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Abstract

Let C be a reduced curve contained in a smooth algebraic surface. In
this paper we show that for a generic divisor F on C of degree � pa(B)
on each subcurve B � C we have h1(C;F) = 0, and if the degree is
� pa(B) + 1 on each subcurve B � C then the system jFj is base point
free.

As an application we show that a divisor H on a reduced connected
curve C is normally generated if degHjB � 2pa(B)+1 for all subcurve B
� C.

Introduction

Let C = �1 [ : : : [ �s be a curve contained in a smooth algebraic surface (�i
irreducible components) and let F be an invertible sheaf on C. For each i the
natural inclusion map �i : �i ! C induces a map ��i : FjC ! Fj�i.

Following the papers [Ar 1-2] we let di = degFj�i (for the de�nition of degree
on a curve we refer to the next section) and we de�ne the multidegree of F on
C d := (d1; :::; ds).

By Picd we will denote the Picard scheme which parameterizes the class of
invertible sheaves of multidegree d.

Let d = (d1; :::; ds) 2 Ns: We say that d = (d1; :::; ds) satis�es:
condition (1) if for any F invertible sheaf of multidegree d we have

8B � C; pa(B) � degFjB

condition (2) if for any F invertible sheaf of multidegree d we have

8B � C; pa(B) + 1 � degFjB

Our �rst results are the following theorems:

Theorem A Assume C = �1 [ : : : [ �s to be a reduced curve contained in
smooth algebraic surface. If d = (d1; :::; ds) satis�es condition (1) then

W = f[F ]jFhas of multidegree d and h1(C;F) 6= 0g � Picd(C)

has dimension < dim(Picd(C)), that is, for [F ] generic in Picd H1(C;F) = 0.

�Research carried out under the EU HCM project AGE (Algebraic Geometry in Europe).
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Theorem B Assume C = �1 [ : : : [ �s to be a reduced curve contained in
smooth algebraic surface. If d = (d1; :::; ds) satis�es condition (2) then for [F ]
generic in Picd, jFj is a base-point free system.

Theorem A and B follow essentially from Serre and Grothendieck duality

H1(C;F) d Hom(F ; !C) for F a coherent sheaf,

(where d denotes duality of vector spaces) and from an extension to the reduced
case of the classical Abel map.

IfC is reduced and F �= OC(D1+: : :+Ds), where Di = Pi;1+: : :+Pi;di � �i,
[F ] generic corresponds to a generic choice of the points on each component.

We apply the above theorems to study the homogeneous ring

R(C;H) =
M
k�0

H0(C;H
k)

where H is an invertible sheaf of suÆciently positive degree. If H has degree at
least 2pa(B) + 1 on each subcurve B of C then R is generated in degree 1.

Theorem C Let C be a reduced, connected curve contained in a smooth algebraic
surface and let H be an invertible sheaf on C such that

8B � C; 2pa(B) + 1 � degHjB

Then H is normally generated on C, that is, the multiplication maps

�k : (H
0(X;H))
k �! H0(X;H
k)

are surjective for all k.

This is a generalization of a classical result due to Castelnuovo and Mumford
in the case where C is smooth and irreducible.

Under this numerical conditions, in [CFHR] it was proved that H is very
ample. Considering the embedding 'jHj : C ,! P

n associated to the system jHj,
in our case it is not true that for the image of C in Pn the subscheme obtained
from a general hyperplane section behaves like d points in \general position"
(in the sense of [ACGH]), since for example C may have several irreducible
components, each of them contained in a proper subspace.

Anyway, in this case, theorem A simply says that we can �nd the points in
\relative general position", i.e., if � � C is an irreducible component contained
in V � Pn, the points on � are in general position.

The proof of theorem C then will follow by the standard arguments of
Castelnuovo theory.
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1 Notation and background results

Notation

For all the paper we will assume C to be a reduced curve contained in a smooth
algebraic surface de�ned over an algebraically closed �eld of characteristic p.

jHj IfH is an invertible sheaf on C, jHjwill denote the linear system of divisors
of sections of H0(C;H).

degHjC The degree of H on C; it can be de�ned for every torsion free sheaf of
rank 1 by

degHjC = �(H) � �(OC):

pa(C) The arithmetic genus of C, pa(C) = 1� �(OC).

