On Property N_{p} for algebraic curves

Edoardo Ballico, Marco Franciosi

Abstract

Let $C=C_{1} \cup \ldots \cup C_{s}$ be a reduced, but reducible, curve and let \mathcal{L} in $\operatorname{Pic}(C)$ be very ample. Here we give conditions on $\operatorname{deg}\left(\mathcal{L}_{\mid C_{i}}\right)$ insuring that the embedding of C induced by \mathcal{L} satisfies Property N_{p}.

We also study the minimal free resolution for general projections of smooth curves.

Introduction

Let $X \subset \mathbb{P}^{N}$ be a projective scheme and let $\mathcal{I}=\mathcal{I}_{X / \mathbb{P}^{n}}$ denote the homogeneous ideal of X. We recall the definition of Property N_{p} as introduced in [G].

Let E. be a minimal graded free resolution of \mathcal{I} over the homogeneous coordinate ring S of \mathbb{P}^{N} :

$$
0 \rightarrow E_{N+1} \rightarrow E_{N} \rightarrow \ldots \rightarrow E_{1} \rightarrow \mathcal{I} \rightarrow 0
$$

where $E_{i}=\oplus S\left(-a_{i j}\right) . X \subset \mathbb{P}^{N}$ satisfies Property N_{p} if

$$
E_{i}=\oplus S(-i-1) \quad \text { for } \quad 1 \leq i \leq p
$$

Property N_{0} holds if and only if X is projectively Cohen-Macaulay. Property N_{1} holds if Property N_{0} does and the ideal \mathcal{I} is generated by quadrics.

If \mathcal{L} is an invertible sheaf on a projective scheme X^{\prime}, we will say that \mathcal{L} satisfies Property N_{p} if \mathcal{L} is very ample and $\varphi_{|\mathcal{L}|}\left(X^{\prime}\right):=X \subset \mathbb{P}^{N}$ satisfies Property N_{p}.

For a smooth projective curve of genus g in the papers [G] and [G-L] it is proved that an invertible sheaf \mathcal{L} of degree $\operatorname{deg} \mathcal{L} \geq 2 g+1+p$ satisfies Property N_{p}.

In section 1 we study the case where C is a reduced curves, under some numerical conditions. Our first result is the following (for the definitions we refer to the next section)

Theorem A Let C be a connected reduced curve, and let \mathcal{L} be an invertible sheaf on C.

Assume there exists a decomposition $C=C_{1} \cup \ldots \cup C_{s}\left(C_{i}\right.$ irreducible components of arithmetic genus $g\left(C_{i}\right)$) such that, if we set $Y_{1}=C_{1}$ and for $i=2, \ldots, s$ $Y_{i}:=Y_{i-1} \cup C_{i}$ then
Y_{i} is connected; $\operatorname{deg} \mathcal{L}_{\mid Y_{i}} \geq 2 g\left(Y_{i}\right)+1+p$
$\operatorname{deg} \mathcal{L}_{\mid C_{i}}=d_{i} \geq \max \left\{2 g\left(C_{i}\right)+Y_{i-1} . C_{i}+p, 2 g\left(C_{i}\right)+C_{i} .\left(C-C_{i}\right)-1\right\}$
where for $i=1$ we let $Y_{i-1} . C_{i}=1$ by definition
Then \mathcal{L} satisfies Property N_{p}.
By theorem 1.1 of [CFHR] the linear system $|\mathcal{L}|$ is very ample and defines an embedding $\varphi|\mathcal{L}|: C \hookrightarrow \mathbb{P}^{N}$. Furthermore from theorem A of $[\mathrm{F}] \mathcal{L}$ is normally generated, that is, $\varphi|\mathcal{L}|(C) \subset \mathbb{P}^{N}$ is projectively Cohen-Macaulay.

Thus, cf. remark 1.2, to prove Property N_{p} for $\varphi_{|\mathcal{L}|}(C)$ it will suffices to consider a generic hyperplane section.

Notice that with only the condition

$$
\operatorname{deg} \mathcal{L}_{\mid C} \geq 2 g(C)+1+p
$$

but without any further assumption on the irreducible components the theorem is no longer true. An easy example is the case where $C=C_{1} \cup C_{2}$, with C_{1} an irreducible curve of genus 1 and C_{2} an irreducible curve of genus 0 , such that their intersection $C_{1} \cdot C_{2}=1$. If \mathcal{L} is an invertible sheaf such that $\operatorname{deg} \mathcal{L}_{\mid C_{1}}=3$, $\operatorname{deg} \mathcal{L}_{\mid C_{2}}=1$, then \mathcal{L} is very ample and $\varphi_{|\mathcal{L}|}(C) \subset \mathbb{P}^{3}$ consists of a cubic plane curve plus a line (not contained in the plane of the curve) which intersects the cubic in exactly one point. Then it is easy to see that $\varphi_{|\mathcal{L}|}(C)$ satisfies Property N_{0} (cf. also [F]), but obviously $\varphi|\mathcal{L}|(C)$ is not cut out by quadrics!

In section 2 we introduce the notion of Weak Property N_{p} for projective scheme of dimension ≤ 1 and we prove a theorem on general projections of smooth curves.

Definition. Let $X \subset \mathbb{P}^{n}$ be a projective scheme of dimension ≤ 1 (we allow X to be not equidimensional or with embedded points.)

