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Abstract— We show an analysis of multi-dimensional time
series via entropy and statistical linguistic techniques. We define
three markers encoding the behavior of the series, after it has
been translated into a multi-dimensional symbolic sequence. The
leading component and the trend of the series with respect to
a mobile window analysis result from the entropy analysis and
label the dynamical evolution of the series. The diversification
formalizes the differentiation in the use of recurrent patterns,
from a Zipf law point of view. These markers are the starting
point of further analysis such as classification or clustering of
large database of multi-dimensional time series, prediction of
future behavior and attribution of new data. We also present
an application to economic data. We deal with measurements
of money investments of some business companies in advertising
market for different media sources.

Index Terms— multimedia mining, trend, entropy, Zipf law

I. INTRODUCTION

In the last decades of twentieth century, several methods from
nonlinear dynamics have been proposed to analyze the structure
of symbolic sequences. Different statistical methods have been
introduced to characterize the distribution of words, or combina-
tions of symbols, within the sequences, and many applications
(e.g. to DNA analysis) has been found.

One of the most significant is based on an asymptotic measure
of the density of the information content. In an experimental
setting, information content may be approximated by means of
compression algorithms (see for instance [2]). The notion of
information content of a finite string can be used also to face the
problem of giving a notion of randomness. Namely, this leads
to the notion of entropy h(σ) of a finite string σ, which is a
number that yields a measurement of the complexity of σ (see
Section II for details). Intuitively, the greater the entropy of a
string, the higher its randomness in the sense that it is is poorly
compressible.

Another useful tool is given by statistical linguistic techniques
such as the Zipf scaling law, which offers a nice methodology
that can be applied in order to characterize specific aggregation
patterns or to identify different ”languages”. The so-called Zipf
analysis [12] is useful to understand how variable the distribution
of patterns is within a symbol sequence. The basic idea is that
the more variable the observed sequences are, the more variable
the measurements and the more complex the obtained language.

These techniques can be applied to some time series

X = (x1x2 . . . xt)

by considering a translation into a finite symbol sequence, usually
given by means of a uniform partition of its range (see Section
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II for details). In this way one can use statistical linguistic tech-
niques in the analysis of series X trying to find some aggregation
patterns or global scores allowing feature and marker extraction,
useful to label the series in view of classification, clustering or
attribution.

The purpose of this paper is showing an application of this
approach in order to analyze multi-dimensional time series.

By multi-dimensional time series we mean a finite set

X =

0
B@

X1

...
XN

1
CA

of data, where each data Xj is a finite array of real numbers
coming from subsequent discrete measures of some empirical
phenomena (e.g., weekly data): Xj = (xj,1 . . . xj,t).

Multi-dimensional time series appear if one deals with multiple
measurements on some objects/phenomena, each one focused on
some a priori structure of the process under study. Examples
of such multimedia mining are given when considering different
measurements (such as temperature, pressure, velocity) of the
same physical phenomenon or taking different clinical data (such
as pulse-rate, blood pressure, oxygen saturation, etc...) of one
single patient (see Refs. [1] and [8]). Other examples appear
analyzing financial markets, where it is worth to look at different
behaviors of one company, e.g., in order to define some good
strategy. From this point of view it is particularly interesting
the Advertising Market, where it is natural to consider money
investments of some business companies for different media
sources.

Frequently, experimental (one-dimensional) time series are
short and no longer prolongable. Moreover, they may be sparse

in the sense that the measurements they come from are not
homogeneous in time and many values are null due to a failure in
data acquisition or (e.g. when some investments are recorded) at
some time step there is nothing to be measured; that is, they come
from sparsely sampled, incomplete or noisy data. More formally,
a time series is sparse when, in the range of τ time steps, the null
measurements are at least τδ. That is, in the series the density of
null values N(Xj)

.
= #{xi,j = 0 : i = 1, . . . , t} � tδ where for

instance δ ∼ 1
4 . Actually, first one has to discriminate whether

some event occurrs or not, then its extent. Not rarely, statistical
methods to analyze time series only take into consideration the
magnitude of realization of some event, neglecting the case when
there are no events (e.g. cumulative random walks), while the
data time aggregation may be a discriminant feature by itself.

The advantage of dealing with a multi-dimensional time series
is that, on the one hand, it offers a global point of view and shows
some critical pathologies arising from evident discrepancies,
whereas, on the other hand, it permits to integrate the information



contained in each one-dimensional time series of X and therefore
it is useful when each array is sparse and short.

