar shapes, fluid
properties and boundary conditions. In addition, we expect that due to significantly
lower dimensionless numbers ν/(cL) and χ/(cL) in liquids compared to gases higher
resolution N can generally be achieved in gauging liquids. For oxygen at saturation
temperature at p = 1.6atm, and for a tank of L = 1m we find Nmax = 5.2 · 104(4.3 · 105)
for GOx(LOx). These observations imply that liquid modes counting will generally lead
to a more accurate volume inference than the ullage mode counting.

4. Comparison with the experimental results in cylindrical geometries

As our discussion in Section 3 and Ref. ( [21]) implies, mode counting in the liquid
compartment of a partially filled tank is expected to be advantageous (compared to the
ullage mode counting) for the volume inference for the following reasons:

• Higher resolution available in terms of Nmax;

• Boundary conditions are closer to the pressure release condition, leading to faster
convergence of the error with modes count number N .

In a series of experiments reported below water was used as the working fluid. The
hardware is shown on Figure 2 (a-d). An actuation technique for the acoustic emission
was developed using solenoid actuator, Figure 2 (b). The solenoid actuator was attached
to the tank wall from the outside and applied a short ping to excite acoustic resonances
in the liquid compartment. The detection was performed using accelerometers attached
to the wall from the outside as well, Figure 2 (c). Initially, the detection was also
performed with hydrophones immersed into the water. However, since accelerometers
proved to give sufficiently good signal, they were adopted in latter tests. Using the
solenoid actuators and accelerometers mounted on the wall from the outside makes the
excitation/detection technique nonintrusive which is a very significant advantage for
propellant volume gauging applications.

A 200 liter plastic tank was used, which adequately simulates the Dirichlet (pessure
release) boundary condition expected for liquid propellants such as LOx in thin
Aluminum alloy or steel tanks. Measurements were performed on both settled liquid and
unsettled, by either tilting the tanks or immersing air-filled balloons in the liquid, Figure
2 (e-f). Various filling levels were used. About 10 excitations per configuration were
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(a)

(f)

(b)
(d)

(e)

(f)

(c)

Figure 2. (a)-(d): Hardware used for liquid modes counting; (e)-(f): Representative
geometries of unsettled liquid.

performed at various locations on the wall, giving 10 time series and the corresponding
spectra. Each time series were recorded using 3 accelerometers and a hydrophone. Peaks
were counted using the information in all the spectra as it was found that particular
peaks are not excited or registered for a particular location of the actuator and detector,
respectively, where the mode does not couple to either actuator or detector. The counting
function N(f) was compiled and fitted to Weyls law.

Figure 3 shows the mode counting results for the fill level of 100 liters and an
18 degrees tilt of the tank: the counting function N(f), panel (a), the error in the
inferred volume, panel (b) and the averaged error, as defined in Section 3.2, panel (c).
It is found that accelerometers give similar accuracy as the hydrophone. Therefore,
totally nonintrusive actuation and detection can be used. The error is seen to oscillate
as observed in all the model calculations, panel (b). Averaging over the oscillations
produces the average error of < 3% for the volume estimation. The data are compared
to theoretical calculations for ideally cylindrical shape of water in the absence of the tilt.

Since 18 degrees is a small perturbation of the water shape the counting function
is expected to be slightly perturbed compared to the ideal case. Panel (a)shows that
this is indeed the case. It should be noted that while the counting function is only
slightly perturbed by the tilt, the spectrum is perturbed substantially, in the sense that
the perturbation lifts the degeneracy present in the ideally cylindrical case, allowing
one to count the total number of modes. We note that the variation of the error with
the upper cut-off, Figure 3 (b), is also significantly affected by the perturbation. Similar
results were obtained with immersing air-filled balloons, although with a somewhat lower
accuracy due to the technical challenges of immersing the baloons.
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Figure 3. 100 liters of water in the tank, tilted by 18 degrees. 10 excitations locations
have been used on the wall. Data 1 corresponds to detection by the hydrophone. Data 2
corresponds to detection by the accelerometers. Theory corresponds to ideally cylindrical
shape of water in the absence of the tilt.

5. Summary

We have presented the results of our ongoing work on the spectral approach to propellant
mass-gauging that uses mathematically rigorous results about the high-frequency
asymptotics of the acoustic eigenfrequencies. To this end, we considered a cylindrical
tank geometry commonly used in spacecraft. We assessed convergence properties of the
error in volume inference with the counting number, and the contribution and scaling
of the effect of dissipation on the resolution of the peaks. It is predicted that the peak
resolution increases with the size of the tank for similar propellant configurations. Peak
resolution is generically significantly better for liquids than for gases.

We performed mode counting of liquid (water) in partially filled tanks for a variety of
unsettled configurations and filling levels. An actuation technique has been developed
using solenoids mounted on the exterior of the tank wall. Accelerometers mounted
on the exterior wall were used for detection of the acoustic resonances, compared to
hydrophones in terms of the accuracy of the volume inference and found to perform
equally well or better. As a consequence, a completely nonintrusive technique has been
developed for liquid modes counting, which has significant advantages for the propellant
volume gauging in-space applications. Using this technique for liquid (water) gauging
in large 200 liter plastic tanks an uncertainty of < 3% has been achieved for ”unsettled”
configurations created with a tilt.

These results are encouraging, but more theoretical and experimental work is needed
to understand better the convergence properties of the error with the counting number,
to assess limitation on the resolution due to temperature inhomogeneity of propellant
away from thermal equilibrium and sensitivity of the mass gauging to acoustic noise and
to slosh and to optimize the actuation and detection protocol.
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