!C Dualising sheaf of C (see [Ha], Chap. III, x7).

Notice that from the de�nition of degree we get deg(!C) = 2pa(C)� 2.
If C = C1 [C2 scheme theoretically with dimC1 \C2 = 0 and x 2 C1 \C2,

we can de�ne (cf. [Ca], p. 54)

(C1:C2)x = lengthOC1\C2;x; C1:C2 =
X

x2C1\C2

lengthOC1\C2;x

Notice that if C = C1 [C2, with dimC1 \C2 = 0, then we recover the classical
formula

pa(C) = pa(C1) + pa(C2) + C1:C2 � 1

Sometimes, with abuse of notation, we will denote the curve C2 as C � C1.

De�nition 1.1 A (reduced) curve C is numericallym-connected if C1:C2 � m
for every decomposition C = C1 [C2

We recall that in [C-F-H-R] it is introduced a notion of m-connectedness
for C Gorenstein, possibly non reduced, in terms of the degree of the dualising
sheaf !C on each subcurve B.

A cluster Z of degree degZ = r is simply a 0-dimensional subscheme with
lengthOZ = dimkOZ = r.

If C = C1 [C2 with dimC1 \C2 = 0 we will denote by OC1
(C2) the cluster

on C1 de�ned by the ideal IC2

 OC1

.
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1.1 Background results on projective curves

A fundamental instrument in the study of sheaves on projective curves with
several components is the following lemma (which appears in [CFHR]). For the
reader's bene�t we reproduce here the proof.

Lemma 1.2 (Automatic adjunction) Let F be a coherent sheaf on C, and
' : F ! !C a map of OC-modules. Set J = Ann' � OC , and write B � C for
the subscheme de�ned by J . Then B is Cohen{Macaulay and ' has a canonical
factorisation of the form

F � FjB ! !B = HomOC
(OB ; !C) � !C ;

where FjB ! !B is generically onto.

Proof. First, !C is torsion free, because Hom(G; !C) = 0 for any sheaf G
with 0 dimensional support, hence J = Ann' has no embedded primes, and
OB = OC=J is Cohen{Macaulay. By construction of J , the image of ' is
contained in the submodule

�
s 2 !C

�� J s = 0
	
� !C :

But this clearly coincides with Hom(OB ; !C). Now the inclusion morphism
B ,! C is �nite, and !B = HomOC

(OB ; !C) is just the adjunction formula
for a �nite morphism (see, for example, [Ha], Chap. III, x7, Ex. 7.2, or [R],
Prop. 2.11).

The factorisation (1.2) goes like this: ' is killed by J , so it factors via
the quotient module F=JF = FjB . As just observed, it maps into !B � !C .
Finally, it maps onto every generic stalk of !B , again by de�nition of J : a
submodule of the sum of generic stalks

L
!B;� is the dual to the generic stalkL

OB0;� of a purely 1-dimensional subscheme B0 � B, and ' is not killed by
the corresponding ideal sheaf J 0. Q.E.D.

1.2 Picd(C) and HilbÆ(C)

Let C = �1[ : : :[�s be a reduced curve contained in a smooth algebraic surface
(�i irreducible components) and let F be an invertible sheaf on C. For each i
the natural inclusion map �i : �i ! C induces a map ��i : FjC ! Fj�i .

Following the papers [Ar 1-2] we let di = degFj�i and we de�ne the multidegree
of F on C d := (d1; :::; ds).

Let Picd be the Picard scheme which parameterizes the class of invertible
sheaves of multidegree d.

It has a natural structure of an extension of an abelian variety (corresponding
to the normalization of C) by an aÆne group (corresponding to the to the
singular points of C) and its dimension is h1(C;OC) (cf. e.g. [B-P-V]) .

Mumford and Mayer (cf. [Mu-1], [Me], [A-I-K] and [A-K]) in the irreducible
case proposed a natural compacti�cation of the Picard scheme Picd, consisting
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of torsion free coherent sheaf of rank 1 with Euler characteristic = d� �(OC).

It is usually denoted by J
d
(C).

Notice that even in the irreducible case the closure of Picd in J
d
(C) may

be di�erent from J
d
(C) (this implies in particular that J

d
(C) is reducible).

However, as pointed out by Altman and Kleiman in the paper [A-K] if C is

irreducible and it is contained in a smooth surface then J
d
(C) is irreducible.

