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Theory of 360° domain walls in thin ferromagnetic films
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An analytical and computational study of 360° domain walls in thin uniaxial ferromagnetic films is
presented. The existence of stable one-dimensional 360° domain wall solutions both with and
without the applied field is demonstrated in a reduced thin film micromagnetic model. The wall
energy is found to depend rather strongly on the orientation of the wall and the wall width
significantly grows when the strength of the magnetostatic forces increases. It is also shown that a
critical reverse field is required to break up a 360° domain wall into a pair of 180° walls. The
stability of the 360° walls in two-dimensional films of finite extent is demonstrated numerically and
the stability with respect to slow modulations in extended films is demonstrated analytically. These
domain wall solutions are shown to play an important role in magnetization reversal. In particular,
it is found that the presence of 360° domain walls may result in nonuniqueness of the observed
magnetization patterns during repeated cycles of magnetization reversal by pulsed fields. © 2008

American Institute of Physics. [DOI: 10.1063/1.2970100]

I. INTRODUCTION

It is well known that domain structures often arise in real
magnetic materials and determine many of their
properties.l_4 Of particular interest are the domain structures
in thin magnetic metallic films which have been extensively
investigated during the last two decades,”™" primarily in the
context of giant magnetoresistance and magnetic tunnel junc-
tion devices.*'*"'® Furthermore, spin-injection switching of
the magnetization configuration in thin films with in-plane
magnetization by electric current has been theoretically
predicte:d”’18 and observed experimentally in thin film
multilayers.wi21 In addition, thin magnetic films are the basis
for the development of different types of magnetic memories
including magnetoresistive random access memory.4’16’22_25

As a rule, the easy direction of anisotropy of thin metal-
lic magnetic films lies in the film plane.5’7_9 It is clear that the
equilibrium state of an extended thin film with in-plane mag-
netization is a monodomain state because the magnetostatic
energy, which tends to induce domain formation, is negli-
gible in this case. Nevertheless, various magnetization struc-
tures, in particular, the so-called Néel walls, in which the
magnetization rotates by 180° between the two directions of
the easy axis are observed in the majority of thin films with
in-plane magnetization.2’7’8 Back in the beginning of the
1960s (Refs. 26-29) many authors noted that 360° domain
walls and other more complicated winding magnetization
structures also form very often in thin films in the process of
magnetization reversal. 02430733 A typical scenario in which
a 360° wall appears involves a passage of a Néel wall over a
nonmagnetic impurity with a pinned Bloch line during mag-
netization reversal.>**~**"** This scenario was confirmed
by three-dimensional micromagnetic simulations of moder-
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ately thin films.** At the same time, 360° domain walls are
also observed to form in the process of magnetization rever-
sal in the absence of any apparent defects in the
film, 2-24:3033.35

From the point of view of applications, 360° domain
walls are a nuisance to avoid, since they generally compli-
cate the process of magnetization switching and may reduce
the reproducibility of the switching events. At the same time,
the existence of stable 360° domain walls poses an intriguing
possibility of using their topological characteristics to store
information in magnetic storage devices. Nevertheless, de-
spite the widespread appearance of 360° domain walls in
thin ferromagnetic films and their potential undesirable or
beneficial effect for the operation of thin film—based devices,
to the best of our knowledge, there have been no systematic
micromagnetic studies of these walls to date. In particular,
the magnetization profiles in 360° walls, their stability, their
dynamics under the action of an applied field have not been
studied in detail. Even the question whether the observed
360° walls are stable magnetization structures or just long-
lived metastable states has not been resolved yet.2 At the
same time, we believe that in order to properly interpret the
experimental observations in the materials of interest for cur-
rent technological applications and to propose new ones, one
has to better understand the properties of magnetic winding
structures and the role of their dynamics during switching in
thin films.

In this paper we consider these urgent problems. We
perform analytical and computational studies of a reduced
micromagnetic model which is appropriate for thin films
with in-plane easy axis. We prove numerically the existence
of stable one-dimensional 360° domain wall solutions in the
absence of the applied field in a broad range of the thin film
parameter and wall orientations, as long as the wall makes a
nonzero angle with the easy axis. We further demonstrate
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that the 360° domain wall solutions persist in an applied field
and that a finite reverse field is necessary to break them up.
We further computationally investigate the stability (in the
sense of dynamics, we do not consider the effect of thermal
fluctuations here) of the 360° walls in two-dimensional films,
using a novel numerical algorithm based on the application
of optimal finite-difference grids36 to thin film simulations,
developed by us in Ref. 37. We argue that the wall motion in
large samples must be described by an anisotropic mean-
curvature flow. At the same time, both the applied and the
stray fields may result in the wall breakup, leading to com-
plicated magnetization reversal dynamics.

Our paper is organized as follows. In Sec. II, we intro-
duce the reduced micromagnetic model which is the basis of
the analysis and simulations that follow. In Sec. III, we de-
scribe the results of our analysis of the existence, properties,
and stability of the 360° domain wall solutions. Also in Sec.
III, we perform a variational study of the wall profiles and
investigate the role of 360° domain walls in the magnetiza-
tion reversal by pulsed fields. Finally, in Sec. IV we summa-
rize our findings.

Il. MODEL

We start with the Landau-Lifshitz—Gilbert equation,2
which describes the dynamics of the magnetization vector
M=(M,,M,,M,) of fixed magnitude |M|=M, in a ferromag-
netic material,

oM gle| a
-  =-—— MXHeff+_MXMXHeff N
ot 2mc M
(1)
M|
on (99'_

Here, M=M(r, 1), with the position vector r=(x,y,z) lying
in a three-dimensional domain () occupied by the material.
This domain is assumed to be a film of thickness d and shape
specified by a two-dimensional set D, i.e., (x,y) e DCR?
and 0<z<d for all (x,y,z) € . The factor gle|/(2mc) is the
gyromagnetic ratio (we use cgs units here and below), « is a
dimensionless parameter, and the last term in Eq. (1) speci-
fies Neumann boundary conditions.