We say that X satisfies the Weak Property N_{0} if for all $t \geq 2$ the restriction map

$$
\rho_{t}: H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(t)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(t)\right)
$$

is surjective.
We say that X satisfies the Weak Property N_{1} if it satisfies the Weak Property N_{0} and the homogeneous ideal of X is generated by quadrics. For $2 \leq p \leq n-2$ we define inductively that X satisfies the Weak Property N_{p} if it satisfies the Weak Property N_{p-1} and the $p-$ sygyzies of the homogeneous ideal of X are generated by linear forms.

Our result is the following
Theorem B Fix integers g, d, p, n with $3 \leq n<d-g$ and assume $d \geq 2 g+$ $1+p+3(d-g-n)$.

Let C be a smooth connected projective curve of genus g and $\mathcal{L} \in \operatorname{Pic}^{d}(C)$. Let $\varphi_{|\mathcal{L}|}: C \hookrightarrow \mathbb{P}\left(H^{0}(C, \mathcal{L})^{\vee}\right)$ be the complete embedding associated to $|\mathcal{L}|$ and let $X \subset \mathbb{P}^{n}$ be a general projection of $\varphi|\mathcal{L}|(C)$. Then X satisfies the Weak Property N_{p}.

The proof of the above theorem will follow by a degeneration argument and the study of the Weak Property N_{p} for a curve with embedded points.

The method we use to prove both the theorems is based on the analysis of the 0-dimensional scheme obtained taking a sufficiently general hyperplane section.

For this case the following remark turns out to be fundamental.
Remark C Fix integers p, r, d with $0 \leq p \leq r-2$ and $d \leq 2 r+1-p$.
Let $Z \subset \mathbb{P}^{r}$ be a 0-dimensional scheme of length d for which there exists a partition $Z=\Sigma \cup \Gamma$ into disjoint subschemes with the following properties:
(a) length $(\Sigma)=r+1, \Sigma$ is reduced and Σ spans \mathbb{P}^{r};
(b) length $(\Gamma) \leq r-p, \operatorname{dim}(\langle\Gamma\rangle)=\operatorname{length}(\Gamma)-1$ (i.e., Γ is in linearly general position) and for any $\Sigma^{\prime} \subset \Sigma$ with $\operatorname{card}\left(\Sigma^{\prime}\right)=p$ and every $Q \in \Sigma \backslash \Sigma^{\prime}$ there exists a hyperplane H of \mathbb{P}^{r} with $\Sigma^{\prime} \cup \Gamma \subset H$ and $Q \notin H$.
Then the method of $[G-L]$, theorem 2.1, gives that Z satisfies the Weak Property N_{p}.

Notation

For all the paper we will assume C to be a reduced curve (a pure projective scheme of pure dimension 1 such that for every point $P \in C$ the local ring $\mathcal{O}_{C, P}$ has no nilpotent elements) over an algebraically closed field \mathbb{K} of characteristic 0 .

For the positive characteristic case see Remark 1.4.
\mathcal{L} An invertible sheaf on C.
$|\mathcal{L}|$ Linear system of divisors of sections of $H^{0}(C, \mathcal{L})$.
$\operatorname{deg} \mathcal{L}_{\mid C}$ The degree of \mathcal{L} on C; it can be defined for every torsion free sheaf of rank 1 by

$$
\operatorname{deg} \mathcal{L}_{\mid C}=\chi(\mathcal{L})-\chi\left(\mathcal{O}_{C}\right)
$$

$g(C)$ The arithmetic genus of $C, g(C)=1-\chi\left(\mathcal{O}_{C}\right)$.
If $C=A \cup B$ scheme theoretically with $\operatorname{dim} A \cap B=0$ and $x \in A \cap B$, we can define (cf. [Ca], p. 54)

$$
(A . B)_{x}=\operatorname{length} \mathcal{O}_{A \cap B, x} ; \quad A . B=\sum_{x \in A \cap B} \operatorname{length} \mathcal{O}_{A \cap B, x}
$$

Notice that if $C=A \cup B$, with $\operatorname{dim} A \cap B=0$, then we recover the classical formula

$$
g(C)=g(A)+g(B)+A \cdot B-1
$$

Sometimes, with abuse of notation, we will denote the curve B as $C-A$.

1 Property N_{p} on reduced curves

Let C, \mathcal{L} be as in theorem A. Then we have $\operatorname{deg} \mathcal{L}_{\mid B} \geq 2 g(B)+1$ for all subcurve B of C. Thus from theorem 1.1 of [CFHR] the linear system $|\mathcal{L}|$ is very ample and it defines an embedding $\varphi|\mathcal{L}|: C \hookrightarrow \mathbb{P}^{N}$.