Following this line, entropy and Zipf analysis can be applied to
each array of a given multi-dimensional time series X, allowing
a global perspective of X to be achieved. This analysis is par-
ticularly useful when arrays Xj are pairwise incomparable (e.g.,
they represent different physical measures of some phenomenon)
or if the the values acquired in different series are different in
magnitude (i.e. given Xj and Xh, it is xj,i � xh,i for every i). In
this paper we show how to label multi-dimensional time series by
means of a few markers resulting from entropy analysis and Zipf
linguistic statistics. Such markers by themselves are a simple way
to characterize the dynamical structure of the phenomenon under
analysis. Furthermore, they may be used to create new customized
methods of clustering and feature attribution (see also Ref. [10]).

To illustrate our method we present here an application of these
techniques to economic data coming from advertising market.
In our example we shall deal with measurements of money
investments of some business companies in advertising market
for different media sources (TV, radio, newspapers, etc). Never-
theless, the features describing some company and expressing
its typical traits of investment policies may come from other
measures, derivated from the integration of the results of entropy
analysis for each component. Such features may be used to
understand the behavior of each company with respect to the
different media.

A. Notations

Throughout this paper, we shall use the following notations for
time series:

• X: one-dimensional time series
• X: multi-dimensional time series
• σ, S: finite symbolic sequence
• S: multi-dimensional symbolic sequence

II. SYMBOLIC ONE-DIMENSIONAL TIME SERIES

Consider a one-dimensional time series X = (x1x2 . . . xt) of
length t. In a standard way, we translate X into a finite symbol
sequence S by means of a uniform partition of its range, as
follows.

Fix a positive integer L to be the size of some alphabet
A = {1, 2, . . . , L} and let I1

.
= min{x1, . . . , xt} and IL+1

.
=

max{x1, . . . , xt}. Then divide the interval [I1, IL+1] into L

uniformly distributed subintervals.
To each value xi in X we associate symbol � ∈ A iff xi ∈ I�.

We obtain a sequence S which is the symbolic translation of series
X.

Symbolic sequence S may be considered as a phrase written
in some language. The more variable the observed data, the more
complex the obtained language. Entropy is a way to characterize
the way the phrase S is built, while Zipf analysis refers to the
typical recurrent words.

A. Entropy

One of the most significant tools from the modern theory of
nonlinear dynamics used to analyze time series of biological
origin is related to the notion of information content of a finite
sequences as introduced by Shannon in [11]. The intuitive notion
of information content of a finite word can be stated as “the length

of the shortest message from which it is possible to reconstruct
the original word” and a formal mathematical definition of this
notion has been introduced by Kolmogorov using the notion of
universal Turing machine (see [6]). We will not enter into the
details of the mathematical definition, but simply use the intuitive
notion of information content we stated.

The method we use to study the information content of a finite
sequence is related to compression algorithms. The compression
of a finite sequence reflects the intuitive meaning of its informa-
tion content.

Let σ = (s1s2 . . . st) be a t-long sequence written in the finite
alphabet A. Let At be the set of t-long sequences written using A
and let the space of finite sequences be denoted by A∗ := ∪tAt.

A compression algorithm on a sequence space is any injective
function Z : A∗ → {0, 1}∗, that is a binary coding of the finite
sequences written on A.

The information content of a word σ w.r.t. Z is the binary
length of Z(σ), the compressed version of σ. Hence

I(σ)
.
= Information Content of σ = |Z(σ)|

The notion of information content of a finite string can be
used also to face the problem of giving a notion of randomness.
Namely, we can think a string to be more random as less efficient
is the compression achieved by a compression algorithm. This
leads to the notion of entropy h(σ) of a finite string, defined
as the compression ratio (i.e. the information content per unit
length):

h(σ)
.
= Entropy of σ =

I(σ)

|σ| =
|Z(σ)|

t

It holds that 0 < h(σ) � 1 and moreover the greater the entropy
of a string, the higher its randomness in the sense that it is is
poorly compressible.