The first term in Eq. (1) governs the precession of the
magnetization vector in the presence of the effective mag-
netic field H.g, and the second term introduces phenomeno-
logical damping. The effective field H. is determined self-
consistently as

OE

He=- %, (2)

where the energy functional E[M] is given by
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where in the last term M is extended by zero to the whole
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space and the derivative is understood in the distributional
sense. The energy in Eq. (3) consists of the anisotropy (first
term), exchange (second term), external field (third term),
and the magnetostatic (fourth term) contributions, with K and
A being the respective material constants and H the applied
field. For simplicity we assumed that the anisotropy is
uniaxial in the film plane, other types of in-plane anisotropy
can be treated similarly.

We are interested in the regime of thin films and moder-
ately soft materials. For such films the model in Egs. (1)—(3)
can be considerably simplified under suitable assumptions on
the magnitudes of the material constants and the film
thickness.”” These assumptions can be conveniently formu-
lated in terms of the values of the exchange length !
=(A/4mM?)"? and the Bloch wall thickness L=(A/K)'"?,
whose ratio defines the material’s quality factor Q=(/L)?,
with Q<1 in a soft material. First of all, in order for the film
to be considered thin, the thickness of the film should not
exceed the exchange length: d=<1[ (more precisely, d<7[ in
the context of Néel walls2’7’38). On the other hand, while in a
soft material L=/, in a thin film it is still possible to have a
balance Ld/[>~ 1. Such a balance is readily realized in thin
metallic ferromagnetic films,’ e.g., in 2-nm-thick cobalt films
with /=5 nm and Q=0.1.

Under the above balance, let us introduce a dimension-
less quantity which will play the role of a single effective
film parameter in the considered regime,37

4wM*d  d @
v= =—.
\",E( [ \r@

This parameter measures the strength of the magnetostatic
interaction relative to both anisotropy and exchange in thin
films. We note that in ultrathin (d<<[) films consisting of
only a few monolayers of the magnetic material with Q=<1,
it is possible to make this parameter rather small. On the
other hand, for soft materials (Q<<1) the parameter v can
also be relatively large, increasing with the film thickness.
Nevertheless, the condition d =<1 of validity of the thin film
approximation, which by Eq. (4) is equivalent to v<Q~"2,
may remain valid even for v> 1, as long as the film thick-
ness is not too large compared to the exchange length.

When Q<1 and v is not too large, the magnetization M
becomes independent of z and the out-of-plane component
M is strongly penalized.37’39’40 Furthermore, if « is not too
small, the effective dynamics becomes overdamped.”f42 To
write the obtained effective equation, let us introduce the
rescaling (choosing L as the unit of length)

M MH A 2meM g
m=—, h=—— r—ry\/—, t—t (5)
K glelK

and ignore the z-dependence of m. Now |m|=1 in , and
setting m= (m,0), where m=m(r,7) is a two-dimensional
unit vector depending on time and position r € D in the film,
after some algebra we arrive at”’
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Jm 1
E=— a+; m X m X h, (6)

where hgg=(hgy,0), with the two-dimensional vector field
ﬁeff given by37

_ V. m(r’
h. = (my+ h)e, + Am + Ly f L(]E')dzr’. (7)
47 ), r-r'|

Here A=d%/ x>+ %/ x>, e, is the unit vector along the
y-axis, and we assumed that h=(0,%,0) (in fact, most of our
analysis is done in the absence of the applied field, =0). Let
us note that the last term in Eq. (7) can be expressed in terms
of the Neumann-to-Dirichlet operator (-A)~"? associated
with Laplace’s equation in half—space,43

1 !
u=-A"voulr)=— ﬁ),dzr' , (8)
27 )2 [r=r'|

which can be thought of as the inverse square root of the
negative Laplacian operator on the xy-plane. That is, we
have simply

e—iqlx—iqzy(_ A)—I/Zeiqlxﬂ'qzy — (q% + q%)_1/2~ (9)

Therefore, this operator can be easily computed in Fourier
space.”

The obtained set of equations is most conveniently re-
written in terms of the angle € between m and the easy axis.
Setting m=(-sin #,cos 6), we obtain an equation37 which
involves only one scalar unknown quantity 6,

a6

1 J J
— =Af0-—sin 20— h sin 6+ v cos 0—(P+ v sin 6—(p,
ot 2 ox dy

(10)

1 a0 a0
p==(- A)_m(cos 60— +sin 0—) +boundary terms,
2 dx dy

(11)

where we absorbed the factor of a+a! into the definition of
time. Our analysis that follows will be based on this set of
equations for 6. Note that this equation can be formally de-
rived from Eq. (1) in the asymptotic limits Q—0 and d
— 0 simultaneously, with v and « fixed.”” Also note that for
smaller values of the damping coefficient (when a=<Q'"?)
one can similarly obtain Eq. (10) with an extra term propor-
tional to 626/ in the left-hand side.**

lll. RESULTS

A. Preliminaries: The case of »=0 (neglecting
magnetostatics)

We are now going to study the existence of 360° domain
wall solutions of Egs. (10) and (11), i.e., stationary solutions
of these equations with or without applied field in a film of
infinite extent, i.e., when D=R2. These solutions must satisfy
some limit boundary conditions at infinity. To make the
meaning of these boundary conditions more precise, it is
instructive to consider a simplified version of Eq. (10) with
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the magnetostatic term neglected. Setting v=0 and 96/ dt
=0 in Eq. (10), we get a nonlinear elliptic equation in R?,

A6 3sin 20— h sin 6=0. (12)

This type of equations has been very well studied in the
mathematical literature. In fact, it is now known that for A
>0 the only “wall-like” solutions of Eq. (12) are one-
dimensional fronts.*> More precisely, any solution of Eq.
(12) which is bounded between 0 and 27 and monotone in
some direction must be essentially a function of one variable,
i.e., there exists an angle « such that after rotating the coor-
dinate system by this angle,

E=xcos a+ysin a,

(13)
7=y cos a—Xx sin «,

the solution of Eq. (12) is a function of £ only [of course,

here and everywhere below there should be no confusion

between the angle & and the damping coefficient in Eq. (1)].

