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On varieties whose universal cover is a product of curves

Fabrizio Catanese and Marco Franciosi,
with an appendix by Antonio J. Di Scala

Abstract. We investigate a necessary condition for a compact complex mani-
fold X of dimension n in order that its universal cover be the Cartesian product
Cn of a curve C = P1or H: the existence of a semispecial tensor ω.

A semispecial tensor is a non zero section 0 6= ω ∈ H0(X, SnΩ1
X(−KX)⊗

η)), where η is an invertible sheaf of 2-torsion (i.e., η2 ∼= OX). We show that
this condition works out nicely, as a sufficient condition, when coupled with
some other simple hypothesis, in the case of dimension n = 2 or n = 3; but it
is not sufficient alone, even in dimension 2.

In the case of Kähler surfaces we use the above results in order to give
a characterization of the surfaces whose universal cover is a product of two
curves, distinguishing the 6 possible cases.

1. Introduction

The beauty of the theory of algebraic curves is deeply related to the manifold
implications of the:

Theorem 1.1 (Uniformization theorem of Koebe and Poincaré). Let C be a
smooth (connected) compact complex curve of genus g, and let C̃ be its universal
cover. Then

C̃ ∼=

 P1 if g = 0
C if g = 1
H if g ≥ 2
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(H denotes as usual the Poincaré upper half-plane H = {τ ∈ C : Im(τ) > 0},
but we shall often refer to it as the ‘disk’ since it is biholomorphic to D := {z ∈ C :
||z|| < 1}).

Hence a smooth (connected) compact complex curve C of genus g ≥ 1 admits
a uniformization in the strong sense (ii) of the following definition (for g = 0, only
(i) holds):

Definition 1.2. A connected complex space X of complex dimension n admits
a Galois uniformization if :

(i) there is a connected open set Ω ⊂ Cn and a properly discontinuous group
Γ ⊂ Aut(Ω) such that Ω/Γ ∼= X

If X is a complex manifold, there is the stronger property where we require the
action of Γ to be free:

(ii) there is a connected open set Ω ⊂ Cn biholomorphic to the universal cover
of X (strong uniformization).

Observe that a result of Fornaess and Stout (cf. [F-S77]) says that, if X is an
n-dimensional complex manifold, then there is a connected open set Ω ⊂ Cn and a
surjective holomorphic submersion f : Ω → X; i.e., every complex manifold admits
an ‘étale (but not Galois) uniformization’.

On the contrary, the condition that the universal cover be biholomorphic to a
bounded domain Ω ⊂⊂ Cn tends to be quite exceptional in dimension n ≥ 2, where
plenty of simply connected manifolds exist.

An important remark is that if Ω is bounded and Γ acts freely on Ω with
compact quotient, then the complex manifoldX := Ω/Γ has ample canonical bundle
KX (see [Sieg73]): in particular it is a projective manifold of general type.

Even more exceptional is the case where the universal cover is biholomorphic
to a bounded symmetric domain Ω, or where there is a Galois uniformization with
source a bounded symmetric domain, and there is already a vast literature on a
characterization of these properties (cf. [Yau77], [Yau88], [Yau93], [Bea00]).
The basic result in this direction is S.T. Yau’s uniformization theorem (explained
in [Yau88] and [Yau93]), and for which a very readable exposition is contained in
the first section of [V-Z05], emphasizing the role of polystability of the cotangent
bundle for varieties of general type. One would wish nevertheless for more precise
or simple characterizations of the various possible cases.

The paper [B-P-T06], which extends work of Yau and Beauville, especially
[Bea00], gives a nice sufficient condition in order that the universal cover of a
compact Kähler manifold X be biholomorphic to a product of curves. If the tangent
bundle TX splits as a sum of line subbundles, TX = L1⊕· · ·⊕Ln, then its universal
cover X̃ is biholomorphic to a product of curves:

X̃ ∼= (P1)r × Cs ×Ht,

for suitable r, s, t ∈ N.
The above result is not a characterization, in the sense that the splitting con-

dition is not a necessary one, even if we weaken it to the condition that there is a
finite étale covering X ′ → X such that the tangent bundle of X ′ splits.

The purpose of this work is to investigate to which extent one can find a simple
characterization of the above property in terms of some necessary and sufficient
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conditions which a compact complex (respectively, Kähler) manifold X must fulfill
in order that its universal cover be biholomorphic to a product of curves.

If we require that the universal cover X̃ be biholomorphic to (P1)n or Hn we
have the following necessary condition (the case of Kodaira surfaces, cf. [Bea00],
shows that X̃ ∼= Cn without the Kähler assumption does not imply this condition):

Definition 1.3. Let X be a complex manifold of complex dimension n.
Then a special tensor is a non zero section 0 6= ω ∈ H0(X,SnΩ1

X(−KX)),
while a semi special tensor is a non zero section 0 6= ω ∈ H0(X,SnΩ1

X(−KX)⊗η),
where η is an invertible sheaf such that η2 ∼= OX .

We shall say that the semi special tensor is of unique type if moreover it is
dim(H0(X,SnΩ1

X(−KX)⊗ η)) = 1.

We have in fact:

Proposition 1.4. LetX be a compact complex manifold whose universal cover
is biholomorphic to (P1)n or to Hn: then X admits a semi special tensor.

As we shall see considering the two dimensional case, the existence of a semis-
pecial tensor is not sufficient in order to guarantee a totally split universal cover,
and one has to look for further complementary assumptions, one such can be for
instance the condition of ampleness of the canonical divisor KX .

Let us discuss first the case of a smooth compact complex surface.
Here, a famous uniformization result is the characterization, due to Miyaoka

and Yau, of complex surfaces whose universal cover is the two dimensional ball B2.
It is given purely in terms of certain numbers which are either bimeromorphic or
topological invariants.

Theorem 1.5 (Miyaoka-Yau). Let X be a compact complex surface. Then
X ∼= B2/Γ (with Γ a cocompact discrete subgroup of Aut(B2) acting freely on B2)
if and only if

(1) K2
X = 9χ(S) > 0;

(2) the second plurigenus P2(X) > 0.

The theorem follows combining Miyaoka’s result ([Miy82]), that these two
conditions imply the ampleness of KX , with Yau’s uniformization result ([Yau77])
which proves the existence of a Kähler-Einstein metric.

In the case where X = (H × H)/Γ, with Γ a discrete cocompact subgroup of
Aut(H×H) acting freely, one has K2

X = 8χ(X).
But Moishezon and Teicher in [MT87] showed the existence of a simply con-

nected surface of general type (hence with P2(X) > 0) having K2
X = 8χ(X), so

that the above conditions are necessary, but not sufficient. Our contribution here is
a by-product of our attempt to answer the still open question whether there exists
a minimal surface of general type with pg(X) = 0,K2

X = 8 which is not uniformized
by H×H (one has the same question for χ(X) = 1,K2

X = 8).
The first result of this note is a precise characterization of compact complex

surfaces whose universal cover is the bidisk, respectively the quadric P1 × P1, dis-
cussing whether some hypotheses can be dispensed with. We have the following
result giving a refinement of a theorem of S.T. Yau (theorem 2.5 of [Yau93]), giving
sufficient conditions for (ii) to hold.