HilbÆ(C) will denote the Hilbert scheme of clusters on C of degree Æ. Notice
that if C = �1 [ : : :[ �s, then

CaDivd(C) = fCartier divisors of multidegree d = (d1; : : : ; ds)g

is an open subset of Hilb
P

di (C) (cf. e.g. [Ko], x1).
We remark that if C is contained in a smooth algebraic surface S then

dim(HilbÆ(C)) = Æ:
This can be proved as follow (cf. Rego [Re], Iarrobino [Ia]).

For all x 2 C we de�ne Hilbnx(C) = f� � Cj deg(�) = n; supp(�) = xg:
Now, Hilbnx(C) � Hilbnx(S) = f� � Sj deg(�) = n; supp(�) = xg; and it is

easy to prove that n � 1 � dim(Hilbnx(C)) � dim(Hilbnx(S)) = n � 1 (cf. [Re]
p.221). If we de�ne

N
h(Æ) = fn = (n1; : : : ; nh) 2 N

hj n1 � : : : � nh;
X

ni = Æg

and for n = (n1; : : : ; nh) 2 Nh(Æ) we set

HilbÆn(C) := f(�1; : : : ; �h)j�i is a cluster s.t.
supp(�i) = Pi 2 C; deg(�i) = nig

then

HilbÆ(C) =
Æ[

h=1

f
[

n2Nh(Æ)

HilbÆn(C)g

To conclude the proof it is suÆcient to remark that for every n 2 N
h(Æ)

dim(HilbniPi(C)) = ni � 1 implies dim(HilbÆn(C)) = Æ.
We remark as pointed out by Altman and Kleiman ([A-K]), that if there

exists a point x such that dimTx;C � 3 then we have dim(Hilbnx(C)) � n.

2 "Generic divisors" in Pic
d on reduced curves

In this section we will prove theorem A and B.

Proof of theorem A.
By Serre duality, ifF is a coherent sheaf on C then H1(C;F) d Hom(F ; !C).
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Assume H1(C;F) 6= 0. Then there exists a non-zero morphism of sheaves
' : F ! !C. We will prove the thesis by an induction argument on the number
of components of C.

If C is reduced and irreducible then H1(C;F) 6= 0 if and only if there exists an
exact sequence

0! F
'
! !C !O� ! 0

where � is a cluster of length Æ � pa(C)� 2.
This means that there is a morphism

	1 : Hilb
Æ(C) �! J

d
(C)S S

CaDivÆ(C) �! Picd(C)

� 7! !C 
 I�

Since dim(HilbÆ(C)) = Æ because C is contained in a smooth surface and

Æ � pa(C) � 2, while dim(J
d
(C)) = pa(C) then we conclude that the subset

W=f[F ]jF of multidegree d and h1(C;F) 6= 0g � 	1(CaDiv
Æ(C)) has dimension

� Æ < dimPicd(C).

Now let C = �1 [ : : :[�s and let ' : F ! !C, ' 6= 0, our morphism of sheaves.
We claim, by induction hypotheses, that for F generic every nonzero morphism
' : F ! !C is generically onto.

Indeed, if ' was not generically onto, by automatic adjunction, it would
factor as '0 : FjB ,! !B; but by induction we may assume that for F generic
'0 � 0, that is ' � 0.

But now we can proceed as in the irreducible case. coker(') de�nes a cluster
of deg = Æ � pa(C)� 2, which is a Cartier divisor.

This means that we have a morphism

	 : CaDivÆ(C) ! Picd(C)
� 7! !C 
 I�

and [F ] 2 im(	).
Since dim(CaDivÆ(C)) = Æ because C is contained in a smooth surface and

Æ � pa(C)� 2, while dim(Picd(C)) = h1(C;OC) � pa(C) we obtain the thesis.
Q.E.D. for thm. A

Proof of theorem B.
The proof works essentially as in the previous theorem. We restrict ourselves

to consider the open, dense, subset
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Picd(C) := f[F ] 2 Picd j there exists a F 0 2 jFj
e�ective Cartier divisor with support on
C nCsing and multidegree = dg

By our restriction, if x 2 C is singular, then it is not a base point for F . Thus
we need only to consider the case where x 2 C is smooth.