Moreover, in the case of Eq. (12) this solution can be found

in closed form, after straightforward algebra we obtain
4(1+h)

0(€) = arccos| 1 — , £€=0,
2+h+h cosh(2EV1 + h)

(14)

with 6(&)=2m—60(=&) for £<0. In terms of & the boundary
condition satisfied by € in Eq. (14) is, therefore,

O+ 2)=0, 6(-x)=27. (15)

We emphasize that the obtained solution with magnetostatics
neglected turns out to be independent of «, which is natural
in view of the isotropy of the differential operator in Eq.
(12). Thus, for any 2>0 the 360° domain wall solution has
the form of a one-dimensional front whose energy is inde-
pendent of the wall orientation (see also Refs. 8 and 9). Note
that this is very different from the corresponding properties
of the Néel walls, which strongly prefer to align along the
easy axis.>*

On the other hand, when 2—0 in Eq. (12), the solution
given by Eq. (14) transforms into a pair of 180° walls of
equal rotation sense separated by a distance of order
O(In h~") which goes to infinity. Therefore, in the limit there
are actually no monotone decreasing solutions of Eq. (12)
that satisfy the boundary conditions in Eq. (15). This poses
the main difficulty in ascertaining the existence of 360° wall
solutions of Egs. (10) and (11) in the absence of the applied
field, since in such a solution the magnetostatic energy has to
play a constructive role. In the following we demonstrate
that this is indeed the case, at least for certain ranges of
parameters.

B. Existence of stable 360° domain walls due to
magnetostatics

Even though there are no wall-type solutions to Eq. (12)
with 2=0 satisfying Eq. (15), the discussion above motivates
us to look for stationary solutions of Egs. (10) and (11) with
h=0 on R? which are one dimensional. That is, in terms of
the variables of Eq. (13) we will look for a solution 6
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=6(£) which satisfies the conditions at infinity from Eq. (15)
for a given a. We note that the idea of a possibility of the
existence of a 360° domain wall solution corresponding to
a=m/2 as a local minimizer of the micromagnetic energy
functional was first pointed out in Ref. 47.

Substituting the above ansatz into Egs. (10) and (11) and
integrating over 7 € R, after some algebra we obtain

@l'zah'el} (0 )( ﬁ)l/Z
(952 28111 s 2COS o 0_)52

Xsin(0— a) = 0. (16)

Here we introduced the notation

#\12 1 [+ e
(—a—gz) v(§)=;} %d&x (17)

where §- denotes the Cauchy principal value of the integral
about &' =¢. Once again, this operator is essentially the
Dirichlet-to-Neumann operator associated with the Laplacian
operator on half—plane,37 and we have

B F\12
e qg(—&—gz eé=1q|. (18)

To solve Eq. (16), we studied the time-dependent solu-
tions of Egs. (10) and (11) restricted to be independent of 7.
These satisfy the evolution problem

a0 Fo 1 , v
— =5 —sin20-hsin §— —cos(f- )
Jdt & 2 2

12
X(— %) sin(6— a), (19)

with boundary conditions from Eq. (15). Note that this evo-
lution equation is a gradient flow generated by the nonlocal
energy functional,

1 1
E[6]= —t9§+—sin2 0+ h(1 - cos 6)+£sin(0—a)
R 12 2 4

P\ 12
><<— agz) sin(0— a) (dé. (20)
As initial data, we chose a profile close to the expected wall
profile: A(&£,0)=2m/(1+¢%?).

To solve the time-dependent problem in Eq. (19) with
these initial data, we applied a pseudospectral method (see,
e.g., Ref. 48) to Eq. (19), i.e., we discretized the problem in
space on a uniform grid consisting of 2"+ 1 points with step
Ax and used fast Fourier transform (more precisely, a fast-
Fourier-transform-based cosine transform algorithm, part of
the DFFTPACK package obtained from NETLIB) for time
stepping of 6, using first-order difference in time for 96/ dt
with time step Az. To improve stability, the second-order
spatial derivative was treated implicitly. The simulations
were run until the steady state was achieved. The obtained
semi-implicit scheme was found to be stable for Ax=0.5 and
Ar=0.1 when v=<1, smaller step sizes were found necessary
to accurately resolve the solution for larger values of v. The
results were also independently verified, using the optimal
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grid code developed by us in Ref. 37. The accuracy of the
obtained numerical solution for these values of v was on the
order of 10~> with m=10.

We ran our simulations for =0 and 0= a= /2 (by the
symmetry of the problem the angle a can always be con-
strained in this range without the loss of generality) and a
range of values of »=100. We found that the algorithm con-
verged to a stationary 360° wall profile whenever a # 0. For
a=0, on the other hand, the solution evolved into a pair of
Néel walls that were slowly drifting away from each other
without reaching the steady state. Thus, our numerical results
establish the existence of 360° domain wall solutions for not
too large values of »>0 in the absence of the applied field
(h=0) whenever a# 0.

C. Properties of 360° domain wall solutions
1. The wall profile

We now discuss the properties of the obtained solutions
in more detail. The profiles of 6, as well as the (scaled) stray
field A, and the components m | and m of the magnetization
vector m along the ¢ and # axes, respectively, for v=1 and
h=0 are presented in Fig. 1. Note that in terms of the
Dirichlet-to-Neumann operator, the stray field is defined as’’

12
hx:%(_ 0%:2) sin(0— «). (21)

In the case a=/2, shown in Figs. 1(a) and 1(b), the
wall consists of a compact core in which the stray field &, is
localized and the angle 6 changes almost linearly from 27 to
0. Note that in this case the deviation of the angle from its
equilibrium value (0 or 277) decays exponentially as |& — o
independently of v. This is in contrast to the behavior of the
Néel walls which have algebraic far tails.>**~" This can be
readily seen from Eq. (16) at a=/2, since when, say, 6
—0 as é— +, the factor in front of the nonlocal operator
vanishes, and hence the decay is dominated by the balance of
the first two terms. Let us also note that the distributions of
m, and my in this wall are even and odd, respectively.