Remark 1: When analysing a symbolic string with entropy
tools, it is convenient to consider asymptotic properties, hence
assuming to have an infinite stationary1 sequence. We can make
this assumption to obtain some mathematical results on the
complexity of a string. For an infinite sequence σ̃ = (si)i�1

written on an alphabet of size L, we can define the asymptotic
compression ratio K(σ̃; L)

.
= lim

n→∞h((s1, . . . , sn)). If we are
dealing with symbolic translations of some time series Y being
the (infinite) orbit of a dynamical system then we may consider
partitions of increasing length L, such obtaining an infinite set
of symbolic translations of Y . For each size L, we have σ̃(L)

and obtain K(Y ; L)
.
= K(σ̃(L); L). In this setting, the limit

lim
L→∞

K(Y ; L) is the metric entropy of the dynamical system (see

Ref.[3]).
Remark 2: Even in the case of finite sequence σ, the property

of being stationary allows a proper connection of the entropy
of σ to the above mentioned theory to be established. Since an
experimental time series Y = (y1, . . . , yt+1) is hardly stationary,
a way to make it close to be stationary is to consider the difference
series D = (d1, . . . , dt) where dj

.
= yj+1 − yj and to apply

the symbolic analysis to that D. Again, in the infinite case, the
entropy of Y and D coincide and this motivates the use of D also
in the finite case.

1An infinite sequence Y = (yi)i�1 is stationary if for each k � 1 and for
each k−long finite sequence α = a1 · · · ak the Prob{(yi · · · yi+k−1) = α}
is independent of i.



B. Linguistic analysis

Some time series X may be read as a sequence of measure-
ments governed by some dynamic rules driving the time change
in the measured values. Notwithstanding the entropy measures the
rate of varibility in the series, other crucial hints about the series
may come from statistical analysis of the patterns described by
the series, as words in a language generating the symbolic string
associated to the series. Thus, we performed the so-called Zipf
analysis [12], useful to understand how variable is the distribution
of patterns within a symbol sequence.

Given a finite symbol sequence σ of length t, let us fix a word
size p < t and let us consider the frequency of all words of length
p within σ. Let us order such words according to their decreasing
frequency. This way, each word has a rank r � 1. The Zipf
scaling principle asserts that in natural languages the frequency
of occurrence f(r) of word of rank r is s.t. f(r) ∼ (1/r)ρ where
ρ � 0. In an experimental setting, the value of Zipf coefficient ρ

may be calculated via linear regression on the frequency/rank va-
lues in bilogarithmic scale. A low scaling coefficient is connected
to high variability of words: were the words uniformly distributed,
the scaling coefficient would be zero. Thus, the more variable the
observed sequences are, the more complex the obtained language
is and the more variable the measurements are. The most famous
example of Zipf’s law is the frequency of English words. Anyway
this kind of rank-ordering statistics of extreme events, originally
created to study natural and artificial languages, had interesting
applications in a great variety of domains, from biology [7], to
computer science [4], to signal processing [5] and to meteorology
[9] (this list may not be exhaustive).

III. MULTI-DIMENSIONAL TIME SERIES

In this section we show how to extend the above mentioned
tools to multi-dimensional time series. We may assume that the
one-dimensional series have comparable length. We do not require
them to have the same length t, but we require that each length
t1, . . . , tN are of the same order t and all the measurements refer
to the same time lag of observation of the phenomenon. This
discrepancy may be overcome by adding null values when there
is lack of measurements, when this does not affect the sense of
the analysis.

Given an alphabet size L, we associate to each multi-
dimensional time series X = (X1, . . . XN )T a multi-dimensional
symbolic sequence S

.
= (S1, . . . SN )T where Sj is the symbolic

sequence associated to the one-dimensional sequence Xj .

A. Global Entropy

Given X and its symbolic translation S = (S1, . . . SN )T , we can
compute the entropy of each component and obtain the entropy
vector:

H(X) =

0
B@

h(S1)
...

h(SN )

1
CA (1)

Natural measures that may be taken under consideration are the
Euclidean norm and the �1 norm of H(X):

||H(X)|| =

vuut NX
i=1

[h(Si)]2 (2)

Fig. 1. Symplex ∆3 in R
2 and influence areas of vertices A,B,C w.r.t. centroid

G.

||H(X)||1 =
NX

i=1

h(Si) (3)

They quantify the extent of global entropy over all the compo-
nents describing the process X.

Notice that the vector H(X) yields a simple way to characterize
the behavior of the series X and it is not uncommon to see
that symbolic series associated to experimental measurements
with different magnitude may have almost the same entropy (for
instance, take a series and create a new one just doubling the
values of the first one, then in the symbolic model they are the
same sequence).

