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Abstract. Let C be a curve (possibly non reduced or reducible) lying on a smooth algebraic
surface. We show that the canonical ring R(C, ωC ) = ⊕

k≥0 H0(C, ωC
⊗k) is generated

in degree 1 if C is numerically four-connected, not hyperelliptic and even (i.e. with ωC
of even degree on every component). As a corollary we show that on a smooth algebraic
surface of general type with pg(S) ≥ 1 and q(S) = 0 the canonical ring R(S, KS) is gen-
erated in degree ≤ 3 if there exists a curve C ∈ |KS | numerically three-connected and not
hyperelliptic.

1. Introduction

Let C be a curve (possibly non reduced or reducible) lying on a smooth algebraic
surface S and let ωC be the dualizing sheaf of C . The purpose of this paper is to
analyze the canonical ring of C , that is, the graded ring

R(C, ωC ) =
⊕

k≥0

H0
(

C, ωC
⊗k

)

under some suitable assumptions on the curve C .
The rationale of our analysis stems from several aspects of the theory of alge-

braic surfaces.
The first such aspect is the analysis of surface’s fibrations and the study of their

applications to surface’s geography. Indeed, given a genus g fibration f : S → B
over a smooth curve B, an important tool in this analysis is the relative canonical
algebra R( f ) = ⊕

n≥0 f∗(ω⊗n
S/B).

In recent years the importance of R( f ) has become clear (see Reid’s unpub-
lished note [20]) and a way to understand its behavior consists in studying the
canonical ring of every fibre of f . More specifically, denoting by C = f −1(P)
the scheme theoretic fibre over a point p ∈ B, the local structure around P of the
relative canonical algebra can be understood via the canonical algebra of C , since
the reduction modulo MP of the stalk at P of the relative canonical algebra is
nothing but R(C, ωC ) (see [20, §1]). Mendes Lopes [17] studied the cases where
the genus g of the fibre is g ≤ 3 whereas in [11,14] it is shown that for every g ≥ 3,
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R(C, ωC ) is generated in degree ≤ 4 if every fibre is numerically connected and in
degree ≤ 3 if furthermore there are no multiple fibres.

More recently Catanese and Pignatelli [7] illustrated two structure theorems for
fibration of low genus using a detailed description of the relative canonical algebra.
In particular they showed an interesting characterization of isomorphism classes of
relatively minimal fibration of genus 2 and of relatively minimal fibrations of genus
3 with fibres numerically two-connected and not hyperelliptic (see [7, Theorems
4.13, 7.13]).

Finally, as shown in [6], the study of invertible sheaves on curves possibly
reducible or non reduced is rich in implications in the cases where Bertini’s the-
orem does not hold or simply if one needs to consider every curve contained in a
given linear system. For instance, one can acquire information on the canonical ring
of a surface of general type simply by taking its restriction to an effective canonical
divisor C ∈ |KS| (not necessarily irreducible, neither reduced) and considering the
canonical ring R(C, ωC ) (see Theorem 12 below).

In this paper we analyze the canonical ring of C when the curve C is m-con-
nected and even, and we show an application to the study of the canonical ring of
an algebraic surface of general type.

For a curve C lying on a smooth algebraic surface S, being m-connected means
that C1 · C2 ≥ m for every effective decomposition C = C1 + C2, (where C1 · C2
denotes their intersection number as divisors on S). If C is one-connected usu-
ally C is said to be numerically connected. The definition goes back to Franchetta
(cf. [10]) and has many relevant implications. For instance in [6, §3] (cf. also the
papers [9], Appendix and [18]) it is shown that if the curve C is one-connected
then h0(C,OC ) = 1, if C is two-connected then the system |ωC | is base point free,
whereas if C is three-connected and not honestly hyperelliptic (i.e., a finite double
cover of P

1 induced by the canonical morphism) then ωC is very ample.
Keeping the usual notation for effective divisors on smooth surfaces, i.e., writing

C as
∑s

i=1 ni�i (where the �i ’s are the irreducible components of C and for every
i ni denotes the multiplicity of �i in C), the second condition can be illustrated by
the following definition.

Definition. Let C = ∑s
i=1 ni�i be a curve contained in a smooth algebraic sur-

face. C is said to be even if deg(ωC |�i ) is even for every irreducible �i ⊂ C (that
is, �i · (C − �i ) even for every i = 1, . . . , s.)

We note that an even curve has no decomposition C = A + B with A · B an
odd integer.

Even curves appear for instance when considering the canonical system |KS|
for a surface S of general type. Indeed, by adjunction, for every curve C ∈ |KS|
we have |(2KS)|C | = |KC |, that is, every curve in the canonical system is even.

The main result of this paper is a generalization to even curves of the classical
Theorem of Noether and Enriques on the degree of the generators of the graded
ring R(C, ωC ):

Theorem 11. Let C be an even four-connected curve contained in a smooth alge-
braic surface. If pa(C) ≥ 3 and C is not honestly hyperelliptic then R(C, ωC ) is
generated in degree 1.
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Following the notations of [19], this result can be rephrased by saying that ωC

is normally generated on C . In this case the embedded curve ϕ|ωC |(C) ⊂ P
pa(C)−1

is arithmetically Cohen–Macaulay.
The proof of Theorem 11 is based on the ideas adopted by Mumford in [19]

and on the results obtained in [11] for adjoint divisors, via a detailed analysis of
the possible decompositions of the given curve C .

As a corollary we obtain a bound on the degree of the generators of the canonical
ring of a surface of general type.

If S is a smooth algebraic surface and KS a canonical divisor, the canonical
ring of S is the graded algebra

R(S, KS) =
⊕

k≥0

H0
(

S, KS
⊗k

)

In [8] a detailed analysis of R(S, KS) is presented in the most interesting case
where S is of general type and there are given bounds (depending on the invari-
ants pg(S) := h0(S, KS), q := h1(S,OS), and K 2

S) on the degree of elements of
R(S, KS) forming a minimal system of homogeneous generators. Furthermore it
is shown that for small values of pg some exceptions do occur, depending sub-
stantially on the numerical connectedness of the curves in the linear system |KS|.
In particular [8, §4] presents examples of surfaces of general type with KS not
three-connected whose canonical ring is not generated in degree ≤ 3 and it is con-
jectured that the three-connectedness of the canonical divisor KS should imply the
generation of R(S, KS) in degree 1,2,3, at least in the case q = 0.

Here we show that this is the case. We remark that Konno in [15] has obtained
analogous results, giving a degree bound for primitive generators and relations of
the canonical ring of a minimal surface of general type with |2KS| free or with
pg(S) := h0(S, KS) ≥ 2, K 2

S ≥ 3 and q := h1(S,OS) = 0 (see also [16] for the
analysis of the fixed part of the canonical system of a surface of general type via
the study of the relative canonical algebra).

Our result, obtained essentially by restriction to a curve C ∈ |KS|, is the fol-
lowing

Theorem 12. Let S be a surface of general type with pg(S) := h0(S, KS) ≥ 1
and q := h1(S,OS) = 0. Assume that there exists a curve C ∈ |KS| such that C
is numerically three-connected and not honestly hyperelliptic. Then the canonical
ring of S is generated in degree ≤ 3.

The paper is organized as follows: in §2 some useful background results are
illustrated; in §3 we introduce the notion of disconnecting component; in §4 we
prove Theorem 11; in §5 we give the proof of Theorem 12.

2. Notation and preliminary results

2.1. Notation

We work over an algebraically closed field K of characteristic ≥ 0.
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Throughout this paper S will be a smooth algebraic surface over K and C will
be a curve lying on S (possibly reducible and non reduced). Therefore C will be
written (as a divisor on S) as C = ∑s

i=1 ni�i , where the �i ’s are the irreducible
components of C and the ni ’s are the multiplicities. A subcurve B ⊆ C will mean
a curve

∑
mi�i , with 0 ≤ mi ≤ ni for every i .

By abuse of notation if B ⊂ C is a subcurve of C , C − B denotes the curve A
such that C = A + B as divisors on S.

C is said to be m-connected if for every decomposition C = A + B one has
A · B ≥ m.

C is said to be numerically connected if it is one-connected.
ωC denotes the dualizing sheaf of C (see [13], Chap. III, §7), and pa(C) the arith-
metic genus of C , pa(C) = 1 − χ(OC ).

If G ⊂ C is a proper subcurve of C we denote by H0(G, ωC ) the space of
sections of ωC |G .