When the value of « is decreased, the wall profile broad-
ens, and the stray field becomes less localized. This can be
seen from Figs. 1(c) and 1(d) which show the solution at &
=m/4. Let us note that the even/odd symmetry in the distri-
butions of m; and m, is now lost. Also, the decay of 6 away
from the wall is now algebraic, rather than exponential for
a=1/2, similarly to the case of Néel walls. Finally, when
a<<1/2, the solution looks like a pair of weakly interacting
Néel walls, as can be seen from Figs. 1(e) and 1(f). These
walls go further and further apart as a«—0, and there is ap-
parently no 360° wall solution at a=0.

The disappearance of the solution as «—0 can be ex-
plained by the following qualitative argument. When «
< 1r/2, the 360° domain wall looks like a pair of 180° degree
walls of equal rotation sense separated by a distance exceed-
ing the width of the 180° wall. These two 180° walls interact
via two different mechanisms. First, in the absence of mag-
netostatics the walls would repel each other via exchange
interaction (since the latter favors “unwinding” of the twist
stored in the 360° wall). On the other hand, the magneto-

Author complimentary copy. Redistribution subject to AIP license or copyright, see http:/jap.aip.org/jap/copyright.jsp



053908-5

C. B. Muratov and V. V. Osipov

=20 -10 0 10 20

J. Appl. Phys. 104, 053908 (2008)

L5 T T T T T

=20

1 1
=20 -10 0 10 20

FIG. 1. 360° domain wall solution at =1 and h=0 for different orientations: a=7/2 [(a) and (b)]; a=7/4 [(c) and (d)]; a=7/10 [(e) and (f)].

static interaction leads to the wall attraction, since for a# 0
each 180° wall carries an opposite net magnetic charge. It is
precisely the competition of these repulsive and attractive
forces that makes the 360° domain wall solution stable. Note
that this argument also explains why there should not be a
stable 360° domain wall solution when a=0. In this case
each 180° wall (a Néel wall in this case) would only carry a
net dipole moment. Moreover, these moments will be oppos-
ing each other in each wall, resulting instead in a net repul-
sion and making the existence of a stable 360° wall impos-
sible. Nevertheless, for any a# 0 this effect will not play a
role, since the dipolar repulsion will decay away faster than
the attraction due to net charges, no matter how small those
charges actually are.

2. The wall energy

We next investigate the dependence of the wall energy
v(«a) obtained by evaluating E in Eq. (20) on the solution for
a given « and h=0. The results for several values of v are
presented in Fig. 2. One can see that for small values of v the
wall energy is essentially independent of the angle « and is
equal to roughly twice the Néel wall energy in the absence of
stray field. This is also easy to understand, since for small v
the magnetostatic forces act as a perturbation and can be
thought of as providing an effective field h=h.g in Eq. (12).
Nevertheless, let us emphasize that the magnetostatic forces
are necessary to hold the wall together in the absence of the
applied field, and in the case »=0 the solution disappears.

The dependence of y on a becomes more pronounced
for v=35, with more anisotropy as the value of v increases.
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FIG. 2. The dependence of the wall energy y on « for several values of v at
h=0.

The energy is found to be monotonically increasing in « and,
therefore, reaching its maximum at a=1/2. This should be
the consequence of the fact that as « is increased from zero,
the magnetic charge in each half of the 360° wall grows, thus
increasing the self-interaction energy. Note that in the con-
text of two-dimensional films the wall energy plays the role
of the line tension. Thus, in the case of 360° domain walls in
the plane we are dealing with problems with anisotropic line
tension (see Refs. 52 and 53 for related problems). Let us
also note that for fixed v the dependence of the wall energy
on « obtained numerically can be fitted surprisingly well to
the following functional form:

Ya) = a+bsin*? a, (22)

where the coefficients a and b depend only on v. For ex-
ample, when v=>5, the expression in Eq. (22) agrees with the
numerically obtained values to within 1%, if a=6.0 and b
=3.2.

3. Effect of applied field

Finally, we analyzed the effect of an external magnetic
field applied in the direction opposite to the direction of
magnetization in the periphery of the 360° domain wall. Let
us note here that it is clear that if, on the other hand, the field
is applied in the direction along the magnetization direction
in the periphery of the 360° domain wall, then the wall is
further stabilized. This is simply a consequence of the topol-
ogy of the magnetization in the wall. For this reason, also,
the 360° domain wall solution will obviously persist for all
h>0 in the range of validity of the considered thin film
model, even in the absence of magnetostatics, as can be seen
from Eq. (12), or when @=0. This is also confirmed by the
direct numerical solution of Eq. (16).

We found, however, that when the magnetic field is ap-
plied in the direction opposite to the direction of the magne-
tization in the periphery of a 360° domain wall, a critical
field strength is required for the wall breakup. Once breakup
occurs, the wall splits into two 180° walls moving in the
opposite directions, initiating magnetization reversal. To find
the value of the coercive field &., we performed simulations
of Eq. (19) with the same initial data as before and slowly
ramping up the intensity of the external field 2 <<0 until the
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FIG. 3. The coercive field || of a 360° domain wall at v=1.

wall breaks up at h=—|h.|. The resulting values of |k, for
different wall orientations and v=1 are presented in Fig. 3.
One can see that the field /.. rather sensitively depends on the
angle « and rapidly decreases as a decreases away from
/2. Let us note that the obtained critical field || is actually
an upper bound for the coercive field of the 360° domain
wall in a two-dimensional film, since the breakup of the wall
under the action of the reverse field may occur in a two-
dimensional manner by, e.g., a corrugation instability of the
wall (see also Sec. III G).