Assume that the entropy vector is not null. For what concerns
the role of single components, we may investigate what their
relative influence is by means of the following symplex analysis.
Choose some component, say the N-th.

We consider the (N − 1)-dimensional symplex

∆N =

8><
>:

0
B@

y1

...
yN−1

1
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N−1X
i=1

yi � 1 and yi � 0 ∀i

9>=
>;

and the natural projection P of the vector H(X) onto ∆N , i.e.

P = P (X) =

0
BBB@

h(S1)
||H(X)||1

...
h(SN−1)
||H(X)||1

1
CCCA

The position of the point P w.r.t. the vertices and the centroid
G of ∆N is a static feature of the process represented by
X, showing which one of the N components is leading the
dynamics. Indeed, the vertex VN = (0, . . . , 0)T is associated to
the N-th component, whereas the vertices V1 = (1, 0, . . . , 0)T ,
V2(0, 1, 0, . . . , 0)T ,. . . VN−1 = (0, 0, . . . , 1)T correspond to the
components labeled by 1, 2, . . . , N − 1.

For each vertex Vj , consider the hyperplanes connecting
N − 2 other vertices to the centroid and not containing Vj .
They partition the symplex ∆N into N regions, representing the
influence areas of each vertex (see an example for ∆3 in Fig.1).
Therefore, if the influence area relative to point P is that of vertex
Vd, then the dynamics of X is driven by the d-th component
(called leading component), in the sense that the d-th entropy
coefficient is prevailing on the others and the dynamic of that



component is to be taken under observation more than the others’.
We denote by L(X) the leading component corresponding to the
influence area of multi-dimensional time series X.

If we have a collection B = {X
1, . . . , Xb} of N-dimensional

time series, we can apply the above procedure for every X
j

obtaining a collection of b points {P1, . . . , P b} ⊂ ∆N . This
way, one can see first the position w.r.t. the centroid G, second
the neighborhood relations, showing influence areas and common
behaviors. For an explicit example we refer to Section IV.

B. Entropy walk

A dynamic feature showing the trend of entropy production of
series X may be extracted by a mobile window entropy analysis,
as follows.

Consider some multi-dimensional series X = (X1, . . . , XN )T .
Let t be the length of each component time series. Fix k be some
positive integer. From each series Sj (j = 1, . . . , N) within S, the
symbolic model of X, we may extract k subseries W1, . . . , Wk in
many ways: for instance, overlapping windows, non-overlapping
windows, random starting points (fixed once for each collection
B of multi-dimensional time series), etc. We only require all the
k subseries have the same length; this implies that the choice of
k should keep the length of the subseries sufficiently long for the
entropy analysis to be meaningful. For each window we calculate
the entropy. We repeat the same for every series in X. We obtain
a matrix of entropy vectors in [0, 1]N×k, the moving vector of X

denoted by M(X) whose rows are:

M1
.
=

“
h(W1,1), . . . , h(W1,k)

”

. . . . . . . . .

MN
.
=

“
h(WN,1), . . . , h(WN,k)

”

If we are considering a collection B of multi-dimensional time
series, we shall deal with a collection of moving entropy vectors:

M(B) =
“
M(X1), . . . ,M(Xb)

”

Again for each index j = 1, . . . , b, we may associate to series
X

j a sequence of points in the symplex ∆N :

Wj = (P j
1 , . . . , P j

k ) (4)

where P j
1 is the point in the symplex corresponding to the entropy

vector (h(W j
1,1), . . . , h(W j

1,N ))T , the one relative to the first
window, etc.

Please notice that if − in the static context− to each multi-
dimensional series in the collection B just one point is associated,
in this dynamic context we define an entropy walk relative
to each multi-dimensional time series. We study each walk in
{W1, . . . ,Wb} to characterize the trend of original series in
collection B and to show how to use it to predict future steps
of the series as well as to decide whether some new subseries is
in accordance with past ones.

The entropy value is a marker of the dynamic change in
the time series. The higher is the entropy, the higher is the
variability of the series, therefore the more “impredictable” is the
future of the series. The entropy walk is a way to look how the
entropy changes with time within the sequence. Were the points
colinear, the entropy change is balanced and the dynamic change
is homogeneous; were the points more scattered, the dynamic
rules changed and the process may need a finer observation.

We shall define a trend from which many predictive techniques
on the dynamic change of the multi-dimensional time series may
be derived.