As in the above lemma jFj is not base point free if and only if there exists a
point x on C and there exists a non-zero morphismof sheaves ' : F
Mx ! !C .

If C is reduced and irreducible then we obtain an exact sequence

0! F 
Mx
'
! !C !O� ! 0

where � is a cluster of length Æ � pa(C)� 2.
This means that there exists a morphism

	1 : Hilb
Æ(C)� C �! J

d
(C)S S

CaDivÆ(C)� fC nCsingg �! Picd(C)

(�; x) 7! !C 
 I� 
M�1
x

Thus, for F such that [F ] 2 Picd(C), jFj has some base point if and only if

[F ] 2 	1(CaDiv
Æ(C)� fC nCsingg).

Since dim(Im(	1)) � dim(HilbÆ(C)) � C = Æ + 1 � pa(C) � 1, while
dim(Picd(C)) = pa(C) we conclude that for [F ] generic in Picd(C)), jFj is
base point free.

If C = �1 [ : : : [ �s we proceed as in the above theorem, applying lemma
2.1.

Q.E.D. for thm. B

3 Divisors normally generated on reduced curves

In this section we will prove theorem C.
The proof of theorem C, as in the classical case, is essentially an application

of a lemma of Castelnuovo on base point free systems

Proposition 3.1 (Generalized lemma of Castelnuovo) Let F and H be
invertible sheaves on C such that

1. H1(H
 F�1) = 0;

2. jFj is a base point free system on C.
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Then the multiplication map

H0(H) 
H0(F)! H0(H
 F)

is surjective.

For the proof we refer to [Mu-2], thm. 2 or [F], lemma 2.1.
The fundamental step in the proof of Theorem C is then to �nd a base point

free system on C satisfying the above conditions.
We will �nd such invertible sheaf by an inductive argument.

Observe that the condition degHjC � (2pa(C)+1) is equivalent to the inequality
deg(!C � H)jC � �1, whence there exists an irreducible �1 � C such that
deg(!C �H)j�1 < 0, (that is degHj�1 � 2pa(�1) + �1:(C � �1)� 1).

Following the paper [Ca-Fr] we de�ne such a �1 to be H-positive and we
denote by C2 the curve C � �1.

Furthermore either �1 is unique and then H:�1 � 2pa(�1) + �1:C2 + 1 or
there exists at least one other irreducible H-positive curve.

Such a curve �1 will yield an important role in the next proposition:

Lemma 3.2 Let C and H be as in theorem A and let �1 be an irreducible
H-positive subcurve of C. Then the exact sequence

0!O�1(H) 
 IC2
!OC(H)!OC2

(H)! 0

is exact on global sections, that is jHjjC2
= jHjC2

j.

Proof. O�1 
 IC2
de�nes on �1 a cluster of length C1:C2.

Since degHj�1 � 2pa(�1) + �1:(C � �1) � 1 by thm.1.1 of [CFHR] we get
H1(�1;O�1(H) 
 IC2

) = 0.

Proposition 3.3 Let C and H be as in theorem C. Then there exists an invertible
subsheaf F of H such that

1. degB F � pa(B) + 1 for all B subcurve of C.

2. H1(C;F) = 0.

3. jFj is a base point free system on C.

4. H1(C;H
 F�1) = 0.

Proof of proposition 3.3 . We will prove the proposition by induction on the
number of components of C.
If C is irreducible then we simply consider a F generic of degree pa(C)+1. Then
By theorem A and theorem B jFj is a base point free system and H1(C;H

F�1) = 0.
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Let C = �1 [ : : : [ �s be a decomposition of C such that �h is H � positive
with respect to the curve Ch = [si=h�i.

For h = 1; : : : ; s� 1, let mh := �h:Ch+1

Take F generic such that degFj�h = maxfpa(�h) +mh � 1; pa(�h) + 1g.
Since C is reduced (which implies �h:Ch+1 � �h:B for all B � Ch+1) we

immediately obtain degB F � pa(B) + 1 for all B subcurve of Ch and then,
by theorem A and B, for F generic H1(C;F) = 0 and jFj is a base point free
system on C.

Notice that by our conditions on C we have degFjCh � h0(Ch;H).