Let F be an invertible sheaf on C .
If G ⊂ C is a proper subcurve of C then F|G denotes its restriction to G.
For each i the natural inclusion map εi : �i → C induces a map ε∗i : F →

F|�i . We denote by di = deg(F|�i ) = deg�i
F the degree of F on each irreducible

component, and by d := (d1, . . . , ds) the multidegree of F on C . If B = ∑
mi�i

is a subcurve of C , by dB we mean the multidegree of F|B .
C is said to be even if deg�i

ωC is even for every irreducible �i ⊂ C.
Similarly, if H is an invertible sheaf on C , then H is said to be even if deg�i

H
is even for every irreducible �i ⊂ C.

By Picd(C) we denote the Picard scheme which parametrizes the classes of
invertible sheaves of multidegree d = (d1, . . . , ds) (see [11]).

We recall that for every d = (d1, . . . , ds) there is an isomorphism Picd(C) ∼=
Pic0(C) and furthermore dim Pic0(C) = h1(C,OC ) (cf. e.g. [2], Chap. 2, Sec. 2).

Concerning the Picard group of C and the Picard group of a subcurve B ⊂ C
we have

Picd(C) � PicdB (B) ∀d

(see [11, Remark 2.1]).
An invertible sheaf F is said to be nef if di ≥ 0 for every i . Two invertible

sheaves F ,F ′ are said to be numerically equivalent on C (notation: F
num∼ F ′)

if deg�i
F = deg�i

F ′ for every �i ⊆ C .
Finally, a curve C is said to be honestly hyperelliptic if there exists a finite

morphism ψ : C → P
1 of degree 2. In this case C is either irreducible, or of the

form C = �1 + �2 with pa(�i ) = 0 and �1 · �2 = pa(C) + 1 (see [6, §3] for a
detailed treatment).

2.2. General divisors of low degree

Let C = ∑s
i=1 ni�i be a curve lying on a smooth algebraic surface S. An invertible

sheaf on C of multidegree d = (d1, . . . , ds) is said to be “general” if the corre-
sponding class in the Picard scheme Picd(C) is in general position, i.e., if it lies in
the complementary of a proper closed subscheme (see [11] for details).
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We recall two vanishing results for general invertible sheaves of low degree.

Theorem 21. ([11, Theorems 3.1, 3.2])

(i) If F is a “general” invertible sheaf such that degB F ≥ pa(B) for every
subcurve B ⊆ C, then H1(C,F ) = 0.

(ii) If F is a “general” invertible sheaf such that degB F ≥ pa(B)+ 1 for every
subcurve B ⊆ C, then the linear system |F | is base point free.

In particular we obtain the following

Proposition 22. Let C = ∑s
i=1 ni�i be a one-connected curve contained in a

smooth algebraic surface, and consider a proper subcurve B � C. Let d =
(d1, . . . , ds) ∈ Z

s be such that di ≥ 1
2 deg�i

ωC ∀ i = 1, . . . , s.
Then for a “general” invertible sheaf F in PicdB (B):

(i) H1(B,F ) = 0;
(ii) |F|B | is a base point free system on B if C is three-connected.

Considering the case where C is an even four-connected curve we obtain

Corollary 23. Let C = ∑s
i=1 ni�i be a four-connected even curve contained in a

smooth algebraic surface.
For every i = 1, . . . , s, let di = 1

2 deg�i
ωC and let d = (d1, . . . , ds) ∈ Z

s .
Let B � C be a proper subcurve of C and consider a a “general” invertible

sheaf F in PicdB (B) (i.e., with an abuse of notation we can write F
num∼ 1

2ωC |B ).
Then H1(B,F ) = 0 and |F|B | is a base point free system.

2.3. Koszul cohomology groups of algebraic curves

Let C = ∑s
i=1 ni�i be a curve lying on a smooth algebraic surface S and let H , F

be invertible sheaves on C . Consider a subspace W ⊆ H0(C,F ) which yields a
base point free system of projective dimension r.

The Koszul groups Kp,q(C,W,H ,F ) are defined as the cohomology at the
middle of the complex

p+1∧
W ⊗ H0

(
H ⊗ F q−1

)
−→

p∧
W ⊗ H0 (H ⊗ F q)

−→
p−1∧

W ⊗ H0
(
H ⊗ F q+1

)

If W = H0(C,F ) they are usually denoted by Kp,q(C,H ,F ), while if
H ∼= OC the usual notation is Kp,q(C,F ) (see [12] for the definition and main
results).

We point out that the multiplication map

W ⊗ H0(C,H ) → H0(C,F ⊗ H )
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is surjective iff K0,1(C,W,H ,F ) = 0 and the ring R(C,F ) = ⊕
k≥0 H0(C,

F⊗k) is generated in degree 1 if and only if K0,q(C,F ) = 0 ∀ q ≥ 1. Moreover
if F is very ample and R(C,F ) is generated in degree 1, then, identifying C with
its image in P

r ∼= P(H0(F )∨), K1,1(C,F ) ∼= I2(C,Pr ), the space of quadrics in
P

r vanishing on C (see [12]).
For our analysis the main applications of Koszul cohomology are the following

propositions (see [11, §1], [14, §1] for further details on curves lying on smooth
surfaces).

Proposition 24 (Duality). Let F , H be invertible sheaves on C and assume W ⊆
H0(C,F ) to be a subspace of dim = r + 1 which yields a base point free system.
Then

Kp,q(C,W,H ,F ) d Kr−p−1,2−q(C,W, ωC ⊗ H −1,F )

(where d means duality of vector space).

For a proof see [11, Proposition 1.4]. Following the ideas outlined in [14, Lemma
1.2.2] we have a slight generalization of Green’s H0-Lemma.

Proposition 25 (H0-Lemma). Let C be one-connected and let F , H be invertible
sheaves on C and assume W ⊆ H0(C,F ) to be a subspace of dim = r + 1 which
yields a base point free system. If either

(i) H1(C,H ⊗ F−1) = 0,
or

(ii) C is numerically connected, ωC ∼= H ⊗ F−1 and r ≥ 2,
or

(iii) C is numerically connected, h0(C, ωC ⊗ H −1 ⊗ F ) ≤ r − 1 and there exists
a reduced subcurve B ⊆ C such that:

• W ∼= W|B,
• H0(C, ωC ⊗ H −1 ⊗ F ) ↪→ H0(B, ωC ⊗ H −1 ⊗ F ),
• every non–zero section of H0(C, ωC ⊗ H −1 ⊗ F ) does not vanish iden-

tically on any component of B;

then K0,1(C,W,H ,F ) = 0, that is, the multiplication map

W ⊗ H0(C,H ) → H0(C,F ⊗ H )

is surjective.

Proof. By duality we need to prove that Kr−1,1(C,W, ωC ⊗H −1,F ) = 0.With
this aim let {s0, . . . , sr } be a basis for W and let α = ∑

si1 ∧ si2 ∧ . . . ∧ sir−1 ⊗
αi1i2...ir−1 ∈ ∧r−1 W ⊗ H0(C, ωC ⊗ H −1 ⊗ F ) be an element in the Kernel of
the Koszul map dr−1,1.

In cases (i) obviously α = 0 since by Serre duality H0(C, ωC ⊗H −1 ⊗F ) ∼=
H1(C,H ⊗ F−1) = 0.

In case (ii) H0(C, ωC ⊗ H −1 ⊗ F ) = H0(C,OC ) = K by connectedness
and we conclude similarly (see also [11, Proposition 1.5]).
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In the latter case by our assumptions we can restrict to the curve B. Since B is
reduced we can choose r +1 “sufficiently general points” on B so that s j (Pi ) = δi

j .
But then α ∈ ker(dr−1,1) implies for every multiindex I = {i1, . . . ir−2} the fol-
lowing equation (up to sign)

α j1i1...ir−2 · s j1 + α j2i1...ir−2 · s j2 + α j3i1...ir−2 s j3 = 0.

(where {i1, . . . ir−2} ∪ { j1, j2, j3} = {0, . . . , r + 1}).
Evaluating at P ′

j s and reindexing we get αi1...ir−1(Pik ) = 0 for k = 1, . . . , r −1.

Let r̃ = h0(C, ωC ⊗ H −1 ⊗ F ). Since the P ′
j s are in general position and

every section of H0(C, ωC ⊗ H −1 ⊗ F ) does not vanish identically on any com-
ponent of B, we may assume that any (r̃ −1)-tuple of points Pi1 , . . . , Pir−1 imposes
independent conditions on H0(C, ωC ⊗ H −1 ⊗ F ).