Theorem 1.6. Let X be a compact complex surface.
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X is strongly uniformized by the bidisk ( X ∼= (H × H)/Γ , where Γ is a
cocompact discrete subgroup of Aut(H×H) acting freely ) if and only if

(1*) X admits a semi special tensor of unique type;
(2) K2

X > 0;
(3) the second plurigenus P2(X) ≥ 1.
X is biholomorphic to P1 × P1 if and only if

(1**) X admits a unique special tensor;
(2) K2

X = 8;
(3**) the second plurigenus P2(X) = 0;

(4) h0(Ω1
X(−KX)) = 6

In the above theorem one can replace condition (3) by :
(3∗)P2(X) ≥ 2,
it is moreover interesting to see that none of the above hypotheses can be

dispensed with. The most intriguing examples are provided by

Proposition 1.7. There do exist properly elliptic surfaces X satisfying
• (1) X admits a special tensor;
• (3*) the second plurigenus P2(X) ≥ 2;
• q(X) := dim(H1(OX)) > 0;
• K2

X = 0;
• X is not birational to a product.

In this respect, we would like to pose the following question, which will be
discussed in a later section.

Question. Let X be a surface with q(X) = 0 and satisfying (1*) and (3*): is
then X strongly uniformized by the bidisk?

Our final result concerning algebraic surfaces whose universal cover is a product
of two curves follows combining the previous Theorem 1.6 with the following

Theorem 1.8. Let S be a smooth compact Kähler surface S. Then the universal
cover of S is biholomorphic to

(1) P1 × C ⇔ P12 := P12(S) = 0, q := q(S) = 1, K2
S = 0.

(2) P1 ×H ⇔ P12 = 0, q ≥ 2, K2
S = 8(1− q).

(3) C2 ⇔ P12 = 1, q = 1 or q = 2, K2
S = 0.

(4) C×H ⇔ P12 ≥ 2, e(S) = 0.

Concerning the higher dimensional cases, we restrict our attention here to
the case of manifolds with ample canonical divisor KX which, by Yau’ s theorem
([Yau77]) admit a canonical Kähler-Einstein metric.

Assume now that X admits a semi special tensor ω ∈ H0(X,SnΩ1
X(−KX)⊗η).

Then by [Yau88, p.272] and by [Yau93, p.479] (see also [V-Z05, p.300]) ω induces
on the tangent bundle TX a homogeneous hypersurface FX of relative degree n
which is parallel with respect to the Kähler-Einstein metric.

In particular, take a point x ∈ X, and consider the hypersurface of the projec-
tivized tangent bundle induced by FX : its fibre over x is a projective hypersurface
FX,x of degree n which is invariant for the action of the (restricted) holonomy group
H ⊂ U(n) (H is the connected component of the identity in the holonomy group).

In this situation, assume that we can prove (possibly passing to a finite étale
covering of X) that the holonomy leaves invariant a complete flag. Then, since the
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holonomy is unitary, it follows that H ⊂ U(1)n and we can conclude, either by
Berger’s classical theorem ([Ber53]), or by [B-P-T06], that the universal cover of
X turns out to be Hn.

In the three dimensional case the existence of a special tensor is enough in order
to guarantee such a splitting.

Theorem 1.9. Let X be a compact complex manifold of dimension n ≤ 3.
Then the following two conditions:

(1) X admits a semi special tensor;
(2*) KX is ample

hold if and only if X ∼= (Hn)/Γ (where Γ is a cocompact discrete subgroup of
Aut(Hn) acting freely ).

In dimension ≥ 4, the above conditions are no longer sufficient. The natural
category which is relevant to consider is the category of Hermitian symmetric spaces
of noncompact type, since by the theorem of Berger-Simons an irreducible (in the
sense of De Rham’s theorem) Kähler manifold X of dimension n with ample canon-
ical divisor KX has holonomy H 6= U(n) if and only if X is a Hermitian symmetric
space of rank ≥ 2 (see [Yau88], and [V-Z05, section 1, page 300]).

One has the Cartan realization of a Hermitian symmetric space of noncom-
pact type as a bounded symmetric domain, and by the classical result of Borel
on compact Clifford-Klein forms (see [Bor63]) any bounded symmetric domain X
of dimension n admits a compact complex analytic Clifford-Klein form, that is a
compact complex manifold X ′ whose universal covering is isomorphic to X.

The above results translate the question whether a compact complex manifold
X admitting a semi special tensor and with ample canonical divisor KX has the
polydisk as universal cover into a purely Lie theoretic problem, the problem of
existence of holonomy invariant hypersurfaces of degree n.

We leave aside for the moment this more general investigation, for which some
partial results are contained in the appendix, due to A.J. Di Scala, who answered
some of our questions.

For the bounded domain Ω ⊂ C4 ∼= Mat(2, 2,C) := M2,2(C), Ω = {Z ∈
M2,2(C) : I2−tZ · Z > 0}, the Cartan realization of the Hermitian symmetric
space SU(2, 2)/S(U(2) × U(2)), Di Scala pointed out that the holonomy action
of (A,D) ∈ S(U(2) × U(2) is given by Z 7→ AZD−1. Hence the square of the
determinant yields an invariant hypersurface of degree 4 which is twice a smooth
quadric (and this is indeed the only other possible case).

Using this simple but important observation, we get the following

Theorem 1.10. There exist compact Kähler manifolds X, for each dimension
n ≥ 4, such that

(1) X admits a special tensor;
(2*) KX is ample

and whose universal cover X̃ is not ∼= Hn (i.e., is not a product of curves).

2. Preliminaries and remarks

2.1. Notation. X denotes throughout the paper a smooth compact complex
manifold of dimension n.
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We use the standard notation of algebraic geometry: Ω1
X is the cotangent

bundle (locally free sheaf), TX is the holomorphic tangent bundle, c1(X), c2(X)
are the Chern classes of X. KX is a canonical divisor on X, i.e., Ωn

X = OX(KX)
and the m-th plurigenus is defined as Pm(X) := h0(X,mKX).

In particular, form = 1, we have the geometric genus ofX pg(X) := h0(X,KX),
while q(X) := h1(X,OX) is classically called the irregularity of X.

Finally, χ(X) := χ(OX) is the holomorphic Euler-Poincaré characteristic of X,
whereas e(X) denotes the topological Euler-Poincaré characteristic of X.

In the surface case (n = 2), χ(X) = 1 + pg(X)− q(X).
With a slight abuse of notation, we do not distinguish between invertible

sheaves, line bundles and divisors, while the symbol ≡ denotes linear equivalence
of divisors.

2.2. Necessary conditions.
First of all notice that the existence of a semi special tensor corresponds to the
existence of a special tensor on an étale double cover of our manifold:

Remark 2.1. A complex manifold X admits a semi special tensor if and only if
it has an unramified cover X ′ of degree at most two which admits a special tensor.

Proof. Assume that we have an invertible sheaf η such that η2 ∼= OX , η 6∼=
OX . Take the corresponding double connected étale covering π : X ′ → X such that
π∗OX′ ∼= OX ⊕ η and observe that

H0(X ′, SnΩ1
X′(−KX′)) ∼= H0(X,SnΩ1

X(−KX))⊕H0(X,SnΩ1
X(−KX)⊗ η).

Whence, there is a special tensor on X ′ if and only if there is a semi special tensor
on X. �

Let us now show that if X is isomorphic to (P1)m/Γ or (H)m/Γ then X admits
a semi special tensor.

