Università di Pisa - Corso di Laurea in Matematica Prova in itinere di Analisi Matematica 1

Pisa, 28 Novembre 2014

(Problemi da 3 punti)

- 1. Consideriamo la funzione $f(x) = |2^{-x} 1|$, pensata come $f : \mathbb{R} \to \mathbb{R}$. Calcolare l'immagine e la controimmagine di $(-\infty, 1]$.
- 2. Calcolare il limite della successione $\sqrt[n]{\binom{2n}{n}}$.
- 3. Determinare lo sviluppo di Taylor di ordine 4, con centro nell'origine, della funzione $f(x) = e^{\sin(2x)}$.
- 4. Calcolare

$$\sum_{n=0}^{\infty} \frac{3^n + 2^n \cdot (-1)^n}{5^n}.$$

(Problemi da 8 punti)

5. Studiare, al variare del parametro reale λ , l'iniettività e la surgettività della funzione $f_{\lambda}:(0,+\infty)\to\mathbb{R}$ definita da

$$f_{\lambda}(x) = \log x - \lambda \arctan x.$$

6. Consideriamo la successione

$$a_n = \frac{1}{n^2} \sin \frac{1}{n} - \frac{1}{n} \sin \frac{1}{n^2}.$$

- (a) Determinare se definitivamente si ha che $a_n > 0$ oppure $a_n < 0$.
- (b) Studiare, al variare del parametro reale α , la convergenza della serie

$$\sum_{n=1}^{\infty} |a_n|^{\alpha}.$$

7. (a) Dimostrare che per ogni intero $n \ge 1$ esiste una costante c > 0 tale che

$$2^x \ge c(\arctan x + x^n) \qquad \forall x \ge 0. \tag{1}$$

(b) Determinare se esiste una costante c > 0 tale che

$$2^x \ge c(\arctan x + x^n)$$
 $\forall x \ge 0 \quad \forall n \ge 1.$

(c) Detta c_n la più grande costante reale per cui vale la (1), calcolare il limite della successione $c_n \cdot n!$.

Corso ALAM2 by Massimo Gobbino – Scritto d'esame 2015_PI-1