The proposition then follows by a dimension count since by assumption r̃ =
h0(C, ωC ⊗ H −1 ⊗ F ) ≤ h0(C,F )− 2 = r − 1. ��

In some particular cases we can obtain deeper results, which will turn out to be
useful for our induction argument in the proof of Theorem 11.

Proposition 26. Let C be either

(i) an irreducible curve of arithmetic genus pa(C) ≥ 1;
or

(ii) C = �1 + �2, with �i irreducible and reduced rational curves (possibly �1 =
�2) s.t. �1 · �2 = pa(C)+ 1 ≥ 2.

Let H
num∼ ωC ⊗ A be a very ample divisor on C s.t. degC A ≥ 4.

Then K0,1(C,H , ωC ) = 0, that is H0(C, ωC )⊗ H0(C,H ) � H0(C, ωC ⊗
H ).

Proof. If pa(C) = 1 then under our assumptions ωC ∼= OC , whence the theorem
follows easily.

If pa(C) ≥ 2 then by [6, Theorems 3.3, 3.4] |ωC | is base point free and more-
over it is very ample if C is not honestly hyperelliptic. We apply Proposition 25
with F = ωC and W = H0(ωC ).

If C is irreducible and h0(C, ωC ⊗ A −1) = 0 then the result follows by
(i) of Proposition 25. If h0(C, ωC ⊗ A −1) �= 0 and h0(C,A ) = 0 it follows by
Riemann-Roch. In the remaining case we obtain h0(C, ωC⊗A −1) ≤ h0(C, ωC )−2
by Clifford’s theorem since degC A ≥ 4.

If C = �1 +�2 and pa(C) ≥ 2 we consider firstly the case where deg�i
A≥ −1

for i = 1, 2. Under this assumption any non-zero section of H0(C, ωC ⊗ A −1)

does not vanish identically on any single component of C (otherwise it would yield
a section in H0(�i , ω�i ⊗ A −1) ∼= H0(P1,−α) with α ≥ 1). Therefore we can
proceed exactly as in the irreducible case.

Now assume C = �1 + �2, deg�2
A ≤ −2 and deg�1

A ≥ 6. In this case we
can apply (iii) of Proposition 25 taking B = �2. Indeed, h0(�1, ω�1 ⊗ A −1) =
h0(�1, ω�1) = 0 and we have the following maps

H0(C, ωC ) ∼= H0(�2, ωC ) ; H0(C, ωC ⊗ A −1) ↪→ H0
(
�2, ωC ⊗ A −1

)
.
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To complete the proof it remains to show that h0(C, ωC ⊗A −1) ≤ h0(C, ωC )−
2 = pa(C)− 2. This follows by the following exact sequence

0→H0
(
�2, ω�2 ⊗ A −1

)
→H0

(
C, ωC ⊗ A −1

)
→H0

(
�1, ωC ⊗ A −1

)
→0.

In fact if deg�1
(ωC ⊗ A −1) ≥ 0 we have h0(C, ωC ⊗ A −1) = pa(C)− 1 −

deg A , whereas h0(C, ωC ⊗ A −1) = h0(�2, ω�2 ⊗ A −1) = − deg�2
A − 1 <

pa(C)−2 if deg�1
(ωC ⊗A −1) < 0 since deg�2

(ωC +A ) ≥ 1 by the ampleness of
ωC ⊗ A . ��

If one considers a curve C with many components another useful tool is the
following long exact sequences for Koszul groups.

Proposition 27. Let C = A + B and let |F | be a complete base point free system
on C such that

• H0(C,F ) � H0(A,F ),
• H0(C,F⊗k) � H0(B,F⊗k) for every k ≥ 2,
• H0(A,F (−B)) = 0.

Then we have a long exact sequence

· · · → Kp+1,q−1(C,F ) → Kp+1,q−1(B,W,F ) → Kp,q(A,W,OA(−B),F )

→ Kp,q(C,F ) → Kp,q(B,W,F ) → · · ·
where W ∼= H0(C,F ).

Proof. With a slight abuse of notation we identify W with H0(C,F ). Consider

B1 =
⊕

q≥0

H0 (A,F⊗q(−B)
)
,

B2 =
⊕

q≥0

H0 (C,F⊗q) , B3 = W ⊕
⎛

⎝
⊕

q �=1

H0 (B,F⊗q)
⎞

⎠

By our hypotheses the above vector spaces can be seen as S(W )-modules and
moreover they fit into the following exact sequence

0 → B1 → B2 → B3 → 0

where the maps preserve the grading. By the long exact sequence for Koszul Coho-
mology (cf. [12, Corollary 1.4.d, Theorem 3.b.1 ]) we can conclude. ��
Remark 28. We point out that in this case, when considering B1 as an S(W )-mod-
ule we have to take in account the complex whose terms are the vector spaces
p∧

W ⊗H0(F⊗q(−B)), i.e., we must consider the splitting W = H0(A,F|A)⊕U ,
with U ∼= H0(B,F (−A)) the subspace given by the sections of W vanishing
on A.
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Setting u = dim U and s = max{0, p − u} then, arguing as in [12, Proof of
Theorem (3.b.7)], it is immediately seen that we have a decomposition

Kp,q(A,W,OA(−B),F ) ∼=
⊕

s≤p′≤p

⎡

⎣Kp′,q(A,OA(−B),F|A) ⊗
p−p′
∧

U

⎤

⎦

Notice that if C is numerically connected, F ∼= ωC , B is numerically connected
and A is the disjoint union of irreducible rational curves then the above hypotheses
are satisfied.

We point out that if F is very ample but the restriction map H0(C,F ) →
H0(B,F ) is not surjective then, following the notation of [1], we can talk of
“Weak Property Np” for the curve B embedded by the system W = H0(C,F )|B .

2.4. Divisors normally generated on algebraic curves

To conclude this preliminary section we recall a theorem proved in [11] on the
normal generation of invertible sheaves of high degree.

Theorem 29. ([11, Theorem A])
Let C be a curve contained in a smooth algebraic surface and let H

num∼ F ⊗G ,
where F ,G are invertible sheaves such that

deg F|B ≥ pa(B)+ 1 ∀ subcurve B ⊆ C
deg G|B ≥ pa(B) ∀ subcurve B ⊆ C

Then for every n ≥ 1 the natural multiplication map (H0(C,H ))⊗n →
H0(C,H ⊗n) is surjective.

Moreover, applying the same arguments used in [11, Proof of Theorem A, p.
327] we have

Proposition 210. Let C be a curve contained in a smooth algebraic surface and

let H1, H2 be two invertible sheaves such that H1
num∼ F ⊗ G1, H2

num∼ F ⊗ G2
with

deg F|B ≥ pa(B)+ 1 ∀ subcurve B ⊆ C
deg G1|B ≥ pa(B) ∀ subcurve B ⊆ C
deg G2|B ≥ pa(B) ∀ subcurve B ⊆ C

Then H0(C,H1)⊗ H0(C,H2) � H0(C,H1 ⊗ H2).

For even invertible sheaves of high degree Theorem 29 yields as a corollary the
following

Theorem 211. Let C = ∑s
i=1 ni�i be a curve contained in a smooth algebraic

surface and let H be an even invertible sheaf on C such that

degB H ≥ 2pa(B)+ 2 ∀ subcurve B ⊆ C

Then for every n ≥ 1 the natural multiplication map (H0(C,H ))⊗n →
H0(C,H ⊗n) is surjective.
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Proof. First of all notice that H is very ample by [6, Theorem 1.1]. Moreover

since H is even there exists an invertible sheaf F such that F⊗2 num∼ H . By our
numerical assumptions for every subcurve B ⊆ C we have degB F ≥ pa(B)+ 1
and degB(H ⊗ F−1) ≥ pa(B)+ 1, whence we can conclude by Theorem 29.��

3. Disconnecting components of numerically connected curves

Taking an an irreducible component � ⊂ C one problem is that the restriction map

H0(C, ωC ) → H0(�, ωC |�)

is not surjective if h0(C − �,OC−�) = h1(C − �,ωC−�) ≥ 2.
Nevertheless, if there exists a curve � with this property, it plays a special role

in the proof of our main result.
To be more explicit, let us firstly consider the natural notion of disconnecting

subcurve.

Definition 31. Let C = ∑s
i=1 ni�i be a numerically connected curve. A subcurve

B ⊂ C is said to be a disconnecting subcurve if h0(C − B,OC−B) ≥ 2.