D. Variational analysis of 360° domain wall solution

To get a better analytical understanding of the obtained
360° domain wall solutions, we also performed a variational
study by minimizing the energy in Eq. (20) over a family of
trial functions which resemble the “exact” numerical solution
obtained earlier. The family of trial functions was chosen to
be given by Eq. (14) with A=h.g, where hy is now a param-
eter. This choice is motivated by the fact that the profile in
Eq. (14) should be close to the exact solution when v<<1.

To evaluate the energy on a given trial function, it is
convenient to use the following alternative representation of
the wall energy:

E[g]:f_x {%6’2+ésin2 G}df—ﬁf_w J_m In|¢ - ¢'|

X (sin(6(&) — @) (sin(6(¢') — )" d&de’,  (23)

where ()’ denotes the derivative with respect to the argu-
ment of the function in the bracket. For a trial function from
Eq. (14) with h=h. the first two terms of the energy in Eq.
(23) can be computed in closed form. The third term in Eq.
(23) cannot be explicitly computed, but is straightforward to
evaluate numerically. Combining these results, we obtain
that on the chosen trial function,

E=4N1 + hege+ vg(hegr, @), (24)

where g(h.s, @) is the last integral in Eq. (23). We found that
g(he, @) is a slowly decreasing function of Az for fixed «
and decreases with « for fixed A . In fact, for the relevant
range of values of h. the dependence of g(heg, @) on hgg can
be very well approximated by the following expression:
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10l

FIG. 4. (Color online) The magnetization in the 360° wall oriented at a=m/2 (a) and a=/4 (b) for v=1 and h=0 obtained from a variational ansatz.

g(heg, @) = 277" sin? a In[a In(b/hyy)], (25)

where the constants a and b depend on « only. This choice of
the approximation is motivated by the behavior of the re-
spective integral for h.;<<1 and can be shown to be asymp-
totically exact as hq;— 0. For example, we found that at «
=1/2 the expression in Eq. (25) with a=1.4 and b=7.2 ap-
proximates the numerically obtained values of the integral
for all h.;=0.06 within 1% accuracy. Also note that it is not
difficult to see that for h.>1 we must have g(h.s,a)
=0(1).

It is clear from the functional form of Eq. (24) that for
every fixed 0 < a=m/2 and v>0, there exists a global mini-
mum of E at a particular value of A.>0. We minimized the
expression for E in Eq. (24) at different values of v and «
and compared them to the results of the direct numerical
solution. We found good quantitative agreement for all not
too large values of v. Here we present the details of the
analysis of the v=1 case for several values of the wall ori-
entation angle a. Using for simplicity the approximation in
Eq. (25) for a=7/2, we found that the energy E is mini-
mized at h.;=0.0714 and the corresponding energy mini-
mum is £=5.333. Similarly, for the case a=m/4 we have,
respectively, h.;=0.0318 and £=4.936. We note that the val-
ues of E obtained in this way turn out to be within 1% of the
values of vy obtained in the simulations of the preceding sec-
tions, justifying our choice of the trial functions. We verified
that the wall energy obtained by our variational procedure
remains accurate within ~10% for v=35, and the accuracy
increases rapidly as v decreases within the interval 0.2=v
=5 we studied. Also, the resulting profiles of m, and my at
v=1 for a=m/2 and a=m/4 are shown in Fig. 4. One can
see that these profiles are virtually indistinguishable from
those shown in Fig. 1.

Finally, let us discuss the behavior of the solution in the
case a<<m/2. Here one would expect the solution to be close
to a pair of Néel walls of the same rotation sense separated
by a distance that exceeds the size of the wall core. It is not
difficult to see from Eq. (14) that the distance d between
these two Néel-like walls can be large only when h <1,
and we have asymptotically d=In he_flf. Therefore, minimizing
the energy in Eq. (24) and using Eq. (25), we find that to the
leading order in @ we must have

v sin® @

Ropp=—""—"——>—. 26
eff 7 In(v! sin? a) (26)
This allows us to make a qualitative conclusion about the
existence of 360° domain wall solutions for all >0 as «

— 0, within our choice of the trial function.

E. Stability of 360° domain wall solutions

Let us emphasize that since our 360° domain wall solu-
tions are obtained as long time limits of the evolutions gov-
erned by Eq. (19), they must necessarily be stable with re-
spect to one-dimensional perturbations. However, a general
analysis of the wall stability with respect to two-dimensional
perturbations, which include wall bending, in particular, is
complicated because of the presence of nonlocal terms. Nev-
ertheless, one can still draw conclusions about the wall sta-
bility with respect to slow transverse modulations, using
simple arguments below.

Consider a straight 360° domain wall 6= 6(£) oriented at
angle « with respect to the easy axis, and let us perturb this
solution by introducing a transverse displacement u=u(7),
so that we change 6(&) — 0] é—u(7)]. Assuming that u varies
slowly with 7, we can write down the leading order expres-
sion for the wall energy and then Taylor expand it in the
powers of [u,|<1,

L
E{0é+u(n)]}= f Y@+ arctan u,) V1 + u%,dn
0

a "(a) (*
Ryl AT )J;’/( )f Wdn,  (27)
0

where we assumed that the unperturbed wall has length L
and denoted u,=du/d7. From this equation one can see that
the wall should be longitudinally stable (at least, for long-
wave perturbations) when y(a@)+vy'(a) >0, a well-known re-
sult for problems with anisotropic line tension.””™* We veri-
fied that this condition is indeed satisfied for the 360°
domain wall solutions obtained by us for not too big values
of v. Interestingly, we found that as the value of v is in-
creased, the coefficient in front of the integral in Eq. (27)
actually becomes relatively small at a=m/2 (however, we
did not observe a situation in which it changes sign). There-
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FIG. 5. (Color online) Density plots showing the snapshots of 6 at different times in a two-dimensional 32 X 32 square sample at v=1 for initial conditions
mimicking 360° walls with different orientations. In all simulations the easy axis is vertical. The dark areas are where #=~0 and the light areas are where
6=~2r. The arrows indicate the directions of the magnetization corresponding to each area.

fore, we expect that for large enough values of v the wall
may become quite sensitive to shape disturbances or even
unstable with respect to transverse deformations (see Ref. 53,
for related instability mechanisms).