Let us consider the sequence of theorem A

$$
C_{1}=Y_{1} \subset Y_{2} \subset \ldots \subset Y_{s}=C
$$

where the Y_{i} 's are still connected. The following restriction lemma holds
Lemma 1.1 Let C and \mathcal{L} be as in theorem A.
Let $C_{1}=Y_{1} \subset Y_{2} \subset \ldots \subset Y_{s}=C$ be the sequence of theorem A. Then the following restriction maps are onto

$$
\begin{array}{lll}
\text { (a) } & H^{0}\left(Y_{i+1}, \mathcal{L}\right) \rightarrow H^{0}\left(Y_{i}, \mathcal{L}\right) & \forall i \in\{1, \ldots, s-1\} \\
\text { (b) } & H^{0}\left(Y_{i+1}, \mathcal{L}\right) \rightarrow H^{0}\left(C_{i+1}, \mathcal{L}\right) & \forall i \in\{1, \ldots, s-1\}
\end{array}
$$

Proof. Cosidering the exact sequences of coherent sheaves

$$
\begin{gathered}
0 \rightarrow \mathcal{O}_{C_{i+1}}(\mathcal{L}) \otimes \mathcal{I}_{Y_{i}} \rightarrow \mathcal{O}_{C_{i+1}}(\mathcal{L}) \rightarrow \mathcal{O}_{Y_{i}}(\mathcal{L}) \rightarrow 0 \\
0 \rightarrow \mathcal{O}_{Y_{i}}(\mathcal{L}) \otimes \mathcal{I}_{C_{i+1}} \rightarrow \mathcal{O}_{C_{i+1}}(\mathcal{L}) \rightarrow \mathcal{O}_{C_{i+1}}(\mathcal{L}) \rightarrow 0
\end{gathered}
$$

the lemma will follow if

$$
\begin{array}{lll}
\left(a^{\prime}\right) & H^{1}\left(C_{i+1}, \mathcal{O}_{C_{i+1}}(\mathcal{L}) \otimes \mathcal{I}_{Y_{i}}\right)=0 & \forall i \in\{1, \ldots, s-1\} \\
\left(b^{\prime}\right) & H^{1}\left(Y_{i}, \mathcal{O}_{Y_{i}}(\mathcal{L}) \otimes \mathcal{I}_{C_{i+1}}=0\right. & \forall i \in\{1, \ldots, s-1\}
\end{array}
$$

(a') We apply the foundamental argument of [CFHR], thm. 1.1 to C_{i+1}.
Indeed, C_{i+1} is reduced and irreducible and by our numerical hypothesis we have $\operatorname{deg} \mathcal{L}_{\mid C_{i+1}} \geq 2 g\left(C_{i+1}\right)+Y_{i} \cdot C_{i+1}-1$.

Furthermore $Y_{i} \cap C_{i+1}$ is a 0-dimensional subscheme of C_{i+1} of length $Y_{i} . C_{i+1}$. Call it ζ.

We have $\mathcal{O}_{C_{i+1}}(\mathcal{L}) \otimes \mathcal{I}_{Y_{i}} \cong \mathcal{O}_{C_{i+1}}(\mathcal{L}) \otimes \mathcal{I}_{\zeta}$ and

$$
H^{1}\left(C_{i+1}, \mathcal{O}_{Y_{i+1}}(\mathcal{L}) \otimes \mathcal{I}_{Y_{i}}\right)=H^{1}\left(C_{i+1}, \mathcal{O}_{Y_{i+1}}(\mathcal{L}) \otimes \mathcal{I}_{\zeta}\right) \underline{\mathrm{d}} \operatorname{Hom}\left(\mathcal{L} \otimes \mathcal{I}_{\zeta}, \omega_{C_{i+1}}\right)
$$

where $-\frac{d}{m e a n s ~ d u a l i t y ~ o f ~ v e c t o r ~ s p a c e s ~ a n d ~} \omega_{C_{i+1}}$ is the dualizing sheaf. Now thm. 1.1 of [CFHR] yields $\operatorname{Hom}\left(\mathcal{L} \otimes \mathcal{I}_{\zeta}, \omega_{C_{i+1}}\right)=0$ since $\operatorname{deg} \mathcal{L}_{\mid C_{i+1}} \geq 2 g\left(C_{i+1}\right)-$ $1+$ length (ζ), which concludes the proof.
(b') Let $Y_{i+1}:=Y_{i} \cup C_{i+1}$. Then $\mathcal{O}_{Y_{i}} \otimes \mathcal{I}_{C_{i+1}}$ defines on Y_{i} a 0-dimensional scheme of length $Y_{i} \cdot C_{i+1}$. Call it ξ.

Since

$$
\operatorname{deg} \mathcal{L}_{\mid C_{j}} \geq 2 g\left(C_{j}\right)+C_{j} .\left(C-C_{j}\right)-1 \quad \text { for all } C_{j}
$$

by the genus formula for a reduced curve our numerical hypotheses imply

$$
\operatorname{deg} \mathcal{L}_{\mid B} \geq 2 g(B)+B \cdot C_{i+1}-1 \text { for all } B \subseteq Y_{i}
$$

which is equivalent to

$$
\operatorname{deg} \mathcal{L}_{\mid B} \geq 2 g(B)-1+\text { length }(\xi \cap B) \text { for all } B \subseteq Y_{i}
$$

As in (i) we can apply thm. 1.1 of [CFHR] to the 0 -dimensional scheme ξ_{i} and the invertible sheaf $\mathcal{L}_{\mid Y_{i}}$ to get $H^{1}\left(Y_{i}, \mathcal{L} \otimes \mathcal{I}_{\xi}\right)=H^{1}\left(Y_{i}, \mathcal{L} \otimes \mathcal{I}_{C_{i+1}}\right)=0$.

Remark 1.2 By an induction argument using the above lemma and the classical results on normal generation (cf. e.g. [G]), or applying theorem A of $[F]$, we see that \mathcal{L} is normally generated, that is, $\varphi_{|\mathcal{L}|}(C) \subset \mathbb{P}^{N}$ is projectively Cohen-Macaulay.