If B is a disconnecting curve then by the exact sequence

H0(C − B, ωC−B) → H0(C, ωC )

→ H0(B, ωC ) → H1(C − B, ωC−B) → H1(C, ωC )

we deduce that the restriction map H0(C, ωC ) → H0(B, ωC |B) can not be sur-
jective. In this case following the arguments pointed out by Konno in [14] one can
consider an “intermediate” curve G such that B ⊆ G ⊆ C and H0(C, ωC ) �
H0(G, ωC |G).

We restrict our attention to the case of an irreducible and reduced disconnecting
subcurve �, since in this situation we can use the approach and the results given
in [14] and we can apply (iii) of Proposition 25. Moreover when dealing with an
irreducible and reduced disconnecting subcurve we are able to construct invertible
sheaves satisfying the degree assumptions of Proposition 210.

We have the following useful Lemma.

Lemma 32. Let C = ∑s
i=1 ni�i be a m-connected curve (m ≥ 1) and � ⊂ C be

an irreducible and reduced disconnecting subcurve. Let G be a minimal subcurve
of C such that H0(C, ωC ) � H0(G, ωC |G) and � ⊆ G ⊆ C.

Setting E := C − G, G ′ := G − �, then

(a) E is a maximal subcurve of C − � such that h1(E, ωE ) = h0(E,OE ) = 1;
(b) � is of multiplicity 1 in G, ωG ⊗ (ωC )

−1 ∼= OG(−E) is nef on G ′;
(c) deg�(E) = degG ′(−E)+ e with e ≥ m;
(d) h1(E + �,ωE+�) = 1, hence H0(C, ωC ) � H0(G ′, ωC |G ′);
(e) G is m-connected and in particular h1(G, ωG) = 1.
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Proof. By hypotheses H0(C, ωC ) �� H0(�, ωC |�) and G is a minimal subcurve
such that H0(C, ωC ) � H0(G, ωC |G). Therefore E = C − G is a maximal sub-
curve of C − � such that h1(E, ωE ) = h1(C, ωC ) = 1, proving (a).

Moreover by [14, Lemma 2.2.1] either ωG ⊗ (ωC )
−1 is nef on G, or � is of

multiplicity one in G and ωG ⊗ (ωC )
−1 is nef on G − � = G ′.

Now by adjunction ωG ⊗ (ωC )
−1 ∼= OG(−E), which has negative degree on

G since C is numerically connected by assumption. Therefore we can exclude the
first case and by [14, Lemma 2.2.1] we conclude that � is of multiplicity one in G,
ωG ⊗ (ωC )

−1 ∼= OG(−E) is nef on G ′ := G −�, and deg�(E) = degG ′(−E)+ e
with e ≥ m, proving (b) and (c).

To prove (d) consider the two curves E and �. Now h1(E, ωE ) = 1 by (a)
and h1(�, ωE+�) = 0 because deg�(ωE+�) ≥ 2pa(�)− 1, whence we conclude
considering the exact sequence

H1(E, ωE ) → H1(E + �,ωE+�) → H1(�, ωE+�) = 0

(e) follows since OG ′(−E) is nef on G ′. In fact if B ⊂ G without loss of gener-
ality we may assume B ⊂ G ′, and then we obtain B ·(G−B) = B ·(C−B)−E ·B ≥
B · (C − B) ≥ m since G = C − E , that is G is m-connected. h1(G, ωG) = 1
follows by [6, Theorem 3.3]. ��

With an abuse of notation we will call a subcurve E ⊂ C as in Lemma 32 a
maximal connected subcurve of C − �.

The above Lemma allows us to consider the splitting C = G + E since
by connectedness both the restriction maps H0(C, ωC ) → H0(G, ωC |G) and
H0(C, ωC ) → H0(E, ωC |E ) are surjective.

Concerning the subcurve G we have the following theorem.

Theorem 33. Let C = ∑s
i=1 ni�i be an even four-connected curve and assume

there exists an irreducible and reduced disconnecting subcurve � ⊂ C.
Let G be a minimal subcurve of C such that H0(C, ωC ) � H0(G, ωC ) and

� ⊆ G ⊆ C.
Then on G the multiplication map H0(G, ωC )⊗ H0(G, ωG) → H0(G, ωC ⊗

ωG) is surjective.

To simplify the notation, for every subcurve B ⊂ C by H0(B, ωC ) we will
denote the space of sections of ωC |B .

If there exists a disconnecting component� and a decomposition C = G ′+�+
E as in Lemma 32 such that h1(G ′, ωG ′) ≥ 2 then we need an auxiliary Lemma.

Lemma 34. Let C = ∑s
i=1 ni�i be an even four-connected curve and assume

there exists an irreducible and reduced disconnecting subcurve � ⊂ C.
If there exists a decomposition C = G ′ + � + E as in Lemma 32 such that

h1(G ′, ωG ′) ≥ 2 then there exist a decomposition C = E + � + G1 + G2 s.t.

(a) G2 + � is four-connected;
(b) h1(G1, ωG1) = 1;
(c) OG2(−G1) is nef on G2;
(d) H0(G, ωG) � H0(G2 + �,ωG).



M. Franciosi

Proof. Let C = E + G and G = �+ G ′ be as in Lemma 32. By (e) of Lemma 32
G is four-connected and by our hypothesis h1(G ′, ωG ′) ≥ 2, i.e., the irreducible
curve � is a disconnecting component for G too. Therefore by Lemma 32 applied
to G, there exists a maximal connected subcurve G1 ⊂ G ′ and a decomposition
G = � + G1 + G2 such that (a, b, c, d) hold. ��
Proof of Theorem 33. The proof of theorem 33 will be treated considering sepa-
rately the case h1(G ′, ωG ′) = 1 and h1(G ′, ωG ′) ≥ 2.

Case 1. There exists a disconnecting component � and a decomposition C = G ′ +
� + E as in Lemma 32 such that h1(G ′, ωG ′) = 1.

Let G = G ′ +�. On � both the invertible sheaves ω�(E) and ωG have degree
≥ 2pa(�)+ 2. In particular we have the following exact sequence

0 → H0(�, ω�(E)) → H0(G, ωC ) → H0(G ′, ωC ) → 0

Twisting with H0(ωG) = H0(G, ωG) we get the following commutative dia-
gram:

H0(�, ω�(E))⊗ H0(ωG) ↪→ H0(G, ωC )⊗ H0(ωG) � H0(G ′, ωC )⊗ H0(ωG)

r1 ↓ r2 ↓ r3 ↓
H0(�, ω�(E)⊗ ωG) ↪→ H0(G, ωC ⊗ ωG) � H0(G ′, ωC ⊗ ωG)

Now, since by our hypothesis h1(G ′, ωG ′) = 1 then H0(G, ωG) � H0(�, ωG)

and we have the surjection H0(�, ω�(E))⊗ H0(�, ωG) � H0(�, ω�(E)⊗ ωG)

by [19, Theorem.6].
The theorem follows since also r3 is surjective by Proposition 210. Indeed,

ωG |G ′ ∼= ωC |G ′(−E) with OG ′(−E) nef and ωC |G ′ is an even invertible sheaf
whose degree on every subcurve B ⊆ G ′ satisfies degB(ωC ) ≥ 2pa(B)+ 2.

Case 2. There exists a disconnecting component � and a decomposition C = G ′ +
� + E as in Lemma 32 such that h1(G ′, ωG ′) ≥ 2.

Let C = E + � + G1 + G2 and G = � + G1 + G2, be a decomposition as in
Lemma 34. We proceed as in Case 1, considering the curve G2 + � instead of the
irreducible �.

First of all let us prove that H1(G2 + �,ωG2+�(E)) = 0.
We have (ωG2+�(E))|G2

∼= (ωC (−G1))|G2 and in particular for every subcurve
B ⊆ G2 degB(ωG2+�(E)) ≥ 2pa(B)+ 2 since OG2(−G1) is nef.

If B �⊆ G2, we can write B = B ′ + �, with B ′ ⊆ G2, obtaining

degB(ωG2+�(E)) = degB(ωG2+�)+ E · B ≥ 2pa(B)+ 2

since E · B = E · (B ′ + �) ≥ E · (G ′ + �) ≥ 4 and degB(ωG2+�) ≥ 2pa(B)− 2
by connectedness. Therefore H1(G2 +�,ωG2+�(E)) = 0 by [5, Lemma 2.1] and
we have the following exact sequence

0 → H0(G2 + �,ωG2+�(E)) → H0(G, ωC ) → H0(G1, ωC ) → 0
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Twisting with H0(ωG) = H0(G, ωG) we can argue as in Case 1. Indeed, con-
sider the commutative diagram:

H0(G2 + �,ωG2+�(E))⊗ H0(ωG ) ↪→ H0(G, ωC )⊗ H0(ωG ) � H0(G1, ωC )⊗ H0(ωG )

r1 ↓ r2 ↓ r3 ↓
H0(G2 + �,ωG2+�(E)⊗ ωG ) ↪→ H0(G, ωC ⊗ ωG ) � H0(G1, ωC ⊗ ωG )

The map r3 is onto by Proposition 210 since ωG ∼= ωC (−E), OG1(−E) is nef
and by Lemma 34 we have the surjection H0(ωG) � H0(G1, ωG).