Proof of Prop. 1.4. Let us remark first that for a simply connected curve
C, with C ∼= P1, or C ∼= H, and any integer m, the group of automorphism of Cm,
Aut(Cm), is the semidirect product of (Aut(C))m with the symmetric group Sm,
hence for every subgroup ΓC of Aut(Cn) we have a diagram:

1 → (Aut(C))m → Aut(Cm) → Sm → 1⋃ ⋃ ⋃
1 → Γ0

C ↪→ ΓC → HC → 1.

Let now X ∼= (Cn)/Γ be a compact complex manifold whose universal cover X̃ is
isomorphic to Cn. Then X admits a semi special tensor, induced by the following
special tensor:

ω̃ :=
d z1 ⊗ · · · ⊗ d zn

d z1 ∧ · · · ∧ d zn
,

where (z1, . . . , zn) is the standard system of coordinates on C = Hn, respectively
on the standard open set Cn ⊂ (P1)n (observe that ω̃ is in this case everywhere
regular).

ω̃ is clearly invariant for (Aut(C))n and for the alternating subgroup An.
Let η be the 2-torsion invertible sheaf on X associated to the signature char-
acter of Sn restricted to HC : then clearly ω̃ descends to a semi special tensor
ω ∈ H0(X,SnΩ1

X(−KX)⊗ η). �



ON VARIETIES WHOSE UNIVERSAL COVER IS A PRODUCT OF CURVES 7

In the more general case where the universal cover is a product of curves, we
have the following proposition:

Proposition 2.2. We have a homomorphism

Φ : Aut((P1)r × Cs ×Ht) → Aut(Cs ×Ht)

which is injective on any subgroup Γ which acts freely. Moreover, if Γ2 ⊂ Aut(Cs×
Ht) is the image of Γ under Φ, Γ2 acts also freely, and Γ2 acts properly discontinuosly
if Γ is properly discontinuos.

In particular, if X ∼= ((P1)r×Cs×Ht)/Γ, with Γ a cocompact discrete subgroup
of Aut((P1)r × Cs ×Ht) which acts freely, then the natural projection

((P1)r × Cs ×Ht)/Γ → (Cs ×Ht)/Γ2

inherits a (P1)r−bundle structure.

Before giving the proof let us point out the following:

Lemma 2.3. Let ψ ∈ Aut((P1)r) be an automorphism. Then ψ has a fixed
point.

Proof. For r = 1 this is well known, since there exists an eigenvector for each
A ∈ GL(2,C).

For r ≥ 2 any automorphism ψ ∈ Aut((P1)r) is of the form

(ψ(x))i = ψi(xσ(i))

for a suitable permutation σ of {1, . . . r}. Therefore a fixed point is a solution to
the system of equations

xi = ψi(xσ(i)) (i = 1, . . . r).

Using the cycle decomposition of σ we easily reduce to the case where σ = (1, 2, . . . r)
and it suffices to find a solution to x1 = ψ1 ◦ . . . ψr(x1). �

Proof of Prop. 2.2. Let φ ∈ Aut((P1)r × Cs ×Ht).
Let Φ2 be the composition p2 ◦ φ, where p2 : (P1)r ×Cs ×Ht → Cs ×Ht is the

second projection.
Now, for every point p ∈ Cs ×Ht, Φ2 is constant on (P1)r × {p} since (P1)r is

compact. Hence φ induces φ2 ∈ Aut(Cs ×Ht).
Assume that φ acts freely, and that φ2 has a fixed point p. Then φ acts on

(P1)r × {p} and it has a fixed point there by the previous lemma: whence φ is the
identity.

If the action of Γ is properly discontinuous, then for any compactK ⊂ (Cs×Ht),
also (P1)r × K is compact; hence the set Γ2(K,K) = Γ((P1)r × K, (P1)r × K) is
finite. Therefore Γ2 is also properly discontinuous.

�

Remark 2.4. We also have a homomorphism

Φ : Aut((C1)r ×Ht) → Aut(Ht)

However, as shown by the case of Inoue surfaces, if X ∼= ((Cr ×Ht)/Γ, where Γ is
a cocompact discrete subgroup of Aut((P1)r ×Cs ×Ht) which acts freely, then the
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image group Γ2 ⊂ Aut(Ht) does not necessarily act properly discontinuously. One
needs for this the assumption that X be Kähler.

3. Surfaces whose universal cover is a product of curves

In the case of surfaces the existence of a special tensor, as we are now going to
explain, is equivalent to the existence of a trace zero endomorphism of the tangent
bundle: and if this endomorphism is not nilpotent, one obtains a splitting of the
tangent bundle.

Let us recall a result of Beauville which characterizes compact complex surfaces
whose universal cover is a product of two complex curves (cf. [Bea00, Thm. C]).

Theorem 3.1 (Beauville). Let X be a compact complex surface. The tangent
bundle TX splits as a direct sum of two line bundles if and only if either X is a
special Hopf surface or the universal covering space of X is a product U ×V of two
complex curves and the group π1(X) acts diagonally on U × V .

Given a direct sum decomposition of the cotangent bundle Ω1
X
∼= L1 ⊕ L2,

Beauville shows moreover that (L1)2 = (L2)2 = 0 (cf. [Bea00, 4.1, 4.2]) hence

KX ≡ L1 + L2 c1(X)2 = 2 · (L1 · L2) = 2 · c2(X), i.e.,K2
X = 8χ(X).

Let us now consider the bundle End(TX) of endomorphisms of the tangent
bundle. We can write End(TX) = Ω1

X ⊗ TX and since from the nondegenerate
bilinear map

Ω1
X × Ω1

X −→ Ω2
X
∼= KX

we get TX = (Ω1
X)∨ ∼= Ω1

X(−KX), we have an isomorphism

End(TX) ∼= Ω1
X ⊗ Ω1

X(−KX).

Let us see how this isomorphism works in local coordinates (z1, z2). I.e., let us
see how an element d zi⊗d zj

d z1∧d z2
in Ω1

X ⊗ Ω1
X(−KX) acts on a vector of the form ∂

∂zh
.

We have
d zi ⊗ d zj

d z1 ∧ d z2

( ∂

∂zh

)
=

{ d zj

d z1∧d z2
if h = i

0 if h 6= i

In turn,
d zj

d z1 ∧ d z2
evaluated on d zk gives

d zj ∧ d zk

d z1 ∧ d z2
.

Therefore a generic element
∑
i,j

aij
d zi ⊗ d zj

d z1 ∧ d z2
corresponds to an endomorphism,

which, with respect to the basis
{

∂
∂z1

, ∂
∂z2

}
is expressed by the matrix(

−a12 −a22

a11 a21

)
In particular for the symmetric tensors (i.e., a12 = a21), respectively for the
skewsymmetric tensors (i.e., a12 = −a21, a11 = a22 = 0) the following isomorphisms
hold:

S2(Ω1
X)(−KX) ∼=

{ (
−a −a22

a11 a

) }
;

∧2
(Ω1

X)(−KX) ∼=
{ (

b 0
0 b

) }
We can summarize the above discussion in the following
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Lemma 3.2. If X is a complex surface there is a natural isomorphism be-
tween the sheaf S2(Ω1

X)(−KX) and the sheaf of trace zero endomorphisms of the
(co)tangent sheaf End0(TX) ∼= End0(Ω1

X).
A special tensor ω ∈ H0(S2(Ω1

X)(−KX)) with nonzero determinant det(ω) ∈ C
yields an eigenbundle splitting Ω1

X
∼= L1

⊕
L2 of the cotangent bundle.