Thus, as shown in $[\mathrm{G}-\mathrm{L}]$ prop. 3.2, if $s_{0} \in|\mathcal{L}|$ is a generic hyperplane section and $Z:=\varphi_{|\mathcal{L}|}(C) \cap\left\{s_{0}=0\right\}$, a minimal free resolution of $\mathcal{I}_{\varphi_{|C|}(C) / \mathbb{P}^{N}}$ restricts to one of $\mathcal{I}_{Z / \mathbb{P}^{N-1}}$, which implies in particular that $\varphi_{|\mathcal{L}|}(C)$ satisfies Property N_{p} if Z satisfies the Weak property N_{p}.

Therefore theorem A will follow if we prove that Property N_{p} holds for a generic section of $|\mathcal{L}|$.

For simplicity, from now on, we will identify C with $\varphi_{|\mathcal{L}|}(C) \subset \mathbb{P}^{N}$ and, similarly, its subcurves with their images. Note that each $C_{i} \subset W_{i}, W_{i}$ linear subspace of dimension $N_{i}:=H^{0}\left(C_{i}, \mathcal{L}\right)-1$, satisfies Property N_{p} relative to W_{i} and furthermore a general section of $\left|\mathcal{L}_{\mid C_{i}}\right|$ cuts on $C_{i} d_{i}$ points for which the uniform position principle holds (relative to W_{i}).

Proposition 1.3 Let \mathcal{L} be as in theorem A and let $C \subset \mathbb{P}^{N}$ be the image of the embedding $\varphi_{|\mathcal{L}|}$.

Let $s_{0} \in|\mathcal{L}|$ be a generic hyperplane section and $H:=\left\{s_{0}=0\right\} \cong \mathbb{P}^{N-1}$ the corresponding hyperplane.

Then $Z:=C \cap H \subset H$ satisfies the Weak Property N_{p}.
Proof. Let $s_{0} \in|\mathcal{L}|$ be a generic hyperplane section, $H:=\left\{s_{0}=0\right\} \cong \mathbb{P}^{N-1}$ the corresponding hyperplane and $Z:=C \cap H \subset H \cong \mathbb{P}^{N-1}$.

We want to apply remark, finding a decomposition $Z=\Sigma \cup \Gamma$ such that

$$
\operatorname{deg}(\Sigma)=N \text { and } \Sigma \operatorname{spans} H \cong \mathbb{P}^{N-1}
$$

$\operatorname{deg}(\Gamma) \leq N-p$ and for all $Q \in \Sigma$, for all $\Sigma^{\prime} \subset \Sigma \backslash\{Q\}$ of degree p there exists an hyperplane H^{\prime} in \mathbb{P}^{N} such that $Q \notin H^{\prime}$, but $\Sigma^{\prime} \cup \Gamma \subset H^{\prime}$.

Related to the sequence $C_{1}=Y_{1} \subset Y_{2} \subset \ldots \subset Y_{s}=C$ of theorem A we have a sequence of linear subspaces $V_{1} \subset V_{2} \subset \ldots \subset V_{s}=\mathbb{P}^{N}$ where $\forall i=1, \ldots, s$ $Y_{i} \subset V_{i} \cong H^{0}\left(Y_{i}, \mathcal{L}\right)$.

We construct $\Sigma \subset Z$, inductively, in the following way:

- we start from $\Sigma_{1}:=\Sigma_{\mid C_{1}}$ on C_{1} of degree $\operatorname{deg} \Sigma_{1}=h^{0}\left(C_{1}, \mathcal{L}\right)$ such that the linear span $\left\langle\Sigma_{1}\right\rangle=H \cap V_{1}$ and the points of Σ_{1} are in linear general position;
- by induction we may assume $\operatorname{deg} \Sigma_{\mid Y_{i}}=h^{0}\left(Y_{i}, \mathcal{L}\right)$ and that $\Sigma_{\mid Y_{i}}$ spans $V_{i} \cap H$; on C_{i+1} we let $\Sigma_{i+1}:=\Sigma_{\mid C_{i+1}}$ of degree $=h^{0}\left(C_{i+1}, \mathcal{L} \otimes \mathcal{I}_{Y_{i}}\right)$ so that $\left\langle\Sigma_{i+1} \cup \Sigma_{\mid Y_{i}}\right\rangle=V_{i+1}$.
Indeed, by lemma 1.1 we have $=h^{1}\left(C_{i+1}, \mathcal{L} \otimes \mathcal{I}_{Y_{i}}\right)=0$, which from one hand means that $Y_{i} \cap C_{i+1}$ imposes independent conditions to the system $\left|\mathcal{L}_{\mid C_{i+1}}\right|$ and from the other implies the exactness of the following sequence

$$
0 \rightarrow H^{0}\left(C_{i+1}, \mathcal{O}_{C_{i+1}}(\mathcal{L}) \otimes \mathcal{I}_{Y_{i}}\right) \rightarrow H^{0}\left(Y_{i+1}, \mathcal{O}_{Y_{i+1}}(\mathcal{L})\right) \rightarrow H^{0}\left(Y_{i}, \mathcal{O}_{Y_{i}}(\mathcal{L})\right) \rightarrow 0
$$