The Theorem follows if we show that r1 is surjective too. Notice that we can
write the multiplication map r1 as follows:

H0(G2 + �,ωG2+�(E))⊗ H0(G2 + �,ωG2+�(G1))

→ H0(G2 + �,ω⊗2
G2+�(E + G1))

that is, r1 is symmetric in E and G1.
Assume firstly that (G1−E)·� ≥ 0. We proceed considering a general effective

Cartier divisor ϒ on G2 + � such that
{
(OG2(ϒ))

⊗2 num∼ ωC (−2E)|G2

deg(O�(ϒ)) = 1
2 deg(ωC |�)− E · � − δ

with δ = �−G1·G2
2 �. We remark that by connectedness of C and nefness of

OG2(−2E) deg(O�i (ϒ)) ≥ 1 for every �i ⊆ G2 and by our numerical condi-
tions

deg(O�(ϒ)) = pa(�)− 1 + 1

2
(G1 − E) · � + 1

2
G2 · � − δ ≥ 1

since (G1 − E) · � ≥ 0 by our assumptions and by four-connectedness of C we
have G2 · � − 2δ ≥ (� + G1) · G2 ≥ (� + G1 + E) · G2 ≥ 4.

Now let F := ωG(−ϒ). F is a general invertible subsheaf of ωG |G2+� s.t.
{

degB F = 1
2 degB ωC ∀B ⊆ G2

deg� F = 1
2 deg� ωC + δ

By four-connectedness on every subcurve B ⊆ G2 +� degB F ≥ pa(B)+ 1.
By Theorem 21 we conclude that |F | is base point free and h1(G2 + �,F ) = 0.

Therefore we have the following exact sequence

0 → H0(G2 + �,F ) → H0(G2 + �,ωG) → H0(Oϒ) → 0

and we have the surjection H0(Oϒ) ⊗ H0(G, ωG2+�(E)) � H0(G,Oϒ ⊗
ωG2+�(E)) since Oϒ is a skyscraper sheaf and |ωG2+�(E)| is base point free
by [6, Theorem 3.3]. Whence the map r1 is surjective if we prove that

H0(G2 + �,ωG2+�(E))⊗ H0(G2 + �,F ) � H0(G2 + �,ωG2+�(E)⊗ F )

With this aim we are going to apply (iii) of Proposition 25. First notice that

H0(G2 + �,F ) ↪→ H0(�,F )
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Indeed, by adjunction and Serre duality the kernel of this map is isomorphic to
H0(G2,F −�) ∼= H1(G2, ωC (−E − G1)⊗ F−1), which vanishes by Theorem
21 since it is the first cohomology group of a general invertible sheaf whose degree
on every component B ⊆ G2 satisfies

degB(ωC (−E − G1)⊗ F−1) = degB(ωC )

2

+ (−E − G1) · B ≥ degB(ωC )

2
≥ pa(B)

because C is four-connected and OG2(−E − G1) is nef.
Moreover we have also the embedding

H0(G2 + �,ωG2+�
⊗[ωG2+�(E)]−1 ⊗ F ) ↪→ H0(�, ωG2+� ⊗ [ωG2+�(E)]−1 ⊗ F )

since H0(G2,F − E − �) ∼= H1(G2, ωC (−G1)⊗ F−1) = 0 because

degB(ωC (−G1)⊗ F−1) = degB(ωC )

2
+ (−G1 · B) ≥ degB(ωC )

2
≥ pa(B)

by four-connectedness of C and nefness of OG2(−G1). In order to conclude we are
left to compute h0(G2+�,ωG2+�⊗[ωG2+�(E)]−1⊗F ) = h0(G2+�,F (−E)).

F (−E) is a general invertible sheaf s.t.

{
degB(F (−E)) = 1

2 degB ωC − E · B ∀B ⊆ G2

deg�(F (−E)) = 1
2 deg�(ωG2+�)+ 1

2 (G1 − E) · � + δ

Therefore we obtain immediately that degB F (−E) ≥ pa(B) on every B ⊆
G2, whereas if B = B ′ + � with B ′ ⊆ G2

degB(F (−E)) = 1

2
degB(ωG2+�)

+ 1

2
(G1 − E) · B ′ + 1

2
(G1 − E) · � + δ ≥ pa(B)

since by our assumptions G2 + � is numerically connected, (G1 − E) · � ≥ 0,
E · B ′ ≤ 0 and δ ≥ 1

2 (−G1 · G2) ≥ 1
2 (−G1 · B ′).

In particular by Theorem 21 we get H1(G2+�,F (−E)) = 0 and by Riemann-
Roch theorem we have h0(G2 + �,F (−E)) = h0(G2 + �,F )− E · (� + G2).
Finally, since OG1(−E) is nef we have E · (� + G2) ≥ E · (� + G2 + G1) ≥ 4
because C is four-connected, that is, h0(G2 +�,F (−E)) ≤ h0(G2 +�,F )− 4.
Whence all the hypotheses of (iii) of Proposition 25 are satisfied and we can con-
clude.

If (E − G1) · � < 0 we simply exchange the role of OG2+�(E) with the one
of OG2+�(G1) and we reply the proof “verbatim”, since our numerical conditions
are symmetric in E and G1. ��
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4. The canonical ring of an even four-connected curve

In this section we are going to show Theorem 11. We recall that under our assump-
tions ωC is very ample by [6, Theorem 3.6].

Proof of Theorem 11. For all k ∈ N we have to show the surjectivity of the maps

ρk :
(

H0(C, ωC )
)⊗k −→ H0

(
C, ω⊗k

C

)

For k = 0, 1 it is obvious. For k ≥ 3 it follows by an induction argument
applying Proposition 25 to the sheaves ω⊗(k−1)

C and ωC .
For k = 2 the proof is based on the above results. If C is irreducible and reduced

the result is (almost) classical. For the general case we separate the proof in three
different parts, depending on the existence of suitable irreducible components.

Case A. There exists a not disconnecting irreducible curve � of arithmetic genus
pa(�) ≥ 1.

In this case, writing C = � + E , we have the surjections H0(C, ωC ) �
H0(�, ωC |�) and H0(C, ωC ) � H0(E, ωC |E ), whence we can conclude by the
following commutative diagram:

H0(�, ω�)⊗ H0(ωC ) ↪→ H0(ωC )⊗ H0(ωC ) � H0(E, ωC )⊗ H0(ωC )

r1 ↓ ρ2 ↓ r3 ↓
H0(�, ω� ⊗ ωC ) ↪→ H0(C, ω⊗2

C ) � H0(E, ω⊗2
C )

(where H0(ωC ) = H0(C, ωC )). Indeed, since C is four-connected and ωC is an
even divisor we get the surjection of the map r3 by Theorem 211, while Proposition
26 ensure the surjectivity of the map r1, forcing ρ2 to be surjective too (cf. also [19,
Theorem 6]).

Case B. There exists a disconnecting irreducible component �.
Let us consider the decomposition C = E + G introduced in Lemma 32. Then

we have the exact sequence

0 → H0(G, ωG) → H0(C, ωC ) → H0(E, ωC ) → 0

and furthermore by Lemma 32 (a) also the map H0(C, ωC ) → H0(G, ωC ) is
onto. Replacing � with G we can build a commutative diagram analogous to the
one shown in case A. Keeping the notation r1, r3 for the analogous maps, by The-
orems 211 and 33 the maps r3 and r1 are surjective, whence also ρ2 is onto.

Case C. Every irreducible component �i of C has arithmetic genus pa(�i ) = 0
and it is not disconnecting.

First of all notice that by connectedness for every irreducible �h there exists at
least one �k such that �h · �k ≥ 1.