To further investigate the full two-dimensional stability
of the obtained 360° domain wall solutions, we performed
two-dimensional simulations of Egs. (10) and (11) on a finite
square-shaped sample, using an algorithm developed by us in
Ref. 37. The results of the simulations for the sample of size
32X 32 at v=1 and no applied field, ~=0, are presented in
Fig. 5. These results were obtained using discretization steps
Ax=0.5, Ar=0.05, and a Zolotarev optimal grid with six
nodes in the direction normal to the film whose effective
length was L,=500, see Ref. 37, for details. The three dif-
ferent simulations shown in Fig. 5 correspond to different
choices of initial conditions for 6. In Fig. 5(a), the initial data
are chosen to mimic a 360° domain wall running at an angle
a= /3 to the easy axis (vertical). From these initial data an
apparently stable 360° domain wall oriented normally to the
easy axis was found to form at the end of the simulation,
with the transient governed by curvature-driven domain wall
motion (late stages of evolution not shown). This simulation
shows that 360° wall solutions can be stable (at least on the
time scale of the curvature-driven motion) even in finite ide-
ally homogeneous samples with no applied field.

On the other hand, if the initial data are chosen to be
aligned with the diagonal of the square, i.e., if a=m/4, the
dynamics changes qualitatively. While 6 adopts a tilted 360°
domain wall profile in the film interior, at the corners the
wall begins to break up, see Fig. 5(b). As a result, the wall
later “unzips” into a pair of Néel walls, which eventually exit
the sample, leaving it in a uniformly magnetized downstate
(not shown). Yet a different scenario is realized in the third
simulation, in which the initial data are oriented at an angle
a=1/6 to the easy axis, see Fig. 5(c). As in the simulation
of Fig. 5(a), the distribution of 6 first adopts a wall-like
profile, which then begins to move by mean-curvature flow.
However, this motion now results in straightening of the wall
along the easy axis. As the dynamics progresses, the wall
becomes wider, in agreement with the predictions of the pre-
ceding sections, until finally it breaks up into a pair of slowly
evolving Néel walls. Once again, at the end of the simulation
(not shown) the whole film switches to the uniformly mag-
netized downstate. In summary, these latter two simulations
show several possible mechanisms of 360° domain wall
breakup. Nevertheless, in contrast to the second simulation,
the wall in the third simulation maintained its integrity until
late stages of the dynamics. Thus, even when these walls
eventually break up, they can be quite robust during the
course of evolution of the magnetization field.
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FIG. 6. 360° domain wall solution at »=10 and h=0 for different orientations: a=/2 [(a) and (b)]; a=7/4 [(c) and (d)]; a=7/10 [(e) and (f)].

F. The case of strong magnetostatics: v>1

Let us now discuss the situation in which the magneto-
static forces become more pronounced, namely, when the
parameter v characterizing the role of magnetostatics in the
film becomes large. We note that this can be the case, if
either the film material under consideration is very soft (e.g.,
permalloy films) or the film is not too thin (e.g., cobalt films
mentioned earlier, when the film thickness exceeds, say, 10
nm).

Our numerical analysis of 360° domain wall solutions
indicates that these solutions exist and are stable with respect
to one-dimensional perturbations for large values of v as
well, we verified the existence of these solutions up to v
=100. The profiles of the 360° domain wall solutions at v
=10 for several values of « are shown in Fig. 6. These are

obtained from the numerical solution of Eq. (19) discretized
with Ax=0.2 and Ar=0.02. One can see that despite the fact
that here the value of v is an order of magnitude bigger than
in the simulations of Fig. 1, the profiles are qualitatively
similar to those obtained at ¥=1. The main difference is that
the stray field %, is now more localized in the core regions of
the wall. From scaling considerations, the width of the field
localization, which is determined by the balance of magne-
tostatic and exchange interactions, must be on the order of
Ly~ v~! in our units. On the other hand, outside these regions
the stray field is small, and the length scale is determined by
the balance of magnetostatics and anisotropy, /.~ v, again,
from scaling considerations. Because /> /;,, the wall ac-
quires fat tails, just as in the case of Néel walls in soft
materials.>**~"'
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FIG. 7. (Color online) Density plots showing the snapshots of 6 at different times in a two-dimensional 32 X 32 square sample at v=10 during magnetization
reversal, starting from the S-state (a), C-state (b), and the state with a 360° domain wall (c) [obtained at the end of the simulation in (b)]. The applied field
at 1=0 is h=-1 in (a) and (b) and £=0.2 in (c). In all simulations the easy axis is vertical. The dark areas are where §=~—ar the light areas are where 6
=~ 1. The arrows indicate the directions of the magnetization corresponding to each area.

Nevertheless, these solutions may become unstable with
respect to transverse perturbations for large enough values of
v, since zigzag wall deformation would decrease the contri-
butions of magnetostatics to the wall energy. To see whether
such an instability takes place, we performed two-
dimensional simulations analogous to those shown in Fig. 5,
but with »=10. We simulated larger 64 X 64 samples with
discretization steps Ax=0.25 and Ar=0.0125; other details of
the simulations were as in Fig. 5. We found that all three
scenarios of Fig. 5 also persist at ¥=10, and these 360° walls
are apparently stable with respect to transverse perturbations.
We also verified that the same is true for smaller values of ».
Therefore, we expect the obtained 360° domain wall solu-
tions to remain stable in two-dimensional films also for not
too large values of v.