We calculate R, the linear regression of the points defining the
entropy walk W in ∆N . The trend of the walk is the pair

T (W) = (A, α) (5)

where A is the leading component of the last window and α is
the direction of line R when oriented following the chronological
order of the points. The trend itself provides a predictive scenery
for the dynamic change in the series.

As a second step, the trend is useful to say whether some new
point is in accordance to the past ones. Assume we have a point
Q ∈ ∆N , say the point associated to some (k + 1)-th window.
We aim at understanding whether it comes from a dynamics in
common with the one driving the past walk, that is we aim at
verifying how much dynamics the (k +1)-th window shares with
previous k windows.

There are many different ways to do it; we decided to apply
the following criterium:

If the distance of Q from the linear regression is not greater
than the mean distance of points within the entropy walk, then we
say that the point Q is within the walk. Otherwise, it is outside
the walk.

Let (A, α) be the trend of the entropy walk and assume Q is
outside the walk. We may apply a second order analysis and
use the influence area of the new point as lighter marker of
dynamic change: were it different from A, then the process under
examination is undergoing an abrupt change. In the case the
influence area of Q coincide with the past one, then we may
say that the change is still slightly acceptable.

C. Global Linguistic analysis

For what concerns multi-dimensional time series, we recall that
they are assumed to be short, therefore the statistics is quite
poor. Nevertheless, what may be distinctive is the use they do
of the distinct words. Moreover, we define a marker of pattern
differentiation as follows. Fix once and for all a pattern size p

which is sufficiently long w.r.t. the order of the series length
t. Given a multi-dimensional series X = (X1, . . . , XN ), we
calculate the Zipf coefficient for each component (ρ1, . . . , ρN )

and denote by D the diversification:

D(X) = 1 +
1

N

NX
j=1

ρj (6)

This way, the mean Zipf coefficient gives an estimate of the
degree of differentiation in the use of most frequent patterns of
length p within series in X. For values of D close to 1, there is a
high diversification of patterns that tend to be used indifferently
since their distribution is almost uniform. For values of D close to
0, the language of the p-patterns is rich and there exist some rules
giving more importance to some patterns despite others, therefore
the distribution of words is no longer balanced. If D < 0 then
the words are extremely unbalanced and typically there are a few
words used recurring very frequently while most of the words are
rarely used.



Fig. 2. Influence areas for the complete multi-dimensional series of 42 brands on the symplex ∆3 in R
2. Vertex A is relative to radio component, B is

relative to magazine component and C is relative to newspaper component.

Fig. 3. Symplex ∆3 in R
2: entropy walk and trend. Example for three brands b1 (plotted with �), b2 (plotted with ©) and b3 (plotted with �) (see text).



D. Markers

On conclusion, to each multi-dimensional time series X, we
may associate the following markers:

• leading component of the complete series L(X) as introuced
in section III-A

• trend T (W) w.r.t. k−window analysis, following (5)
• diversification D(X), as defined in (6)

As already discussed, these markers should be the starting point
of further analysis such as classification or clustering of large
database of multi-dimensional time series, prediction of future
behavior and attribution of new data. Finally, let us remark that to
the above markers other direct measures may be added, depending
on what process we are dealing with. An example is given in the
following application section.

IV. EXPERIMENTAL APPLICATION

We applied our method in the framework of a collaboration
of Dept. of Applied Mathematics in Pisa with A. Manzoni & C.
S.p.A. in Milan. The experimental application we are showing here
is part of a joint work with Massimo Colombo, Guido Repaci and
Giovanni Sanfilippo.

We considered 3-dimensional time series related to 42 objects.
The data come from Nielsen Media Research data base of weekly
investments in advertisement on three Italian media from 1996 to
2006, therefore each object is a brand in the market and each
series has 585 non-negative data. The components are the money
spent on radio, on magazines and on newspapers, respectively.

The original series were pre-processed in order to make them
more stationary; consequently we worked on the difference series,
as explained in Remark 2. We applied a symbolic filter with
alphabet size L = 4 (from abrupt decrement to abrupt increment
of investments).

The entropy was calculated using the Lempel-Ziv based al-
gorithm CASToRe [2]. We recall that any optimal compression
algorithm (i.e. on almost every infinite sequences the entropy of
the source is reached) may be used.

The series are 3-dimensional, therefore the symplex we use is
∆3 ⊂ R

2 where the vertices are A (relative to radio component),
B (relative to magazine component) and C (relative to newspaper
component).