Thus we can conclude by induction. Furthermore, since each Y_{i} is connected it is easy to see that for each point $S \in \Sigma$ we have

$$
\mathbb{K} \cong H^{0}\left(C, \mathcal{L} \otimes \mathcal{I}_{\Sigma \backslash\{S\}}\right) \hookrightarrow H^{0}(C, \mathcal{L}) \rightarrow H^{0}(\Sigma \backslash\{S\}, \mathcal{L}) \cong \mathcal{O}_{\Sigma \backslash\{S\}}
$$

that is, the points of Σ are in linear general position and $\langle\Sigma\rangle=H \cong \mathbb{P}^{N-1}$.
Let $\Gamma=Z \backslash \Sigma$ and $\Gamma_{i}:=\Gamma \cap C_{i}$.
Since $\operatorname{deg} \mathcal{L}_{\mid C} \geq 2 g(C)+1+p$ and $\operatorname{deg} \Sigma=N=h^{0}(C, \mathcal{L})$ we have $\operatorname{deg} \Gamma \leq$ $N-p$.

It remains to prove that for all $Q \in \Sigma$ and for all $\Sigma^{\prime} \subset \Sigma \backslash\{Q\}$ of degree p there exists an hyperplane H^{\prime} in \mathbb{P}^{N} such that $Q \notin H^{\prime}$, but $\Sigma^{\prime} \cup \Gamma \subset H^{\prime}$.

We will prove it by an induction argument, making use of our numerical conditions.

For $Y_{1}=C_{1}$ the proposition follows by the standard arguments of [G-L] p. 309.

For Y_{i+1} let us consider the decomposition $Y_{i+1}=Y_{i} \cup C_{i+1}$. We recall that the restriction maps $H^{0}\left(Y_{i+1}, \mathcal{L}\right) \rightarrow H^{0}\left(C_{i}, \mathcal{L}\right), H^{0}\left(Y_{i+1}, \mathcal{L}\right) \rightarrow H^{0}\left(Y_{i}, \mathcal{L}\right)$ are onto.

If $Q \in Y_{i}$, by induction hypothesis, for all $\Sigma^{\prime} \cap Y_{i} \subset \Sigma \cap Y_{i}$ of degree $\leq p$ there exists an hyperplane $H_{i}^{\prime} \subset\left\langle Y_{i}\right\rangle$ such that $\Sigma^{\prime} \cap Y_{i} \subset H_{i}^{\prime}$ but $Q \notin H_{i}^{\prime}$. Then we simply take H^{\prime} such that $H^{\prime} \cap\left\langle Y_{i}\right\rangle=H_{i}^{\prime}$ and $\left\langle\Sigma_{i+1}\right\rangle \subset H^{\prime}$. Indeed, let $s_{i}^{\prime} \in\left|\mathcal{L}_{\mid Y_{i}}\right|$ be a section such that $s_{i}^{\prime}(Q) \neq 0, s_{i}^{\prime}\left(\Sigma^{\prime} \cap Y_{i}\right)=0$. By our construction of Σ and the surjectivity of the restriction maps then there exists $s^{\prime} \in|\mathcal{L}|$ such that $s^{\prime} \mapsto s_{i}^{\prime}$ and $s^{\prime}\left(\Sigma_{i+1}\right)=0$.

If $Q \in C_{i+1}, \operatorname{deg} \mathcal{L}_{\mid C_{i+1}} \geq 2 g\left(C_{i+1}\right)+Y_{i} \cdot C_{i+1}+p$ implies

$$
\left\{\begin{array}{l}
\operatorname{deg} \Sigma_{i+1}=d_{i+1}-g\left(C_{i+1}\right)-Y_{i} \cdot C_{i+1}+1 \\
\operatorname{deg} \Gamma_{i+1}=g\left(C_{i+1}\right)+Y_{i} \cdot C_{i+1}-1 \leq \operatorname{dim}\left(W_{i+1}\right)-1-p
\end{array}\right.
$$

This means that on C_{i+1} there exists an hyperplane $H_{i+1}^{\prime \prime}$ which contains $\Gamma_{i+1} \cup$ Σ_{i+1}^{\prime} but not Q and then we can proceed exactly as in the above case taking H^{\prime} such that $H^{\prime} \cap\left\langle C_{i+1}\right\rangle=H_{i+1}^{\prime \prime}$ and $\left\langle\Sigma_{1} \cup \ldots \cup \Sigma_{i}\right\rangle \subset H^{\prime}$.

Remark 1.4 The results in $[G-L]$ and $[C F H R]$ are stated and proved in arbitrary characteristic. In the proof of the above proposition we used char $(\mathbb{K})=0$ to ensure that a general hyperplane section of C_{i} (for all i) is in linear general position in its linear span.

Now $\operatorname{deg}\left(\mathcal{L}_{\mid C_{i}}\right) \geq 2 g\left(C_{i}\right)+1+p$. If $p \geq 1$ then the general tangent line to C_{i} has order of contact 2 with C_{i} and indeed this holds for every tangent line at a smooth point of C_{i}; if $p=0$ a general tangent line to C_{i} has order of contact at most 3.

Applying the theory of duality of projective varieties (see e.g. $[H-K]$ for details) we can see that if either $\operatorname{char}(\mathbb{K}) \geq 5$ or $\operatorname{char}(\mathbb{K})=3$ and $p>0$, then each C_{i} is reflexive (cf. [H-K] thm. 3.5) and in particular it is not strange (in the sense of [Ha], IV, §3).