G. Magnetization reversal and 360° domain walls

We also investigated the role which the 360° domain
walls might play in the process of magnetization reversal.
Figure 7 shows two characteristic scenarios which we ob-
served in our simulations. Here the value of v was chosen to
be sufficiently large (v=10 in the simulations) in order to
observe different well-formed end domains at the top and
bottom of the square sample. We first ran the simulation with
no applied field to reach a steady state in the form of an

S-state [Fig. 7(a)] or a C-state [Fig. 7(b)]. After the steady
state was reached, we switched on the field A=-1 in the
direction opposite to the overall direction of magnetization in
the sample (at the moment marked as 7=0), mimicking mag-
netization reversal process by a pulsed field. One can see two
very distinct paths the evolution of the magnetization took in
the two cases. When the initial state was an S-state, the mag-
netization started to rotate counterclockwise in the end do-
mains and clockwise in the center of the sample. As a result,
a 360° domain wall in the form of a loop formed [see Fig.
7(a) at t=15; compare also to the experimental observations
in Ref. 33]. This wall then shrunk by curvature-driven mo-
tion [see Fig. 7(a) at r=42.5], until it eventually collapsed
and disappeared (not shown). When the applied field was
subsequently removed (not shown), the film was left in the
S-state of opposite polarity.

In contrast, when the field was applied to a sample in the
C-state, the magnetization in the top end domain began to
rotate clockwise, while in the bottom end domain it rotated
counterclockwise. As the end domains collided while mov-
ing toward each other under the action of the applied field, a
horizontal 360° domain wall formed [see Fig. 7(b) at t=10].
The wall then “zipped up” across the entire sample [see Fig.
7(b) at t=27.5], until eventually no traces of the up domain
were left (not shown). When the field was subsequently re-
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moved, the 360° domain wall remained in the sample. A
finite opposite applied field was then required to remove the
wall and bring the sample back to the original C-state (not
shown).

Let us emphasize an important distinction between the
two magnetization reversal paths just described when consid-
ering a sequential application of field pulses of opposite po-
larity. The first path can be termed a symmetric path in the
sense that the path that will be taken by the magnetization
under the action of the reverse field of the same magnitude
and opposite direction after the film was switched to the
down S-state state will be the mirror image of the first path.
In particular, the same critical field will be required to switch
the film back. On the other hand, when switching from the
C-state, a topological defect in the form of a 360° domain
wall is created, making the process of magnetization reversal
asymmetric. In particular, a smaller field magnitude is nec-
essary to switch the film back to the up state since now the
reversal is initiated by the breakup of the 360° domain wall.
This is illustrated in Fig. 7(c), where a field =0.2 is applied
to the stable configuration containing a 360° domain wall
obtained after the field was switched off in the simulation of
Fig. 7(b). Note that the field of this magnitude is not suffi-
cient to initiate magnetization reversal of the C-state. Even-
tually, the film returned to the C-state of the beginning of the
simulation in Fig. 7(b) (not shown). Let us point out that
these scenarios were experimentally observed in the studies
of magnetic tunnel junction elements.” Also note that simi-
lar reversal mechanisms for ramped applied fields were ob-
served numerically in Ref. 56.

We further investigated the effect of the sample geom-
etry on magnetization reversal by simulating the process in a
rectangular film of size of 32 X 64 elongated in the direction
of the easy axis, see Fig. 8 (other simulation details are the
same as above). Here we started the simulation from an
S-state, yet, in contrast to the simulation in Fig. 7, the mag-
netization reversal failed to be symmetric once again. After
the field h=-1 was applied to the film, the magnetization
reversal first proceeded as in Fig. 7(a), but then, instead of
the 360° domain wall in the form of a closed loop, a pair of
360° domain walls running across the film formed [see Fig.
8(a) at t=35]. These walls then started curvature-driven mo-
tion, which is considerably slower than the dynamics leading
to wall formation. At =100, the field was switched off and
the walls were allowed to relax until #=200.

At t=200 we applied a new pulse of the reverse field
[A=1 in Fig. 8(b) and £=0.2 in Fig. 8(c)] in order to bring
the system back to its original S-state. In Fig. 8(b), the field
intensity was the same as that in Fig. 8(a). One can see that
very quickly the 360° domain walls break apart in an “ex-
plosive” manner. At the same time, the end domains also
invade from top and bottom, colliding with the remnants of
the 360° walls. As a result, the system very quickly settles
back to the S-state, which persists after the applied field is
switched off at r=300 (not shown).

In Fig. 8(c), on the other hand, the intensity of the ap-
plied field was considerably lower than that in Fig. 8(a),
resulting in a much slower return to the S-state. Here the
360° domain walls break up into pairs of 180° domain walls

J. Appl. Phys. 104, 053908 (2008)

[Fig. 8(c) at t=210], which then curl up [Fig. 8(c) at r=225]
and then are pushed out of the film [Fig. 8(c) at r=235].
Once again, the system settles into the S-state after the field
is switched off at =300 (not shown).

Finally, we also analyzed the reversal in a rectangular
film in the “flower” state, which is realized in 32X 64
samples at smaller values of v. Figure 9 shows a simulation
of magnetization reversal under an applied field h=—1 for
v=>5, starting from a slightly perturbed flower state (other
details of the simulations as before). Here, yet again the re-
versal mechanism is markedly different from the ones ob-
served above. When the field is applied at r=0, the end do-
mains begin invading the sample on the sides. At the same
time, because of the topological reasons a vertical 360° do-
main wall forms in the middle of the sample (Fig. 9 at ¢
=10). At =30 the two moving 180° domain walls on the
sides collide, forming portions of horizontal 360° domain
walls, in addition to the trailing vertical 360° walls. This
dynamics eventually leads to the collapse of the up domain
in the film center, followed by the reconnection of the 360°
walls into two disconnected pieces (Fig. 9 at t=90). The
latter move much slower due to curvature until they exit
from the sample (not shown). After the field is subsequently
switched off, the sample remains in the flower state of the
opposite polarity.