If instead det(ω) = 0 ∈ C, the corresponding endomorphism ε is nilpotent and
yields an exact sequence of sheaves

0 → L→ Ω1
X → IZL(−∆) → 0

where L := ker(ε) is invertible, ∆ is an effective divisor, and Z is a 0-dimensional
subscheme(which is a local complete intersection).

We have in particular KX ≡ 2L−∆ and c2(X) = length(Z) + L · (L−∆).

Proof. We need only to observe that det(ω) is a constant, since det(End(TX)) =
det(End(Ω1

X)) ∼= OX .
If det(ω) 6= 0, there is a constant c ∈ C \ {0} such that det(ω) = c2, hence at

every point of X the endomorphism ε corresponding to the special tensor ω has two
distinct eigenvalues ±c.

Let ω ∈ H0(S2Ω1
X(−KX)), ω 6= 0, be such that det(ω) = 0. Then the corre-

sponding endomorphism ε is nilpotent of order 2, and there exists an open nonempty
subset U ⊆ X such that Ker(ε|U ) = Im(ε|U ). At a point p where rank(ε) = 0, in
local coordinates the endomorphism ε may be expressed by(

a b
c −a

)
a, b, c regular functions such that a2 = −b · c

Let δ := G.C.D.(a, b, c). After dividing by δ, every prime factor of a is either not
in b, or not in c, thus we can write

−b = β2 c = γ2 a = β · γ

Therefore we obtain(
u
v

)
∈ Ker ε⇐⇒

{
a · u+ b · v = 0
c · u− a · v = 0 ⇐⇒ γ · u− β · v = 0 ⇐⇒

(
u
v

)
=

(
β · f
γ · f

)
and, writing our endomorphism ε as ε = δ · α, we have

Im(α) =
{
β · γ · u− β2 · v = β · (γ · u− β · v)
γ2 · u− γ · β · v = γ · (γ · u− β · v)

Let Z be the 0-dimensional scheme defined by {β = γ = 0} and ∆ be the
Cartier divisor defined by {δ = 0}.

From the above description we deduce that the kernel of ε is a line bundle L
which fits in the following exact sequence:

0 → L→ Ω1
X → IZL(−∆) → 0.

Taking the total Chern classes we infer that: KX ≡ 2L −∆ as divisors on X and
c2(X) = length(Z) + L · (L−∆). �

Lemma 3.3. Let X be a complex surface and let X ′ be the blow up of X at
a point p. Then a special tensor ω′ on X ′ induces a special tensor ω on X, and
the converse only holds if and only if ω vanishes at p (in particular, it must hold :
det(ω) = 0).
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Proof. First of all, ω′ induces a special tensor on X \ {p}, and by Hartogs’
theorem the latter extends to a special tensor ω on X.

Conversely, choose local coordinates (x, y) for X around p and take a local
chart of the blow up with coordinates (x, u) where y = ux.

Locally around p we can write

ω =
a(dx)2 + b(d y)2 + c(dxd y)

dx ∧ d y

The pull back ω′ of ω is given by the following expression:

a(dx)2 + b(u dx+ xdu)2 + c(u dx+ xdu) dx
xdx ∧ du

=

=
dx2(a+ bu2 + cu) + bx2 du2 + (2bux+ cx) dxdu

xdx ∧ du
,

hence ω′ is regular if and only if a+bu2+cu
x is a regular function.

This is obvious if a, b, c vanish at p, since then their pull back is divisible by x.
Assume on the other side that a, b, c are constant: then we get a rational function
which is only regular if a = b = c = 0. �

Lemma 3.4. Let X be a compact minimal rational surface admitting a special
tensor ω. Then X ∼= P1 × P1 or X ∼= Fn, n ≥ 2. If moreover the special tensor is
unique, then X ∼= P1 × P1 or X ∼= F2.

Proof. Assume that X is a P1 bundle over a curve B ∼= P1, i.e., a ruled surface
Fn with n ≥ 0. Let π : X → B the projection.

By the exact sequence

0 → π∗Ω1
B → Ω1

X → Ω1
X|B → 0

and since on a general fibre F the subsheaf π∗Ω1
B is trivial, while the quotient sheaf

Ω1
X|B is negative, we conclude that any endomorphism ε carries π∗Ω1

B to itself. If
it has non zero determinant we can conclude by Theorem 3.1 that X ∼= P1 × P1.
Otherwise, ε is nilpotent and we have a nonzero element in Hom(Ω1

X|B , π
∗Ω1

B).
Since these are invertible sheaves, it suffices to see when

H0(OX(2π∗KB −KX)) 6= 0.

But, letting Σ be the section with selfintersection Σ2 = −n, our vector space
equals H0(OX(2Σ + (n− 2)F )). Intersecting this divisor with Σ we see that (since
each time the intersection number with Σ is negative) H0(OX(2Σ + (n− 2)F )) =
H0(OX(Σ + (n − 2)F )) = H0(OX(+(n − 2)F )). This space has dimension n − 1,
whence our claim follows for the surfaces Fn.

There remains the case where X is P2.
In this case ε must be a nilpotent endomorphism by Theorem 3.1, and it cannot

vanish at any point by our previous result on F1. Therefore the rank of ε equals 1
at each point. By lemma 3.2 it follows that there is a divisor L such that KX = 2L,
a contradiction. �
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3.1. Proof of Theorem 1.6.

Proof of Thm. 1.6. If X is strongly uniformized by the bidisk, then KX is
ample, in particular K2

X ≥ 1 and, since by Castelnuovo’s theorem χ(X) ≥ 1, by
the vanishing theorem of Kodaira and Mumford it follows that P2(X) ≥ 2 (see
[Bom73]).

Thus one direction follows from proposition 1.4, except that we shall show only
later that (1*) holds.

Assume conversely that (1), (2) hold. Without loss of generality we may assume
by lemma 3.3 that X is minimal, since K2

X can only decrease via a blowup and the
bigenus is a birational invariant.

K2
X ≥ 1 implies that either the surface X is of general type, or it is a rational

surface.
These two cases are distinguished by the respective properties (3) (obviously

implied by (3*)), guaranteeing that X is of general type, and (3**) ensuring that
X is rational.

Let us first assume that X is of general type and, passing to an étale double
cover if necessary, that X admits a special tensor.

By the cited Theorem 3.1 of [Bea00] it suffices to find a decomposition of the
cotangent bundle Ω1

X as a direct sum of two line bundles L1 and L2.
The two line bundles L1, L2 will be given as eigenbundles of a diagonizable

endomorphism ε ∈ End(Ω1
X).

Our previous discussion shows then that it is sufficient to show that any special
tensor cannot yield a nilpotent endomorphism.

Otherwise, by lemma 3.2, we can write 2L ≡ KX+∆ and then deduce that L is a
big divisor since ∆ is effective by construction and KX is big because X is of general
type. This assertion gives the required contradiction since by the Bogomolov-
Castelnuovo-de Franchis Theorem (cf. [Bog77]) for an invertible subsheaf L of
Ω1

X it is h0(X,mL) ≤ O(m), contradicting the bigness of L.
There remains to show (1*). But if h0(X,S2Ω1

X(−KX)) ≥ 2 then, given a
point p ∈ X, there is a special tensor which is not invertible in p, hence a special
tensor with vanishing determinant, a contradiction.