Moreover if every component �i has arithmetic genus pa(�i ) = 0 then the
condition h0(B,OB) = 1 for a curve B = ∑

ai�i ⊂ C implies �i · (B − �i ) ≥ 1
for every �i ⊂ B. Indeed, if it were B = �i + (B − �i ) with �i · (B − �i ) ≤ 0,
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then we would get h0(�i ,O�i (−(B −�i ))) ≥ 1 and h1(�i ,O�i (−(B −�i ))) = 0
because �i ∼= P

1. Whence we would obtain h1(B,OB) ≥ 2 by the following exact
sequence

0 → H0(�i ,O�i (−(B − �i ))) → H0(B,OB) → H0(B − �i ,OB−�i ) → 0

We will consider separately the different situations that may happen.

C.1. There exist two components �h, �k (possibly h = k if multC �h ≥ 2) such
that �h · �k ≥ 2, and � = �h + �k ⊂ C is not disconnecting.

C.1.1 C has exactly two components.

If the two components are distinct then C is a binary curve (see [3] for the
definition and main properties) and our result follows from [4, Proposition 3].

If �1 = �2 = � we use a slight generalization of the classical argument used
by Saint-Donat in [21].

For simplicity let r = pa(C)− 1 = deg�(ωC ) = �2 − 2 and let us identify �
and C with their images in P

r . Notice that we have H0(C, ωC ) ∼= H0(�, ωC ).
Following the cited paper [21] we take P1, · · · , Pr−1 general points on C and

we set S = P1 ∪· · ·∪ Pr−1. Notice that S can be seen as a subscheme of �. Indeed,
for every point P , denoting by M , M̃ the maximal ideals of OC , respectively O� ,
at P , we have OC/M ∼= O�/M̃ and then, since IS ∼= ∏

MPi , we obtain the
isomorphism OC/IS ∼= O�/IS|� .

Our claim is that for general P1, · · · , Pr−1:

(i) h0(C,ISωC ) = 2 and h1(C,ISωC ) = 1;
(ii) the evaluation map H0(C,IS KC )⊗ OC → ISωC is surjective;

(iii) H0(C,ISωC )⊗ H0(C, ωC ) → H0(C,ISω
⊗2
C ) is surjective.

(i) follows since H0(C, ωC ) ∼= H0(�, ωC ),OS|� ∼= OS and H0(�, ωC ) � OS|�
because � = Cred is a rational curve and deg�(ISωC ) = 1. Whence by Riemann-
Roch h0(C,ISωC ) = 2 and h1(C,ISωC ) = 1.

Concerning (ii) we have to prove that H0(C, ωC ) � OS′ for every zero-dimen-
sional scheme S′ containing S with length(S′) = length(S)+ 1.

If S′ = S ∪ Q, with Q a point distinct from P1, · · · Pr−1, then we obtain the
surjection H0(C, ωC ) ∼= H0(�, ωC ) � OS′ since S′ ∼= S′|� too.

If Supp(S′) = Supp(S), i.e., there exists a point Pi such S′ = Zi
⋃

j �=i Pj with
Zi a 0-dimensional scheme of length 2 supported at Pi , we consider

Wi,k =
⎧
⎨

⎩
(P1, · · · Pr−1) ∈ C (r−1) : Pk ∈ 〈TPi (C),

⋃

j �=i,k

Pj 〉
⎫
⎬

⎭
⊂ C (r−1)

(where TPi (C) denotes the affine 2-dimensional tangent space to C at Pi and C (r−1)

is the Cartesian product of r − 1 copies of C).
Since the linear span 〈TPi (C),

⋃
j �=i,k Pj 〉 has codimension at least one in P

r ,
then its intersection with � contains at most two more points, that is Wi,k is a
closed subvariety of C (r−1). Therefore for (P1, · · · , Pr−1) ∈ C (r−1) \ [⋃

k Wi,k
]



On the canonical ring of curves and surfaces

the 0-dimensional scheme S′ = Zi
⋃

j �=i Pj imposes independent conditions on

H0(C, ωC ) since Zi ⊂ TPi (C). Taking

(P1, · · · , Pr−1) ∈ C (r−1) \
⎡

⎣
⋃

i,k

Wi,k

⎤

⎦

we conclude that for every S′ containing S with length(S′) = length(S) + 1 we
obtain the surjection H0(C, ωC ) � OS′ .

To prove (iii) we improve a generalization of the classical base point free pencil
trick. Consider the evaluation map H0(C, ISωC )⊗ωC

ev→ ISω
⊗2
C and its kernel K .

By the following exact sequence

0 → K → H0(C, ISωC )⊗ ωC → ISω
⊗2
C → 0

we obtain the required surjection if and only if h1(C,K) = 2 since h1(C, ISω
⊗2
C ) =

0 by [6, Theorem 1.1]. Firstly let us show that K ∼= Hom(ISωC , ωC ). Indeed
consider a basis {x0, x1} for H0(C, ISωC ) and define the map

ι : Hom(ISωC , ωC ) → H0(C, ISωC )⊗ ωC

ϕ �→ x0 ⊗ ϕ(x1)− x1 ⊗ ϕ(x0).

ι is injective since the sheaf ISωC is generated by its sections and im(ι) ⊆ K by
our construction. Since over the generic points the two sheaves are isomorphic, we
conclude that ι induces an isomorphism because the Euler characteristic of both
sheaves coincide:

χ(Hom(ISωC , ωC )) = deg S − (pa(C)− 1) = χ(K ).

Secondly, it is easy to see thatISωC is reflexive, which impliesHom(K , ωC ) ∼=
ISωC and then

h1(C,K) = dim(Hom(K, ωC )) = h0(C,Hom(K, ωC )) = h0(C,ISωC ) = 2.

Finally considering the exact sequence

H0(C,ISωC )⊗ H0(C, ωC )
� � ��

m
��

H0(C, ωC )
⊗2 �� ��

r
��

H0(S,OS)⊗ H0(C, ωC )

��
H0(C,ISω

⊗2
C )

� � �� H0(C, ω⊗2
C ) �� �� H0(S,OS)

we can conclude applying the same argument adopted by Saint-Donat in [21, The-
orem 2.10, p. 164].
C.1.2 If C − � �= ∅ then, setting E = C − � by (ii) of Proposition 26 we can
proceed exactly as in Case A.
C.2. There exist two components �h, �k (possibly h = k if multC �h ≥ 2) such
that � := �h + �k ⊂ C is disconnecting and �h · �k ≥ 0.
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In this case take E a maximal subcurve of C −�k −�h such that h0(E,OE ) = 1
and let G = C−E . Then we obtain a decomposition C = E+�+G ′ with OG ′(−E)
nef on G ′.

Firstly let us point out some useful remarks about this decomposition.
We have h0(E + �k + G ′,OE+�k+G ′) = 1 since �k is not disconnecting in C

and it is immediately seen that also h0(�k + G ′,O�h+G ′) = 1 because OG ′(−E)
is nef on G ′. But pa(�k) = 0, whence by the remark given at the beginning of
Case C �k · G ′ ≥ 1. In particular H0(G, ωG) � H0(�h, ωG). Similarly we
obtain �h · G ′ ≥ 1, H0(G, ωG) � H0(�k, ωG), and considering O�(E) we have
E ·�h ≥ 1 and E ·�k ≥ 1. Furthermore, since E ·� ≥ 4, may assume E ·�h ≥ 2.

We will consider firstly the subcase where �h · �k ≥ 1 and secondly the case
where the product is null.

C.2.1. If �h · �k ≥ 1 and � = �h + �k ⊂ C is disconnecting, arguing as in
Case B, the theorem follows if we have the surjection of the multiplication map
r1 : H0(G, ωC )⊗ H0(G, ωG) → H0(G, ωC ⊗ ωG). Considering the diagram

H0(�, ω�(E))⊗ H0(ωG) ↪→ H0(G, ωC )⊗ H0(ωG) � H0(G ′, ωC )⊗ H0(ωG)

s1 ↓ r1 ↓ t1 ↓
H0(�, ω�(E)⊗ ωG) ↪→ H0(G, ωC ⊗ ωG) � H0(G ′, ωC ⊗ ωG)

it is sufficient to show that s1 is onto since t1 is surjective by Proposition 210. With
this aim we take the splitting

0 → H0(�h, ω�h (E)) → H0(�, ω�(E)) → H0(�k, ω�k (�h + E)) → 0

Twisting with H0(G, ωG) = H0(ωG) (notice that H0(G, ωG) � H0(�h, ωG)

and similarly for �k by the above remark), we can conclude since we have the
surjections

H0(�h, ω�h (E))⊗ H0(�h, ωG) � H0(�h, ω�h (E)⊗ ωG)

H0(�k, ω�k (�h + E))⊗ H0(�k, ωG) � H0(�k, ω�k (�h + E)⊗ ωG)

because �h ∼= �k ∼= P
1, and all the sheaves have positive degree on both the curves

(see [12, Corollary 3.a.6] for details).