Under these assumptions on char (\mathbb{K}), then C_{i} is not strange in its span, which implies that a general hyperplane section of C_{i} is in linear general position (cf. [Ra], Lemma 1.1 or Cor. 2.2).

2 Weak Property N_{p} for generic projections of curves

In this section we prove theorem B.
The proof will be based on a degeneration argument and on the analysis of the property N_{p} for the degenerated curve ???, which will turn out to be non reduced and with embedded points.

First we introduce the notion of planar fat points
Definition 2.1 Let $Z \subset \mathbb{P}^{r}, r \geq 2$, be a 0 -dimensional scheme with length $(Z)=$ $3, P \in \mathbb{P}^{r}$ and M a plane with $P \in M \subset \mathbb{P}^{r}$. We say that Z is a planar fat point supported by P and contained in M if $Z_{r e d}=\{P\}$ and $Z \subset M$, i.e., if Z is the first infinitesimal neighborhood of P in M.

Proof of Theorem B. Let d be the degree of \mathcal{L} and g be the genus of C, $X \subset \mathbb{P}^{n}$ a generic projection of $\varphi_{|\mathcal{L}|}(C)$.

If $d \leq 2 n-1-p$ then by [G-L], theorem 2.1 a general hyperplane section of X satisfies the property N_{p}, which implies that X satisfies the Weak property N_{p}.

From now on we may assume $d \geq 2 n-p$.
We identify $\mathbb{P}\left(H^{0}(C, \mathcal{L})^{\vee}\right)$ with \mathbb{P}^{d-g}. After this identification the morphism $\varphi_{|\mathcal{L}|}$ depends on the choice of a basis of $H^{0}(C, \mathcal{L})$. If we change the basis, the new curve will differ by an element of $\operatorname{Aut}\left(\mathbb{P}^{d-g}\right)$.

As in [B-E 2] we define $\operatorname{Pr}(\mathcal{L}, d-g)$

$$
\operatorname{Pr}(\mathcal{L}, d-g):=\overline{\left\{f\left(\varphi_{|\mathcal{L}|}(C)\right) \mid f \in \operatorname{Aut}\left(\mathbb{P}^{d-g}\right)\right\}} \subset \operatorname{Hilb}\left(\mathbb{P}^{d-g}\right)
$$

Thus $\operatorname{Pr}(\mathcal{L}, d-g)$ is an irreducible closed subset of $\operatorname{Hilb}\left(\mathbb{P}^{d-g}\right)$ and we will see it with the reduced structure. Hence $\operatorname{Pr}(\mathcal{L}, d-g)$ is a complete variety.
$\operatorname{Pr}(\mathcal{L}, d-g)$ contains the reducible curves T defined as follows:
fix an effective divisor \mathcal{D} on C with $\operatorname{deg}(\mathcal{D})=d-g-n$, say $\mathcal{D}=P_{1}+$ $\ldots+P_{d-g-n} ;$ set $\mathcal{M}:=\mathcal{L}(-\mathcal{D}) ;$ since $\operatorname{deg}(\mathcal{M}) \geq 2 g+1, \mathcal{M}$ is very ample; let $\varphi_{|\mathcal{M}|}: C \hookrightarrow \mathbb{P}^{n} \cong W \subset \mathbb{P}^{d-g}$ be the complete embedding induced by \mathcal{M}; for every integer i with $1 \leq i \leq d-g-n$, let $D_{i} \subset \mathbb{P}^{d-g}$ be a general line which intersects the curve $\varphi_{|\mathcal{M}|}(C)$ in $\varphi_{|\mathcal{M}|}\left(P_{i}\right)$; set $T:=$ $\varphi_{|\mathcal{M}|}(C) \cup D_{1} \cup \ldots \cup D_{d-g-n}$.

Indeed, iterating [B-E 1], Prop. I. 1 and 2.5, (or use [B-E 2], Th. 0 for a full statement) we can see that $T \in \operatorname{Pr}(\mathcal{L}, d-g)$.

Fix P_{1}, \ldots, P_{d-g-n} general points and let \mathcal{M} be as above. From now on we will take $W=\mathbb{P}\left(H^{0}(C, \mathcal{M})^{\vee}\right)$ as our ambient space \mathbb{P}^{n}, so that $(C, \mathcal{M}) \cong$ $(\varphi|\mathcal{M}|(C), \mathcal{O}(1))$.

We define $\operatorname{Pr}(\mathcal{L}, \mathcal{M})$ to be the closure in $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ of the set of all curves obtained from a general projection of a curve in $\operatorname{Pr}(\mathcal{L}, d-g)$. Notice that by the irreducibility of $\operatorname{Pr}(\mathcal{L}, d-g)$ and of the Grassmannian of $(\mathrm{d}-\mathrm{g}-\mathrm{n}-1)$-linear subspaces of $\mathbb{P}^{d-g}, \operatorname{Pr}(\mathcal{L}, \mathcal{M})$ is irreducible.

Thus to prove the theorem it will suffices to show that for a general $B \in$ $\operatorname{Pr}(\mathcal{L}, \mathcal{M})$ the Weak Property N_{p} holds.