If X is a rational surface we use the hypothesis K2
X = 8, ensuring that X is a

surface Fn; then, by lemma 3.4 we conclude that either X ∼= P1 × P1 or X ∼= F2.
In the former case h0(Ω1

X(−KX)) = 6, in the latter case h0(Ω1
X(−KX)) = 7.

�

4. Elliptic surfaces with a special tensor not birational to a product of
curves

In this section we are going to prove proposition 1.7.
We consider surfaces X with bigenus P2(X) ≥ 2 (property (3*)), therefore

their Kodaira dimension equals 1 or 2, hence either they are properly (canonically)
elliptic, or they are of general type.

Since we took already care of the latter case in the main theorem 1.6, we restrict
our attention here to the former case, and try to see when does a properly elliptic
surface admit a special tensor (we can reduce to this situation in view of remark
2.1). We can moreover assume that the associated endomorphism ε is nilpotent by
theorem 3.1.
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Again without loss of generality we may assume that X is minimal by virtue
of lemma 3.3.

Proof of Prop. 1.7. Let X be a minimal properly elliptic surface and let
f : X → B be its (multi)canonical elliptic fibration. Write any fibre f−1(p) as
Fp =

∑hp

i=1miCi and, setting np := G.C.D.(mi), Fp = npF
′
p, we say that a fibre is

multiple if np > 1. By Kodaira’s classification ([Kod60]) of the singular fibres we
know that in this case mi = np,∀i.

Assume that the multiple fibres of the elliptic fibration are n1F
′
1, . . . , nrF

′
r, and

consider the divisorial part of the critical locus

Sp :=
hp∑
i=1

(mi − 1)Ci, S :=
∑
p∈B

Sp

so that we have then the exact sequence

0 → f∗Ω1
B(S) → Ω1

X → IC ωX|B → 0,

where C is a 0-dimensional (l.c.i.) subscheme.
For further calculations we separate the divisorial part of the critical locus as

the sum of two disjoint effective divisors, the multiple fibre contribution and the
rest:

Sm :=
r∑

i=1

(ni − 1)F ′
i , Ŝ := S − Sm.

Let us assume that we have a nilpotent endomorphism corresponding to another
exact sequence

0 → L→ Ω1
X → IZL(−∆) → 0,

in turn determined by a homomorphism

ε′ : IZL(−∆) → L,

i.e., by a section
s ∈ H0(OX(∆)) =

= H0(OX(2L−KX)) = H0(S2(L)(−KX)) ⊂ H0(S2(Ω1
X)(−KX)).

Observe by the way that, if L 6= L′, where we set L′ := f∗Ω1
B(S), we get a non

trivial homomorphism L′ → IZL(−∆), hence L−∆ ≥ L′.
Since 2L ≡ KX + ∆, it follows that, if F is a general fibre, then (use KX ·F =

0 = L′ · F )
L · F = ∆ · F = 0,

hence the effective divisor ∆ is contained in a finite union of fibres.
The first candidate we try with is then the choice of L = L′ = f∗Ω1

B(S).
To this purpose we recall Kodaira’s canonical bundle formula:

KX ≡ Sm + f∗(δ) =
r∑

i=1

(ni − 1)F ′
i + f∗(δ), deg(δ) = χ(X)− 2 + 2b,

where b is the genus of the base curve B.
Then H0(OX(2L′ −KX)) = H0(OX(f∗(2KB − δ) + 2S − Sm), and we search

for an effective divisor linearly equivalent to

f∗(2KB − δ) + 2S − Sm = f∗(2KB − δ) + 2Ŝ + Sm.
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We claim that H0(OX(2L′−KX)) = H0(OX(f∗(2KB−δ)): it will then suffice
to have examples where |2KB − δ| 6= ∅.

Proof of the claim.
It suffices to show that f∗OX(2Ŝ + Sm) = OB . Since the divisor 2Ŝ + Sm is

supported on the singular fibres, and it is effective, we have to show that, for each
singular fibre Fp =

∑hp

i=1miCi, neither 2Ŝp ≥ Fp nor Sm,p ≥ Fp.
The latter case is obvious since Sm,p = (np − 1)F ′

p < Fp = npF
′
p.

In the former case, 2Ŝp =
∑hp

i=1 2(mi − 1)Ci, but it is not possible that ∀i one
has 2(mi − 1) ≥ mi, since there is always an irreducible curve Ci with multiplicity
mi = 1.

Q.E.D.for the claim.
Assume that the elliptic fibration is not a product (in this case there is no special

tensor with vanishing determinant): then the irregularity of X equals the genus of
B, whence our divisor on the curve B has degree equal to 2b−2− (1−b+pg(X)) =
3b− 3− pg.

Since χ(X) ≥ 1, pg := pg(X) ≥ b, and there exist an elliptic surface X with
any pg ≥ b ([Cat07]).

Since any divisor on B of degree ≥ b is effective, it suffices to choose b ≤ pg ≤
2b− 3 and we get a special tensor with trivial determinant, provided that b ≥ 3.

Take now a Jacobian elliptic surface in Weierstrass normal form

ZY 2 − 4X3 − g2XZ
2 − g3Z

3 = 0,

where g2 ∈ H0(OB(4M)), g3 ∈ H0(OB(6M)), and assume that all the fibres are
irreducible.

Then the space of special tensors corresponding to our choice of L corresponds
to the vector space H0(OB(2KB−δ)) = H0(OB(KB−6M)). It suffices now to take
a hyperelliptic curve B of genus b = 6h + 1, and, denoting by H the hyperelliptic
divisor, set M := hH, so that KB − 6M ≡ 0 and we have h0(OX(2L−KX)) = 1.
We leave aside for the time being the question whether the surface X admits a
unique special tensor. �

Already in the introduction, we posed the following
Question. Let X be a surface with q(X) = 0 and satisfying (1*) and (3*): is

then X strongly uniformized by the bidisk?
Concerning the above question, recall the following

Definition 4.1. Γ ⊂ Aut(Hn) is said to be reducible if there exists a subgroup
of finite index Γ0 < Γ such that γ(z1, ..., zn) = (γ1(z1), ..., γn(zn)) for every γ ∈ Γ0)
and a decomposition Hn = Hk ×Hh (with h > 0) such that the action of Γ0 on Hk

is properly discontinuous.

For n = 2 there are only two alternatives:

Remark 4.2. Let Γ ⊂ Aut(H2) be a discrete cocompact subgroup acting freely
and let X = H2/Γ. Then

• Γ is reducible if and only if X is isogenous to a product of curves, i.e.,
there is a finite group G and two curves of genera at least 2 such that
X ∼= C1 × C2/G. Both cases q(X) 6= 0, q(X) = 0 can occur here.

• Γ is irreducible: then q(X) = 0 ( this result holds in all dimensions and
is a well-known result of Matsushima [Ma62]).
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5. Other surfaces whose universal cover is a product of curves

For the sake of completeness, using the Enriques classification of surfaces, we
give here a characterization of the Kähler surfaces S whose universal cover is a
product of curves, other than P1×P1 or H×H, which was treated in section 3. We
already mentioned in the introduction the following theorem.

Theorem 1.8. Let S be a smooth compact Kähler surface S. Then the universal
cover of S is biholomorphic to

(1) P1 × C ⇔ P12 = 0, q = 1, K2
S = 0.

(2) P1 ×H ⇔ P12 = 0, q = g ≥ 2, K2
S = 8(1− q).