C.2.2. Assume now �h · �k = 0 and � = �h + �k ⊂ C to be disconnecting.
If E · �h ≥ 2, E · �k ≥ 2 and G ′ · �h ≥ 2, G ′ · �k ≥ 2 then we consider the

exact sequence

0 → ω�(E) → ωC |(G ′+�) → ωC |G ′ → 0

and we operate as in C.2.1.
Otherwise, without loss of generality, we may assume E ·�h = 1 or G ′ ·�h = 1.
If E ·�h = 1 then by four-connectedness of C E ·�k ≥ 3, G ′·�h ≥ 3,G ′·�k ≥ 3.
Let G = G ′ + �h + �k and consider the splitting C = E + G: as in the previ-

ous case it is enough to prove the surjection of r1 : H0(G, ωC )⊗ H0(G, ωG) →
H0(G, ωC ⊗ ωG).
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With this aim we take the following exact sequence

0 → H0(�k, ω�k (E)) → H0(G, ωC ) → H0(G ′ + �h, ωC )

By our numerical conditions |ωG | is base point free and by connectedness we
have the surjection H0(ωG) � H0(�k, ωG).

By [12, (2.a.17), (3.a.6)] (or simply since we have sheaves of positive degree
on a rational curve) the multiplication map H0(�k, ωG) ⊗ H0(�k, ω�k (E)) �
H0(�k, ωG ⊗ ω�k (E)) is onto.

On the contrary deg OG ′+�h (−E) ≥ −1. Therefore we can consider a subsheaf

F ⊂ ωC |G ′+�h such that (F|G ′+�h )
⊗2 num∼ ωC |G ′+�h . Then for every B ⊂ G ′+�h

F|B has degree at least pa(B)+1 whilstωG⊗F−1 is an invertible sheaf of degree at
least pa(B). Whence by Proposition 210 H0(G ′ +�h, ωG)⊗ H0(G ′ +�h, ωC ) �
H0(G ′ + �h, ωG ⊗ ωC ) and then r1 is onto.

If G ′ ·�h = 1 then by four-connectedness of C E ·�h ≥ 3, E ·�k ≥ 3,G ′ ·�k ≥
3.

In this case we write Ẽ := E + �h , G̃ := G ′ + �k . We have a decomposition
C = Ẽ + G̃ where Ẽ is connected, G̃ is three-connected. Moreover by adjunction
we have the isomorphism ωG̃ = ωC (−Ẽ)|G̃ , where deg OG̃(−Ẽ) ≥ −1.

Arguing as above the theorem follows if we prove the surjection of the multi-
plication map r̃1 : H0(G̃, ωC )⊗ H0(G̃, ωG̃) → H0(G, ωC ⊗ ωG̃).

With this aim let us show firstly that h0(G ′,OG ′) = 1. Indeed, since �k is not
disconnecting for C , whilst it is disconnecting for C−�h h0(G ′+�h,OG ′+�h ) = 1.
Therefore since deg O�h (−G ′) = −1 and �h ∼= P

1 by the exact sequence

H0 (�h,O�h (−G ′)
) → H0 (G ′ + �h,OG ′+�h

)

→ H0 (G ′,OG ′
) → H1 (�h,O�h (−G ′)

)

we obtain h0(G ′,OG ′) = 1 because H0(�h,O�h (−G ′)) = H1(�h,O�h (−G ′)) =
0. Going back to G̃ := G ′ + �k let us take the exact sequence

0 → H0(�k, ω�k (E)) → H0(G̃, ωC ) → H0(G ′, ωC ) → 0.

We have H0(�k, ω�k (E))⊗H0(�k, ωG̃) � H0(�k, ω�k (E)⊗ωG̃) since�k ∼= P
1.

Finally, taking a subsheaf F ⊂ ωC |G̃ such that (FG̃)
⊗2 num∼ ωC |G̃ , we can

consider the two sheaves G1 := ωC ⊗ F−1 num∼ F , G2 := ωG̃ ⊗ F−1.
F ,G1,G2 satisfy the assumptions of Proposition 210, whence r̃1 is surjective

and we can conclude.

C.3. There exists two distinct irreducible components �h, �k such that �h ·�k = 0,
and � = �h + �k is not disconnecting.

In this case the situation is slightly different.
By §2.3 ρ2 : (H0(C, ωC ))

⊗2 � H0(C, ω⊗2
C ) iff K0,1(C, ωC , ωC ) = 0, and

by [12, (2.a.17)] K0,1(C, ωC , ωC ) = K0,2(C, ωC ).
Write C = A + �h + �k : since pa(�i ) = 0, pa(�h + �k) = −1 and all these

curves are not disconnecting then we can consider the long exact sequence of Kos-
zul groups (Proposition 27) for the decomposition C = A +�h +�k (respectively
for the decompositions C − �h = A + �k , C − �k = A + �h).
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We set W = H0(ωC ). By Theorem 211 for i ∈ {h, k} and every q ≥ 1K0,q(A+
�i , ωC ) = 0; consequently K0,q(A,W, ωC ) = 0 ∀q ≥ 1.

Therefore it is sufficient to prove that the following sequence is exact

K1,1(C, ωC )
ι �� K1,1(A,W, ωC )

π �� K0,2(�h + �k,W,O�h+�k (−A), ωC ).

First of all, since �h ∩ �k = {∅} we have O�k (−A − �h) ∼= O�k (−A) and
moreover we get the splitting of the exact sequence of invertible sheaves

0 → O�k (−A) → O�h+�k (−A) → O�h (−A) → 0.

In particular for every p, q Kp,q(�h +�k,W,O�h+�k (−A), ωC ) is isomorphic
to

Kp,q(�h,W,O�h (−A), ωC )
⊕

Kp,q(�k,W,O�k (−A), ωC )

Now we consider �k .
By Remark 28 K0,2(�k,W,O�k (−A), ωC ) ∼= K0,2(�k,O�k (−A), ωC |�k ).
By [12, (2.a.17)] and Remark 28 we have

K1,1(�k,W,O�k (−A − �h), ωC ) ∼= K1,0(�k,W, ω�k , ωC )

∼= [
K0,0(�k, ω�k , ωC |�k )⊗ H0(A + �h, ωA+�h )

] ⊕ K1,0(�k, ω�k , ωC |�k ) = 0

since by [12, (3.a.6)] both the summands are zero because �k ∼= P
1. By the same

arguments we get K0,2(�h,W,O�h (−A), ωC ) ∼= K0,2(�h,O�h (−A), ωC |�h ) and
K1,1(�h,W,O�h (−A − �k), ωC ) = 0.

Whence we obtain K1,1(�h + �k,W,O�h+�k (−A), ωC )) = 0, that is, ι is
injective.

To prove the surjectivity of π , we consider the following commutative diagram:

K1,1(C, ωC )� �

��

� � ��

ι

�������������� K1,1(A + �h , ωC )� �

�� ���������������������

K1,1(A + �k , ωC )

��������������
� � �� K1,1(A,W, ωC )

π2

��

π

���������������������
π1 �� K0,2(�k ,O�k (−A), ωC |�k )

��
K0,2(�h ,O�h (−A), ωC |�h )

�� K0,2(�h ,O�h (−A), ωC |�h )⊕ K0,2(�k ,O�k (−A), ωC |�k )

Nowπ1 is surjective since K0,2(A+�k, ωC ) = 0. Analogouslyπ2 is surjective.
Moreover we can write π = (π1, π2) by the above mentioned splitting and we

have K1,1(C, ωC ) = K1,1(A + �h, ωC ) ∩ K1,1(A + �k, ωC ) (that is, the space
of quadrics vanishing along C is given considering the intersection of the quadrics
vanishing along A + �h , respectively along A + �h). Therefore π is surjective,
which implies K0,2(C, ωC ) = 0.
C.4. For every irreducible subcurve �i appearing with multiplicity bigger than 2
one has �2

i ≤ 1 and for every pair of distinct curves �i , � j one has �i · � j = 1;
moreover the curve (�i + � j ) ⊂ C is always not disconnecting.
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C.4.1. Assume that C contains three components �1, �2, �3 (possibly equal) such
that �1 ·�2 = �2 ·�3 = �1 ·�3 = 1 and � := �1 +�2 +�3 is not disconnecting.
(Notice that if C has only one irreducible component, then we are exactly in this
case since necessarily �2

1 = 1 and multC (�1) ≥ 5 by four-connectedness of C).
In this case � is two-connected with arithmetic genus =1, E = C − G �= ∅ and

then we can proceed as in Case A, since ω� ∼= O� .