To summarize the results of this section, our simulations
showed that 360° domain walls play a crucial role in the
process of magnetization reversal in thin ferromagnetic
films, even when these films are ideally homogeneous. In
particular, slow magnetization dynamics due to the motion of
360° domain walls may introduce history dependence of the
magnetization response on a sequential application of de-
magnetizing fields of finite duration which will manifest it-
self as nonuniqueness of the observed magnetization patterns
for each field cycle. Of course, it is also clear that the process
of switching will become even more affected by the dynam-
ics of 360° domain walls in the presence of material imper-
fections.

IV. CONCLUSIONS

In conclusion, we summarize the results of our analytical
and computational investigation of 360° domain walls in thin
ferromagnetic films. The analysis was performed, using a
reduced micromagnetic model, Egs. (10) and (11), appropri-
ate for films in which the magnetization distribution is truly
two dimensional and in plane. In this model, the film is char-
acterized by only one dimensionless parameter v, see Eq. (4),
which measures the relative strength of the magnetostatic
interaction compared to both anisotropy and exchange. In the
considered parameter regime all three interactions are as-
sumed to be of comparable strength, which is the case in
many thin films of interest to applications.

We now give a résumé of our main findings.

(1) Stable 360° domain wall solutions exist in the model
describing extended ideally homogeneous thin uniaxial
films even in the absence of the applied magnetic field,
at least when the value of v is not too large, see, e.g.,
Fig. 1 (more precisely, these solutions exist and are
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t=35

FIG. 8. (Color online) Density plots showing the snapshots of 6 at different times in a two-dimensional 32 X 64 rectangular sample at v=10 with initial data
in the form of an S-state plus a tilted 360° wall. The easy axis is vertical. In (a), the dark areas are where §=~ —1r and the light areas are where 6= r, in (b)
and (c) the dark level of (a) corresponds to #=-27 and the light level of (a) corresponds to §=21r. The arrows indicate the directions of the magnetization
corresponding to each area.
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FIG. 9. (Color online) Density plots showing the snapshots of 6 at different times in a two-dimensional 32 X 64 rectangular sample at v=5 with initial data

in the form of a flower state. The easy axis is vertical. The dark areas are where 6=

of the magnetization corresponding to each area.
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stable as one-dimensional solutions of the reduced mi-
cromagnetic equations). However, in order for these so-
lutions to exist, the wall has to be oriented at a nonzero
angle a with respect to the easy axis when the applied
field is absent. When the magnetostatic interaction is not
very strong (v=<1), a 360° domain wall solution looks
like a bound pair of 180° domain walls of the same
rotation sense (see Fig. 1). When the magnetostatic in-
teraction becomes strong (v> 1), the solution becomes a
single wall with fat tails, unless the angle & <<7/2, when
the solution looks like a pair of weakly interacting Néel
walls (see Fig. 6).

A 360° domain wall-like distribution of the magnetiza-
tion which is aligned with the easy axis will always
break up into a pair of winding Néel walls which will
slowly drift apart in the absence of the applied field.
This underscores the anisotropic nature of the 360° do-
main walls: their energy per unit length y depends on
the wall orientation a and is maximal when the wall is
oriented normally to the easy axis (see Fig. 2). This
anisotropy is not so significant when the value of v is
not very large, but becomes more pronounced with the
increase in v.

Due to their stability, 360° domain walls may form and
remain in an ideally homogeneous film, even though
their appearance is often triggered by impurities. More-
over, as we showed numerically, 360° walls, in fact,
generically form in finite samples during magnetization
reversal even in the absence of any impurities. On the
other hand, a finite applied field A, is necessary to break
up a 360° wall into two 180° walls of the same rotation
sense. Therefore, 360° domain walls should play a cru-
cial role in the process of magnetization reversal. We
found that the critical field for the wall breakup is high-
est when the wall is perpendicular to the easy axis, mak-
ing the walls with this orientation most stable with re-
spect to variations in the stray field. However, the
critical field needed to break up the wall rapidly de-

)

(5)

(6)

— and the light areas are where = . The arrows indicate the directions

creases as the wall orientation deviates from normal.
Therefore, such walls will be more susceptible to varia-
tions in the stray field due to boundary effects.

In the context of two-dimensional films, 360° domain
walls should be considered as line defects, and so their
dynamics is expected to obey the anisotropic mean-
curvature flow.”>**”” Such motion leads to the wall
eventually shrinking to a point and disappearing, or be-
coming straight, despite the anisotropy in the wall
energy.58 The wall motion, however, will be strongly
affected by the dynamics of the domain wall ends. As
we showed by our simulations (Fig. 5), when the wall
ends reach the boundary of the film which is oriented
along the easy axis, the wall becomes asymptotically
straight in the direction normal to the easy axis. At the
same time, if the wall ends reach the film boundary
which is oriented normally to the easy axis, the wall
attempts to align with the easy axis, but breaks up in the
process, with the resulting Néel walls eventually exiting
the sample. Note, however, that the wall ends may also
be pinned to inhomogeneities and, therefore, remain im-
mobile.

We demonstrated stability of the 360° domain walls with
respect to one-dimension perturbations. It remains to be
seen whether these solutions are also stable with respect
to transverse perturbations in a two-dimensional film.
This analysis is rather involved and goes beyond the
scope of the present paper. Nevertheless, our two-
dimensional simulations demonstrate transverse stability
of the 360° walls for v=<10. We also verified that our
wall solutions are stable with respect to the long-wave
perturbations for all values of v for which we were able
to obtain the solution numerically.

The presence of 360° domain walls may lead to nonu-
niqueness of the film response to a sequential applica-
tion of a pulsed magnetic field of finite duration. This
has to do with the slow dynamics of the 360° domain
walls, once they are formed as a result of the magneti-
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zation reversal. Therefore, the domain structures present
in the film may be different as each new field pulse
arrives, leading to a different reversal path during each
cycle. This effect would interfere with the reproducibil-
ity of switching under the action of pulsed fields and
needs to be taken into consideration in the design of thin
film—based micromagnetic devices.
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