(3) C2 ⇔ P12 = 1, q = 1 or q = 2, K2
S = 0.

(4) C×H ⇔ P12 ≥ 2, e(S) = 0.

Proof. We consider the several possible cases separately:
1) P1 × C: by proposition 2.2 these are the P1- bundles over an elliptic curve.

They are characterized for instance by the properties P12 = 0, which implies that
the surface is ruled, q = 1, which implies that it is ruled over an elliptic curve, and
K2 = 0, which implies that all the fibres are smooth, hence we have a P1 bundle.

2) P1 × H: these are the P1-bundles over a curve B of genus g ≥ 2, hence
characterized for instance by the properties P12 = 0, q = g ≥ 2, K2 = 8(1− q). The
argument is here identical to the one given above.

3) C2: these, by the celebrated theorem of Enriques-Severi and Bagnera- de
Franchis, are the tori or the hyperelliptic surfaces, characterized (see for instance
[Cat08, page 65]), by the properties: P12 = 1, q = 1 or q = 2, K2 = 0 (more
precisely, pg = 1, q = 2, K2 = 0 for tori, P12 = 1, q = 1, K2 = 0 for the
hyperelliptic surfaces).

4) C×H: in this case, by the same argument as in proposition 2.2, the action
of γ ∈ Γ is as follows:

(z, τ) 7→ (aγ(τ)z + bγ(τ), fγ(τ)),

since for fixed τ we get an automorphism of C.
The cocycle aγ(τ) induces a line bundle L which is trivial on the leaves Fτ :=

(C× {τ})/Γ, and its dual yields a subbundle of the tangent bundle of S.
Moreover, the canonical divisor KS corresponds to the cocycle aγ(τ) · ∂

∂τ fγ(τ).
Therefore the canonical divisor is also trivial on the leaves Fτ , and the extension
class of

0 → OS(KS − L) → Ω1
S → L→ 0

is given by a group cocycle involving only the function τ .
If the action of Γ on H is properly discontinuous, then H/Γ is a compact complex

curve B, and the fibres of f : S → B are elliptic curves. There exists an étale cover
S′ of S, such that S′ admits an elliptic fibration with smooth fibres onto a compact
complex curve B′ of genus at least 2, hence this is an elliptic bundle (the period
map is constant and S′ is Kähler).

If the action is not properly discontinuous, then the leaves Fτ are not compact.
The sections of multiples of the canonical divisor yield bounded functions on the
leaves, hence by Liouville’s theorem these are constant. Since the leaves are not
compact, the conclusion is that the Kodaira dimension of S is negative or zero.
It cannot be negative, else the universal cover would contain a family of P1’s. If
the Kodaira dimension is zero, we know by surface classification that either the
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universal cover is C2 or the fundamental group has order at most two, and in all
cases we have derived a contradiction.

Hence we concluded that our surfaces S are the elliptic quasi- bundles S over
a curve B of genus g ≥ 2; more precisely, these are the quotients of a product
(E × C)/G, where E is an elliptic curve, C is a curve of genus g′ ≥ 2, and G is a
finite group acting diagonally on the product E ×C. These are characterized then
by the properties: P12 ≥ 2, e(S) = 0.

In fact P12 ≥ 2 ensures that the Kodaira dimension is ≥ 1, a surface of general
type has e(S) ≥ 1 , whereas for an elliptic fibration e(S) = 0 holds if and only if we
have a quasi-bundle, i.e., all the fibres are either smooth or multiple of a smooth
curve.

Since K2
S = e(S) = 0, then χ(S) = 0, and Kodaira’s canonical bundle formula

says thatKS is the pull back of a Q-divisor on the base curveB of degree equal to the
degree of KB +

∑r
i=1(ni− 1)F ′

i . This means that the base orbifold is of hyperbolic
type, and by the fundamental exact sequence π1(E) → π1(S) → πorb

1 (B) → 0 (see
[CKO03] and also chapter 5 of [Cat08]), the universal cover of S is the product
C×H.

�

6. 3-dimensional Kähler manifolds whose universal cover is the
polydisk

In this section we are going to prove theorem 1.9.
Let X be a smooth compact Kähler manifold of general type of dimension 3.

Assume that the canonical divisor KX is ample and consider the canonical Kähler-
Einstein metric provided by the theorem of Aubin and Yau (cf. [Yau77]). As
shown in the introduction, if X admits a special tensor ω ∈ H0(X,S3Ω1

X(−KX)),
then by [Yau88, p.272] and [Yau93, p.479] (see also [V-Z05, p.300]) ω induces on
the tangent bundle TX a homogeneous hypersurface FX of relative degree 3 which is
parallel with respect to the Levi-Civita connection associated to the Kähler-Einstein
metric.

In particular, taking a point x ∈ X, and considering the projectivized tangent
bundle, we obtain a cubic curve Cx ⊂ P(TX , x) ∼= P2, invariant for the action of
the holonomy.

By the theorem of De Rham, the universal cover X̃ splits as a product of
irreducible factors, X̃ = X̃1 × X̃2 × · · · × X̃k with dim(X̃i) = ni. The restricted
holonomy group also splits as H = H1 ×H2 × · · · ×Hk, where the action of Hi on
TX̃i,xi

is irreducible (xi ∈ X̃i being an arbitrary point).
Moreover by the classical theorem of Berger-Simons either Hi

∼= U(ni) or Hi

is the holonomy of an irreducible Hermitian symmetric space of rank > 1.
The idea of our proof consists in pointing out how the existence of such a

cubic projective curve (possibly singular or reducible) forces a complete splitting
for the action of the holonomy group (i.e., it implies the isomorphism H ∼= U(1)3).
Consequently we obtain that X̃ ∼= (H)3.

Proof of Thm. 1.9. Let X be a smooth Kähler manifold of general type of
dimension 3, with KX ample. Fix a point x ∈ X and let ω ∈ H0(X,S3Ω1

X(−KX))
be a non zero section. Then ω induces a projective cubic curve Cx ⊂ P(TX,x) ∼= P2

invariant for the action of the (restricted) holonomy H.
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In particular Cx is invariant for the action of the minimal linear algebraic group
which contains H, and which we denote by Ĥ . Observe that Ĥ is connected.

On the other side, by the description given above, we have H = H1×H2×· · ·×
Hk, where either Hi

∼= U(ni) or Hi is the holonomy of an irreducible Hermitian
symmetric space of rank > 1.

Let Lin(Cx) be the linear algebraic group of projectivities leaving Cx invariant.
We shall analyse all the possible cases for Cx, including the study of its singularities
and the description of Lin(Cx), keeping in mind that we have P(Ĥ) ⊂ Lin(Cx).

(a) Cx irreducible and smooth. In this case Lin(Cx) is finite, which contradicts
P(Ĥ) ⊂ Lin(Cx), since dim Ĥ is at least 3.

(b) Cx irreducible with a node p. In this case Ĥ fixes the node p and the pair
of tangent lines of Cx at p. Since Ĥ is connected, it fixes both tangent lines.

Therefore H fixes the point p and a line L through p, i.e. H fixes a flag. Since
H is a subgroup of the unitary subgroup it acts diagonally for a suitable unitary
basis, hence we conclude that H = U(1)3.

Therefore there exists an étale covering X ′ of X such that TX′ decomposes as
the direct sum of 3 line bundles (the eigenbundles of the action), and the universal
cover of X is biholomorphic to H3.