To this aim we will apply a degeneration argument to find a curve $A \in$ $\operatorname{Pr}(\mathcal{L}, \mathcal{M})$ with embedded points for which the Weak Property N_{p} holds and then we will simply apply semicontinuity.

Notice that for every curve $A^{\prime} \in \operatorname{Pr}(\mathcal{L}, \mathcal{M})$ (even with embedded points) the curve $\varphi_{|\mathcal{M}|}(C)$ is an irreducible component of $A_{\text {red }}^{\prime}$ and that by semicontinuity $h^{0}\left(A^{\prime}, \mathcal{O}_{A^{\prime}}(1)\right) \geq d+1-g$.

Construction of A.

Let us take $Q_{1}, \ldots, Q_{d-g-n} \in C$ more general points and for every integer i with $1 \leq i \leq d-g-n$ let S_{i} be the tangent line to $\varphi_{|\mathcal{M}|}(C)$ at $\varphi_{|\mathcal{M}|}\left(Q_{i}\right), R_{i}$ be the line of \mathbb{P}^{n} spanned by $\varphi_{|\mathcal{M}|}\left(P_{i}\right)$ and $\varphi_{|\mathcal{M}|}\left(Q_{i}\right)$.

First, we fix an integer i with $1 \leq i \leq d-g-n$ and we consider the points P_{i} and $\left.Q_{i}\right)$.

Since $d \geq 2 g+1+p+3(d-g-n)$, we have for all $\left.i \operatorname{deg}\left(\mathcal{M}-P_{i}-Q_{i}\right)\right) \geq 2 g$ and hence $\mathcal{M}\left(-P_{i}-Q_{i}\right)$ has no base point. Since $n \geq 3$ this means that the line R_{i} of \mathbb{P}^{n} spanned by $\varphi_{|\mathcal{M}|}\left(P_{i}\right)$ and $\varphi_{|\mathcal{M}|}\left(Q_{i}\right)$ intersects $\varphi_{|\mathcal{M}|}(C)$ only at $\left\{\varphi|\mathcal{M}|\left(P_{i}\right), \varphi|\mathcal{M}|\left(Q_{i}\right)\right\}$ and quasi-transversally (i.e. both the curves are smooth at the two points and have distinct tangents).

Fix an integer i and take a flat family of lines $\left\{R_{i}(t)\right\}_{t \in \Delta}(\Delta$ smooth irreducible affine curve) of \mathbb{P}^{n} with $\varphi|\mathcal{M}|\left(P_{i}\right) \in R_{i}(t)$ for every t and $R_{i}(0)=R_{i}$ for some $0 \in \Delta$. Since $\operatorname{Hilb}\left(\mathbb{P}^{n}\right)$ is complete, the flat family $\left\{\varphi_{|\mathcal{M}|}(C) \cup R_{i}(t)\right\}_{t \in \Delta}$ has a flat limit for t going to 0 .

It is easy to check that this flat limit is the union of $\varphi_{|\mathcal{M}|}(C) \cup R_{i}$ and a certain unreduced scheme χ_{i}. We have length $\left(\chi_{i}\right)=3, \chi_{\text {red }}=\varphi|\mathcal{M}|\left(Q_{i}\right)$ and χ_{i} is contained in a 3 -dimensional linear space, V_{i}, containing $R_{i} \cup S_{i}$ (see $[\mathrm{H}]$, III.9.8.4 and Fig. 11 p. 260, for a similar case, or [B-E 1], fig. 2).
$R_{i} \cup S_{i} \cup \chi_{i}$ contains the first infinitesimal neighborhood, ξ_{i}, of $\varphi_{|\mathcal{M}|}\left(Q_{i}\right)$ in V_{i} and it is just the scheme-theoretic union $R_{i} \cup S_{i} \cup \xi_{i}$. Moreover since the linear space V_{i} depends on the flat family of lines we chose, varying this family we may take as V_{i} a general 3-dimensional linear subspace of \mathbb{P}^{n} containing $R_{i} \cup S_{i}$ (see [B-E 1], fig. 1 and fig. 2).

Notice that for a general hyperplane H of $\mathbb{P}^{n} \chi_{i} \cap H$ is a flat planar point contained in $V_{i} \cap H$ and it has Q_{i} as associated reduced scheme.

Repeating the above argument for all indices $i, 1 \leq i \leq d-g-n$, we obtain a non-reduced curve

$$
A:=\varphi_{|\mathcal{M}|}(C) \cup R_{1} \cup \ldots \cup R_{d-g-n} \cup \chi_{1} \cup \ldots \cup \chi_{d-g-n}
$$

of degree d and with $d-g-n$ embedded points.

Weak Property N_{p} for A.

Fix a general hyperplane H of \mathbb{P}^{n} with $\varphi|\mathcal{M}|\left(Q_{i}\right) \in H$ for every i and set $Z:=A \cap H$.

Our aim is to apply Remark C to Z.
$Z \subset H \cong \mathbb{P}^{n-1}$ is a 0 -dimensional scheme of length $d+(d-g-n)$ formed by $d-g-n$ planar fat points $\left\{\gamma_{1}, \ldots, \gamma_{d-g-n}\right\}$ and $\delta=d-2(d-g-n)$ reduced points $\left\{T_{1}, \ldots, T_{\delta}\right\}$.