C.4.2. Assume that C contains three components �1, �2, �3 (possibly equal) such
that �1 · �2 = �2 · �3 = �1 · �3 = 1 and the curve � = �1 + �2 + �3 is
disconnecting.

In this case we can write C −�1 −�2 = E +�3 + G ′ with E,G ′ as in Lemma
32, that is, we have a decomposition C = E +�+G ′ with OG ′(−E) nef. Moreover
E · �3 ≥ 1, G ′ · �3 ≥ 1 since �3 ∼= P

1 and �1 + �2 is not disconnecting, and
similar inequalities hold for �1 and �2.

Let G = G ′ + �. Since E is connected it is enough to prove that r1 :
H0(G, ωC )⊗ H0(G, ωG) → H0(G, ωC ⊗ ωG) is onto.

Notice that for every i ∈ {1, 2, 3} we have deg�i
ωG ≥ 0 and H0(G, ωG) �

H0(�i , ωG).
Without loss of generality we may assume E ·�1 ≥ 2 since E ·(�1+�2+�3) ≥

4. We work as in Case C.2.1, i.e., we consider the splitting G = � + G ′ and we
take the sheaf ω�(E). Then we have the exact sequence

0 → H0(�1, ω�1(E)) → H0(�, ω�(E)) → H0(�2 + �3, ω�2+�3(�1 + E)) → 0

and by the same degree arguments adopted in Case C.2.1 it is immediately seen
that we have the surjective maps

H0(�1, ω�1(E))⊗ H0(�1, ωG) � H0(�1, ω�1(E)⊗ ωG)

H0(�2 + �3, ω�2+�3(�1 + E))

⊗H0(�2 + �3, ωG) � H0(�2 + �3, ω�2+�3(�1 + E)⊗ ωG)

that is, we get the surjection H0(�, ω�(E))⊗ H0(ωG) � H0(�, ω�(E) ⊗ ωG).
Finally, as in the previous cases H0(G, ωC )⊗ H0(ωG) � H0(G, ωC ⊗ωG) since
OG ′(−E) is nef, and then we can conclude that r1 is onto.
C.4.3. Finally, we are left with the case where C has exactly two irreducible com-
ponents, �1, �2 of nonpositive selfintersection: C = n1�1 +n2�2, �1 ·�2 = 1 and
�2

i ≤ 0 for i = 1, 2.
We may assume �2

1 ≥ �2
2. Since C is four-connected with an easy computation

we obtain �2
1 = 0 and multC (�i ) ≥ 4. Moreover n2 is even since C is an even

curve.
Notice that for every subcurve B = α1�1 + α2�2 ⊂ C

B · (C − B) = α2

(
n1 + (n2 − 1)�2

2

)

−α2(α2 − 1)�2
2 + α1(n2 − 2α2) ≥ α2

(
n1 + (n2 − 1)�2

2

)
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(since we may assume 2α2 ≤ n2 by the symmetry of the intersection product),
which implies B · (C − B) ≥ 4α2 because �2 · (C − �2) = n1 + (n2 − 1)�2

2 ≥ 4.
If�2

2 = 0, we take E = 2�1 +2�2. Then pa(E) = 1 and applying a refinement
of the above formula it is easy to see that C − E is numerically connected. In this
case we can conclude as in Case A.

If �2
2 < 0, let a1 = � n1

2 �, a2 = n2
2 and let G := a1�1 + a2�2, E := C − G =

(n1 − a1)�1 + a2�2.
Now E is numerically connected and G is two-connected. Indeed, let us con-

sider a subcurve B = α1�1+α2�2 ⊂ G. Since 2G ·B ≥ G ·B we have B ·(G−B) ≥
1
4 2B · (C − 2B) ≥ 2 since 2B · (C − 2B) ≥ 8α2 by the above formula, whereas if
B ⊂ E then B · (E − B) ≥ 1

4 2B · (C − �1 − 2B) ≥ 1.
Therefore it is enough to prove the surjection of

r1 : H0(G, ωC )⊗ H0(G, ωG)→H0(G, ωG ⊗ ωC ).

We have the following exact sequence

0 → H0(a1�1 + �2, ωa1�1+�2(E)) → H0(G, ωC ) → H0((a2 − 1)�2, ωC ) → 0

and moreover H0(G, ωG) � H0((a2 − 1)�2, ωG) since a1�1 +�2 is numerically
connected.

By [6, Theorem 3.3] |ωG | is a base point free system on G since G is two-
connected. Let W := im{H0(G, ωG) → H0(a1�1 + �2, ωG)}. Then W is a base
point free system and moreover we have H1(a1�1 + �2, ωa1�1(E) ⊗ ωG

−1) ∼=
H1(a1�1 + �2, E − (a2 − 1)�2) = 0 because �i ∼= P

1, �2
1 = 0, �1 · �2 = 1 and

(E − (a2 − 1)�2) · �1 = 1, (E − (a2 − 1)�2) · �2 ≥ 1 since E is one-connected.
Therefore by Proposition 25 we have the surjection

H0(a1�1 + �2, ωa1�1+�2(E))⊗ W � H0(a1�1 + �2, ωa1�1+�2(E)⊗ ωG)

Finally H0((a2−1)�2, ωG)⊗H0((a2−1)�2, ωC ) � H0((a2−1)�2, ωG⊗ωC )

follows from (i) of Proposition 25 taking H = ωC ,F = ωG if O�2(E) is nef , or
F = ωC ,H = ωG if O�2(−E) is nef. ��

5. On the canonical ring of regular surfaces

In this section we prove Theorem 12. The arguments we adopt are very classical
and based on the ideas developed in [8]. Essentially we simply restrict to a curve
in the canonical system |KS|. The only novelty is that now we do not make any
requests on such a curve (i.e. we allow the curve C ∈ |KS| to be singular and with
many components) since we can apply Theorem 11.

By assumption there exists a three-connected not honestly hyperelliptic curve
C = ∑s

i=1 ni�i ∈ |KS|. Let s ∈ H0(S, KS) be the corresponding section, so that
C is defined by (s) = 0.

By adjunction we have (K ⊗2
S )|C = (KS + C)|C ∼= ωC , that is, C is an even

curve; in particular it is four-connected. Thus we can apply Theorem 11, obtaining
the surjection

(H0(C, K ⊗2
S ))⊗k � H0(C, K ⊗2k

S ) ∀k ∈ N.
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Now let us consider the usual maps given by multiplication of sections

Al,m : H0(S, K ⊗l
S )⊗ H0(S, K ⊗m

S ) → H0(S, K ⊗(l+m)
S )

al,m : H0(C, K ⊗l
S )⊗ H0(C, K ⊗m

S ) → H0(C, K ⊗(l+m)
S )

and consider the following commutative diagram

0

��

0

��
H0(S, K ⊗(k−1)

S )

Ck
��

∼= �� H0(S, K ⊗(k−1)
S )

ck

��⊕
l + m = k
0 < l ≤ m

[
H0(S, K ⊗l

S )⊗ H0(S, K ⊗m
S )

]

Rk

��

ρk �� H0(S, K ⊗k
S )

rk

��⊕
l + m = k
0 < l ≤ m

[
H0(C, K ⊗l

S )⊗ H0(C, K ⊗m
S )

]

��

ρk �� H0(C, K ⊗k
S )

��
0 0

Here the left hand column is a complex, while the right hand column is exact.
Moreover

• Ck is given by tensor product with s while ck is given by product with s
• Rk = ⊕

l + m = k
0 < l ≤ m

rl ⊗ rm (where rl , rm are the usual restrictions)

• ρk =
⊕

l + m = k
0 < l ≤ m

Al,m and ρk =
⊕

l + m = k
0 < l ≤ m

al,m

Note that coker(ρk) ∼= coker(ρk) for every k ∈ N.
Now, for S of general type, if pg ≥ 1 and q = 0 by [8, Theorem 3.4 ] ρk is

surjective for every k ≥ 5 except the case pg = 2, K 2 = 1, which is not our case
since otherwise C would be a curve of genus 2 contradicting our assumptions. For
k = 4 the map a2,2 is surjective by Theorem 11. Whence ρ4 and ρ4 are surjective,
and this proves the theorem. ��
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