It remains to show that H1(C;H
F�1) = 0:
If F �= OC(�), where � is a cluster of � smooth points (� � h0(C;H)), then

it is suÆcient to prove that the map H0(C;H)! H0(O�) is onto.
For this let C = �1 +C2, with �1 irreducible H � positive such that

8<
:

�j�1 = �1 consists of p1 +m � 1 smooth general points on �1
�jC2

= �2 consists of �2 smooth general points on C2 with
p2 + 1 � �2 � d2 � p2

We are done if we show that the points of � should be taken in such a way that
they impose independent conditions on jHj.

By induction we may assume H0(C2;H)� H0(O�2
).

If we consider the embedding 'jHj : C ! P
N, where N = degHjC�paC and

we identify C and its subcurve with their images in PN it is enough to prove
that the points of � may be taken projectively independent.

To simplify the computations we let N1 = h0(�1;H)�1; N2 = h0(C2;H)�1;
l = h1(C2;H
 OC2


 I�1); �1:C2 = m. Thus we have

�1 � V1 where V1 is a linear subspace of dimension = N1 � l
C2 � V2 where V2 is a linear subspace of dimension = N2

dim(V1 \ V2) = (m � l � 1)

The last equality follows from the exact sequence

H0(C2;H)! H0(C2;H
OC2
(�1))! H1(C2;H
OC2


 I�1)

Since we can choose �2 � dim(V2) by induction and by our choice p1+m� 1+
�2 � N it is enough to prove that p1 +m� 1 � dim(V1) (since we may assume
h�1i \ h�2i = ;.)

Now
p1 +m � 1 � dim(V1)() d1 � 2p1 � m+ l � 1:

We will show this inequality using the fact that H:B � 2pa(B) + 1 8 B � C:
If C2 is irreducible we are done because H is (d2 � 2p2)-very ample on C2

and d2 > maxf2p2; 2p1 + 2p2 + 2m� d1g; that is, l � maxfm� d2 � 2p2; 0g �
d1 � 2p1 �m.
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If C2 is reducible, let us consider a decomposition C2 = A2 [ B2 with A2

irreducible s.t. h1(A2;H
 OA2
(�B2)) = 0:

By the following exact sequence

H
1(A2;H
OA2


 IB2[�1)! H
1(C2;H
OC2 
 I�1)! H

1(B2;H
OB2

 I�1);

since by induction

h1(B2;OB2
(H� �1)) < B2:�1 � (H:B2 � 2pa(B2))

and by the k-very-ampleness of H on A2

h1(A2;OA2
(H�B2 � �1)) < �1:A2 � (H:A2 � A2:B2 � 2pa(A2))

we argue that

l � �1:(A2 +B2) �H:(A2 + B2) + (2pa(A2) + 2pa(B2) +A2:B2)� 2 �
� �1:C2 � (H:C2� 2pa(C2)) = d1 � 2p1 �m:

Q.E.D. for proposition 3.3
Notice that in the above proposition no connectedness hypotheses are required

Proof of Theorem C.
For n = 0; 1 it is obvious since C 1-connected implies h0(C;OC) = 1 (cf.

[CFHR], thm. 3.3 for the general case) and we are considering the complete
linear system jHj.

To show that H0(C;H)
H0(C;H)� H0(C;H
2)we apply the generalized
lemma of Castelnuovo. Let F be as in proposition 3.3. Then we have the
following commutative diagram:

H0(C;F)
H0(C;H) ,! H0(C;H)
H0(C;H) � H0(C;O� 
H)
H0(C;H)
# # #

H0(C;F 
H) ,! H0(C;H
2) � H0(C;O� 
H

2)

By theorem 1.1 of [CFHR],H is very ample on C (in particular it is base point
free).

O� 
H
2 �= O� 
H �= O� is a skyscraper sheaf of �nite length.
We can pick a section s 2 H0(C;H) such that for all x 2 Supp(�) s(x) 6= 0.

Then

H0(�
H) 
Khsi
�
! H0(�
H
2);

that is, the third map is onto. Now, the �rst map H0(C;F) 
 H0(C;H) !
H0(C;F
H) is surjective by lemma 3.1 and proposition 3.3, that is the required
map is onto.

For n � 3 we use induction applying the generalized lemma of Castelnuovo
to the sheaves H
(n�1) and H since, by lemma 2.1 of [Ca-Fr], if degHjB �
2pa(B) � 1 for all subcurve B � C then H1(C;H) = 0.

Q.E.D. for Theorem C
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