By our hypothesys on d we have $\delta=d-2(d-g-n) \geq n$. Indeed, since we have assumed $d \geq 2 n-p$ we get
$d-2(d-g-n) \geq 2 g+1+p+(d-g-n) \geq 2 g+1+p+(2 n-p-g-n)=g+1+n>n$.
Furthermore $\delta \geq n$ implies that we can find a splitting $Z=\Sigma \cup \Gamma$, where Σ consists of n general points and Γ is the union of the $d-g-n$ planar fat points and $d-2(d-g-n)-n$ reduced points. By our choiche of d we have

$$
\operatorname{length}(\Gamma)=d+(d-g-n)-n \leq n-p-1
$$

Indeed, the above inequality is equivalent to $d \leq 2 n-p-1-(d-g-n)$. Writing $n=d-g-(d-g-n)$ this is equivalent to $d \leq 2(d-g)-p-1-3(d-g-n)$ which follows since $d \geq 2 g+p+1+3(d-g-n)$ by assumption.

Since the V_{i} 's are general 3-dimensional linear subspace of \mathbb{P}^{n} containing $\varphi_{|\mathcal{M}|}\left(Q_{i}\right)$ we may assume H to be transversal to each V_{i} and furthermore the linear span $U:=\left\langle, V_{1} \cap H, \ldots, V_{d-g-n} \cap H\right\rangle \subset H$ is "general" and have maximal dimension.

This means that the span $\left\langle\gamma_{1} \cup \ldots \gamma_{d-g-n} \subset H\right.$ has maximal dimension. Furthermore, taking the projection π_{U} with center U we can apply the "uniform position principle" to the image of $\varphi|\mathcal{M}|(C)$. This corresponds to say that the
linear span of $\left\langle\gamma_{1} \cup \ldots \gamma_{d-g-n}\right.$ and any h points $T_{1}, \ldots, T_{h}(h \leq n-3(d-g-n))$ has maximal dimension.

Thus we may apply Remark C to $Z=\Sigma \cup \Gamma$ as above to show that Z satisfies the Weak Property N_{p}.

Notice that $\operatorname{deg}(A)=d=\operatorname{deg}(Z)-(d-g-n)=\operatorname{deg}(Z)+n+1-h^{0}(C, \mathcal{L})$. Hence we see that every quadric hypersurface of H containing Z lifts to a unique quadric hypersurface of \mathbb{P}^{n} containing A. Thus A has the Weak Property N_{p}.

End of the proof of theorem B.

Since $h^{0}\left(A, \mathcal{O}_{A}(t)\right)=h^{0}\left(C, \mathcal{L}^{\otimes t}\right)$ for every $t>0$, we may apply semicontinuity to conclude that a general $B \in \operatorname{Pr}(\mathcal{L}, \mathcal{M})$ has Weak Property N_{p}. By semicontinuity a general projection of $\varphi_{|\mathcal{L}|}(C)$ into \mathbb{P}^{n} has Weak Property N_{p}, proving the theorem.

Q.E.D. for Theorem B

Remark 2.2 The above theorem holds also for C irreducible curve of arithmetic genus g (possibly singular), since by [CFHR] an invertible sheaf of degree $\geq 2 g$ is non-special and base point free and if the degree is $\geq 2 g+1$ then it is very ample.

References

[B-E 1] E. Ballico, Ph. Ellia, "On degeneration of projective curves", in: Algebraic Geometry - Open Problems, Proceedings, Ravello 1982, Lect. Notes in Math. 997, Springer-Verlag, (1983), 1-15
[B-E 2] E. Ballico, Ph. Ellia, "On the postulation of a general projection of a curve in $\mathbb{P}^{N}, N \geq 4 "$, Annali Mat. pura ed appl. 147 (1987), 267-301
[C] G. Castelnuovo, " Sui multipli di una serie lineare di gruppi di punti appartenenti ad una curva algebrica" Rend. Circ. Mat. Palermo 7 (1893), 89-110
[CFHR] F.Catanese, M.Franciosi, K.Hulek, M.Reid, "Embeddings of Curves and Surfaces", Nagoya Math. J. 154 (1999), 185-220
[F] M. Franciosi "Divisors normally generated on reduced curves", Quaderni Dip. Mat. Applicata "U.Dini"-Università di Pisa1998/10, (1998)
[G] M. Green "Koszul cohomology and the geometrty of projective varieties", J. Diff. Geom. 19 (1984), 125-171
[G-L] M. Green, R. Lazarsfeld "Some results about syzygies of finite sets and algebraic curves", Compositio Math. 67 (1988), 301-314
[Ha] R. Hartshorne, "Algebraic Geometry", Springer (1977).
[HK] A. Hefez, S. Kleiman, "Notes on duality of projective varieties", in Geometry Today (Rome, 1984), Progress in Math. 60, Birkhuser Boston, (1985), 143-183
[Ra] J. Rathmann, "The uniform position principle for curves in characteristic $p "$ Math. Ann. 276 (1987), n. 4, 565-579.

Marco Franciosi,
Dipartimento di Matematica Applicata "U. Dini", Università degli Studi di Pisa
via Bonanno 25, I-56126 Pisa (Italy)
E-mail address: francios@dm.unipi.it

Edoardo Ballico,
Dipartimento di Matematica
Università degli studi di Trento
Povo I-38050 Trento (Italy)
E-mail address: ballico@science.unitn.it