(c) Cx irreducible with a cusp p. In this case we can choose coordinates on P2

so that p = (1 : 0 : 0) and on the affine chart {x0 = 1} the curve Cx is parametrized
by t 7→ (1, t2, t3).

Now we have : C∗ ∼= Lin(Cx) and in the affine chart {x0 = 1} λ ∈ C∗ yields
the automorphism

Cx → Cx

(1, t2, t3) 7→ (1, λ2t2, λ3t3)

Whence even in this case the action of Ĥ is diagonal and we conclude as before.
(d) Cx decomposes as the union of a line L and an irreducible conic Q. In this

case Ĥ fixes the intersection set L ∩ Q, which consists of one or two points. By
connectedness of Ĥ, Ĥ fixes a point P ∈ L and the line L, and we conclude as
before.

(e) Cx decomposes as the union of a double line 2L1 and a line L2. In this case
Ĥ fixes the point L1 ∩ L2 = {p} and the line L2 and we are done.

(f) Cx decomposes as the union of 3 distinct lines Cx = L1∪L2∪L3. There are
two possibilities: the three lines are concurrent in the same point p or L1∩L2∩L3 =
∅ and there are three singular points pij = Li ∩ Lj (1 ≤ i < j ≤ 3).

In both cases, since Ĥ is connected it fixes each singular point and each line.
Hence there is a flag fixed by Ĥ and we are done.

(g) Cx decomposes as a triple line 3L. We are going to show that this case
cannot happen.

Assume the contrary and consider the line subbundle L ⊂ Ω1
X corresponding

to L. We have a section

OX → OX(3L −KX) ⊂ S3Ω1
X(−KX)

(indeed, cf. [Yau93] or [V-Z05], this section has no zeros).
Therefore we have 3L ≡ KX + D, with D effective (in fact D is a trivial

divisor). This in particular implies L big because KX is ample by our assumption.
This assertion, as in the proof of theorem 1.6, contradicts the theorem of Bogomolov
(cf. [Bog77]).
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Conversely, if X ∼= H×H×H/Γ, with Γ a cocompact discrete subgroup of Aut(H×
H×H) acting freely, then by [Sieg73] it is immediately seen that KX is ample and
by Prop. 1.4 X admits a semi special tensor.

�

7. 4-dimensional Kähler manifolds of general type with a special tensor
whose universal cover is not a product of curves

One of the consequences of the theorem of Berger-Simons is that an irreducible
Kähler manifold X of dimension n and with KX ample (irreducible in the sense of
De Rham’s theorem) has as holonomy group a proper subgroup H ⊂ U(n) if and
only if X̃ is a Hermitian symmetric space of rank ≥ 2 (see [Yau88], and especially
[V-Z05, 1.4 and 1.5]).

Since we are interested in the case where KX is ample we look for the Car-
tan realization of a Hermitian symmetric space of noncompact type as a bounded
complex symmetric domain.

We shall find first such a bounded symmetric domain such that it has a holo-
nomy invariant hypersurface of degree n, and then we shall apply the classical result
of Borel on complex analytic Clifford-Klein forms. A complex analytic Clifford-
Klein form is simply a compact quotient X = X̃/Γ, where the group Γ acts freely
(thus X is a projective manifold with ample canonical bundle).

Borel’s theorem (cf. [Bor63]) states that any bounded symmetric domain X̃ of
dimension n admits infinitely many compact complex analytic Clifford-Klein forms,
whose arithmetic genus 1− χ(X) can be arbitrarily large in absolute value.

We shall prove Theorem 1.10 considering a Clifford-Klein form X associated
to the noncompact Hermitian symmetric space of complex dimension 4 X̃ :=
SU(2, 2)/S(U(2)×U(2)). In higher dimensions, it clearly suffices to take the prod-
uct of such a projective manifold X with n − 4 projective curves C1, . . . Cn−4 of
genus at least 2.

Proof of Thm. 1.10. Let X̃ = SU(2, 2)/S(U(2)×U(2)). X̃ is a noncompact
Hermitian symmetric space of dimension 4 and rank 2. Recall that a 4× 4 matrix
g ∈ SU(2, 2) can be written as

g =
(
A B
C D

)
where det(g) = 1 and A,B,C,D are 2× 2 complex matrices satisfying

(?) tA ·A−t C · C = Id; tB ·B −t D ·D = − Id; tB ·A−t D · C = 0,

whereas the subgroup S(U(2) × U(2)) can be identified with the matrices of the
form (

A 0
0 D

)
(with A,D ∈ U(2) , det(A) · det(D) = 1).

Let su(2, 2) be the Lie algebra of SU(2, 2). The Cartan decomposition su(2, 2) =
k⊕ p can be written down explicitly by means of

p ∼=
(

0 B
tB 0

)
, k ∼=

(
A 0
0 D

)
(with tA = −A , tD = −D)

and for x ∈ X̃ we have a canonical isomorphism p ∼= TX,x.
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The holonomy action coincides with the adjoint representation of S(U(2) ×

U(2)) on p, given for every matrix M =
(
A 0
0 D

)
∈ S(U(2) × U(2)) by the map

AdM : p → p described by(
0 B

tB 0

)
7→

(
0 A ·B ·D−1

D · (tB) ·A−1 0

)
Let us now consider the Cartan realization of X̃. It is obtained by the Siegel

domain in the space of 2× 2 matrices M2,2(C) (see [Hel78, p.527]):

X ∼= {Z ∈M2,2(C) : Id−tZ · Z > 0}
and the action of SU(2, 2) on X is given by:

Z 7→ (AZ +B) · (CZ +D)−1

Considering the tangent space at 0, the action of S(U(2)×U(2)) on an ”infinitesi-
mal” 2× 2 matrix Z becomes

Z 7→ AZD−1

and in particular we recover the above description of the adjoint representation of
S(U(2)× U(2)).

Notice that, since det(A) · det(D) = 1, we have detAZD−1 = det(A)2 · detZ.
This exactly means that the determinant is a semi-invariant for the action of
S(U(2)× U(2)) on TX,0.

Therefore, identifying TX,0 withM2,2, and considering the projectivized tangent
bundle at 0, P(TX,0) ∼= P3, {det(Z) = 0} defines a quadric surface, invariant for the
action of S(U(2) × U(2)), and of course we obtain an invariant quartic projective
surface given by {Z ∈M2,2 : (det(Z))2 = 0}.

Applying now the theorem of Borel cited above we obtain a compact complex
analytic Clifford-Klein form X ∼= X̃/Γ of X̃. We shall exhibit a semispecial tensor ω̃
on X̃ which will descend to X yielding a semispecial tensor. Since X̃ is irreducible,
our proof will be complete.

We want to show how this invariant surface defines a special tensor.
Write, for γ ∈ Γ,

γ(Z) = (AZ +B) · (CZ +D)−1 ⇔ γ(Z) · (CZ +D) = (AZ +B).

Differentiating the above equality, we obtain

dγ(Z) · (CZ +D) = (A− (AZ +B) · (CZ +D)−1C) · dZ.
Taking determinants, we obtain

det(dγ(Z)) · det(CZ +D) = det(A− (AZ +B) · (CZ +D)−1C) · det(dZ) =

= det((CZ +D)−1)det(C)det(AC−1D −B) · det(dZ).
Observe now that, setting ∗B :=t B, equations (?) yield

det(AC−1D −B) = det(∗B−1 ∗DD −B) = det(∗B−1).