The window analysis was exploited over the period 1996-2005
using 4 windows approximately 7-years long (350 measurements)
and overlapping for 6 years (first year out, new year in). The
measurements concerning year 2006 were used to build another
window Q on which the trend was tested as predictive measure
(see subsection III).

On Fig. 2, the influence areas of 42 brands are shown. They
are almost all close to the barycentre G. Nevertheless, their global
positioning still suggests that some of them tend to be driven by
one specific component.

Three brands b1, b2 and b3 have been considered to exemplify
the trend analysis. Fig. 3 shows the entropy walks (solid lines) and
the trends (arrows) for brands b1 (plotted with �), b2 (plotted with
©) and b3 (plotted with 	). Three new points Q1 = �, Q2 =

© and Q3 = 	 represent the position in ∆3 of the subseries
that have been tested on whether they are within or outside the
respective walk. We deduce that Q1 is outside of brand b1 entropy
walk and the leading component also changed, while Q2 is again
outside b2 walk, but the leading component remains the same.
Finally, Q3 is within the walk.
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Fig. 4. Diversification coefficient for 42 brands.
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Fig. 5. X axis: increasing grand total investments (normalized to [0, 1])
for the collection of 42 brands. Y Axis: the Euclidean norm of their entropy
vectors.

As a result on the global collection of 42 brands, we obtained
62% within-walk predictions (26 brands), while of the remaining
16 outside-walk brands, only 2 changed leading component.

Other interesting properties of the multi-dimensional series
come from the linguistic analysis.

First, some technical details. We exploited Zipf analyis on
the symbolic series built on an alphabet with 4 symbols starting
from the difference series (we used symbol ′a′ in case of large
decrement; ′b′: slight decrement; ′c′: slight increment; ′d′: huge
increment).

We analyzed the frequency of words of length p = 12 modulo
permutations of the four symbols. That is, any two words of length
p = 12 are equivalent if they have the same content in symbols
a, b, c and d. They were identified by the 4-uple (na, nb, nc, nd).
This choice is motivated by the specific context where the multi-
dimensional series come from: such words of length 12 represent
what type of investments occurred over three months, without
paying attention to their exact chronological order. This way, it is
also easier to get some statistics, since without equivalence there
were 412 words to look at, while in this case the words are just
2148. Anyway, due to the short length of the series, the number
of 12-words used by the 42 brands range from 2 to around 60.



We found that many words were rare, that is, they occurred with
frequency lower than 1%; therefore, we decided to calculate Zipf
coefficient only for non-rare words. Of course, a finer analysis
should also include which specific words have been used more
frequently, but this is not what this example is devoted to.

As a result on the global collection of 42 brands, we selected
three categories of diversification (as in section III-C). The brands
are said to be highly diversified if 0.8 < D � 1 (they are 64%

of the total). If 0 < D � 0.8, then the brands are said to be rich
(14%). When D � 0, they are totally unbalanced (9%).

Since we are dealing with money investments, we also take
under consideration the marker relative to the grand total of
money invested over the period 1996-2006. Fig. 5 compares the
grand total to the Euclidean norm of the entropy vector for the
42 brands in the collection. There is a neat tendency to have
higher entropy for huge investments. Notwithstanding, the values
of ||H || may be wide spread with fixed grand total, especially for
intermediate investments.

V. FINAL DISCUSSION

In this paper we show an analysis of multi-dimensional sparse
time series via entropy and statistical linguistic techniques.

Given some phenomenon on which N different measures have
been exploited over some time lag, we obtain an N−dimensional
time series X = (X1, . . . , XN )T . We have illustrated a way to
associate to X the following markers, which encode the behavior
of the series.

• leading component of the complete series L(X)

It refers to the one-dimensional series XL in X whose dynamic is
driving the evolution of the overall N-dimensional phenomenon.

• trend T (X) = (A, α) w.r.t. k−window analysis
It quantifies how much the dynamics has changed in time, in
terms of leading component and direction of entropy change.

• diversification D(X)

It formalizes the differentiation in the use of recurrent patterns.
These markers have to be considered as the starting point

of further analysis such as classification or clustering of large
database of multi-dimensional time series, prediction of future
behavior and attribution of new data.

We also present an application to economic data. We deal with
measurements of money investments of some business companies
in advertising market for different media sources and we point out
how to characterize the behavior of each company with respect
to the different media, showing a way to label their features.
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