An easy calculation using the above equations yields then det(C)det(AC−1D−
B) = det(A) det(∗D)−1 = det(A) det(D).

If we restrict to the isotropy subgroup H = S(U(2) × U(2)), we get det(A) ·
det(D) = 1. We have now a character of the group which is trivial on H. This
character is then trivial since the homogeneous domain is contractible, whence the
group G := S(U(2, 2)) is homotopically equivalent to H.
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Since finally det((CZ+D)−4) is the Jacobian determinant of the transformation
γ, ω̃ := det(dZ)2 is a Γ-invariant section of H0(X̃, SnΩ1

X̃
(−KX̃)), thus a special

tensor which descends to X.
�
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Appendix: Holonomy invariant hypersurfaces

Antonio J. Di Scala

Abstract. We give a description of holonomy invariant hypersurfaces of the
projective tangent space at a point p of a Kähler manifold M . Namely, we
prove that if the local De Rham decomposition around p does not contain
higher rank Hermitian symmetric spaces then such invariant hypersurfaces are
unions of linear hyperplanes.

A. The theorems of De Rham and Berger.

Let (Mn, g) be a Kähler manifold of complex dimension n. Let ∇ be the Levi-
Civita connection of g. Let TpM be the tangent space at p and let Holp be the
restricted holonomy group at p ∈ M i.e., the subgroup of U(TpM) generated by
∇-parallel transport around null homotopic piecewise differentiable loops based at
p. Then according to the complex version of De Rham’s decomposition theorem
locally (around p) M splits as a product. More precisely,

M = Ω×M1 ×M2 × · · · ×Mk

where each Mi is an irreducible Kähler manifold and Ω ⊂ Cs is the so-called flat
factor, i.e., Ω is an open domain of Cs with the flat metric.

The restricted holonomy group Holp also splits as

Holp = {e} ×Holp1 ×Holp2 × · · · ×Holpk

where each Holpi
is the restricted holonomy group of Mi at pi. The action of Holpi

on TpiMi is irreducible, i.e. there are no invariant (real) subspace of TpiMi. More-
over, the action of Holpi on Tpj is trivial for i 6= j.

The Berger holonomy theorem implies that either Holpi
acts transitively on the

unit sphere of TpMi or Mi is a locally irreducible Hermitian symmetric space of
rank > 1. So we can write:

Holp = {e} × U(1)r × T ×K (∗)
where U(1)r is the product of all holonomy groups along non-flat factors of complex
dimension one, T denotes the product of the holonomy groups along all the factors
of complex dimension greater than 1 whose holonomy is transitive on the sphere,
and K the product of the holonomy groups along all the factors which are locally
irreducible Hermitian symmetric spaces of rank greater than 1.

Thus the tangent space Cn = TpM = Cs × Cr × Ct × Ck also decomposes
according to the above holonomy splitting (∗).

Let PTpM be the projective tangent space of M at the point p. Let Xf ⊂
PTpM be a Holp-invariant hypersuperface given by an homogeneous polynomial
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f ∈ C[X1, · · · , Xn]. Namely, Xf = {[V ] ∈ PTpM : f(V ) = 0} and g(V ) ∈ Xf if
[V ] ∈ Xf for all g ∈ Holp. If V ∈ Cn = TpM we can write

V = (F,R, T,H) ∈ Cs × Cr × Ct × Ck .

Proposition A.1. Assume that Xf is an Holp-invariant hypersurface given by
the polynomial f . Then f does not depend upon the variables Ct associated to the
transitive T -factor, i.e., ∂f

∂Ti
= 0 if Ti ∈ Ct.

Proof. Let g ∈ Holp be an element of the form

g = (e, e, t, e) ∈ {e} × U(1)r × T ×K .

Then,

(g.f)(F,R, T,K) = f(F,R, t.T,K) = 0 if [F : R : T : K] ∈ Xf .

So
(g.f)(F,R, T,K) = f(F,R, t.T,K) = m(t)f(F,R, T,K),

where m(t) ∈ C is a morphism of T , i.e. m(t.t′) = m(t)m(t′). Since T corresponds
to the irreducible factors of dimension greater than 1 it follows that T/ker(m) also
acts transitively on the unit sphere of the corresponding factor Ct. Then f just
depends upon |T |2 and this implies that f does not depends upon T since f is a
polynomial. �

B. Invariant hypersurfaces of an irreducible HSS.

It is a basic fact that the holonomy group Holp of an irreducible Hermitian
symmetric space M = G/K coincides with the isotropy group K at p ∈M . More-
over, the group Holp acts on TpM as K acts the adjoint representation on p, where
g = k⊕ p is the Cartan decomposition of the Lie algebra g of G.

An important theorem of Chevalley [H, p.195] states that the algebra of Ad(K)-
invariant polynomials on p is isomorphic to the algebra of W -invariant polynomials
of the Cartan subalgebra, where W is the Weyl group [H, p.356]. As a consequence
we get:

Lemma B.1. If the De Rham decomposition of M contain as a factor an ir-
reducible Hermitian symmetric space G/K of rank greater than 1 then there exist
invariant hypersurfaces which are not the union of linear varieties, i.e. there exists
f which is not a product of linear factors such that Xf is Hol-invariant.

Proof . Take as an example the polynomial f = ∆ given in [K, p.227] merely
defined on the variables associated to the factor G/K. �

Remark B.2. The above polynomial ∆ has degree equal to the rank r of the
symmetric factor G/K, i.e., deg(∆) = r. The relationship between the dimension
d and the rank r of an irreducible HSS is given by the following formula [Roos,
p.522]:

d = r + a
r(r − 1)

2
+ br .

So if M = G/K is not a symmetric space of type IIIn with n even or of type IVn

with n odd, then there exists Xf such that deg(Xf ) = dim(M) since r divides d
(see [Roos, 525]). Actually, a precise control on the degree of the possible Xf is
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given by the degrees of the generators of the algebra of W -invariants [H, Theorem
3.3, p.359].

C. The splitting of f into linear factors.

Assume that M has a non-irreducible symmetric space of rank greater than 1
as a factor. Then we get the following theorem.

Theorem C.1. Assume that no irreducible symmetric space of rank greater
than 1 appears in the De Rham factorization of M . If Xf is a Hol-invariant hy-
persurface then Xf is an union of linear hyperplanes, i.e. f splits completely as
product of linear forms.

Proof. Let Xf be an invariant hypersurface given by the homogeneous polyno-
mial f . According to Proposition A.1, f depends only on the variables associated to
the (Cs, U(1)s) factor in the decomposition (∗). That is to say, f is a homogenous
polynomial of C[z1, · · · , zs] invariant by the isotropy group U(1)s of the polydisc
Ds ⊂ Cs. �

Corollary C.2. Let M be a Kähler-Einstein manifold with negative Einstein
constant. Let Xf ⊂ PTpM be a Holp-invariant hypersurface. Then Xf is a union
of linear hyperplanes if and only if the polynomial f do not depend upon the
variables associated to the irreducible symmetric factors of rank greater than 1 of
the De Rham decomposition of M .
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Lehrstuhl Mathematik VIII, Universität Bayreuth, NWII, D-95440 Bayreuth, Ger-
many

E-mail address: Fabrizio.Catanese@uni-bayreuth.de

Dipartimento di Matematica Applicata ”U. Dini”, Università di Pisa, via Buonarroti
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