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Abstract

Let C be a numerically connected curve lying on a smooth algebraic
surface. We show that an invertible sheaf H num∼ ωC ⊗ A is normally
generated on C if A is an ample invertible sheaf of degree ≥ 3.

As a corollary we show that on a smooth algebraic surface of general
type the invertible sheaf K⊗3

S yields a projectively normal embedding of
S assuming KS ample, (KS)2 ≥ 3, pg(S) ≥ 2 and q(S) = 0.
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1 Introduction

Let C =
∑s

i=1 niΓi be a curve (possibly non reduced or reducible) lying on
a smooth algebraic surface S (Γi’s are the irreducible components of C and
ni’s are the multiplicities). Write OC for the structure sheaf of C, ωC for the
dualizing sheaf of C and pa(C) = 1− χ(OC) for the arithmetic genus of C.

LetH be an invertible sheaf on C. We recall the notion of normal generation
as introduced by Mumford in [9] .

Definition . H is said to be k-normal if the multiplication map

ρk : (H0(C,H))⊗k −→ H0(C,H⊗k)
∗Research carried out under the MIUR project “Geometria delle Varietà algebriche”
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is surjective. H is said to be normally generated if the maps ρk are surjective
for all k ∈ N.

This corresponds to say that the graded ring R(C,H) =
⊕
k≥0

H0(C,H⊗k)

is generated in degree 1. We remark that if H is ample on C then H turns
out to be normally generated if and only if H is very ample and the associated
embedded scheme ϕ|H|(C) ⊂ P(H0(C,H)∨) is arithmetically Cohen–Macaulay,
i.e., its homogeneous coordinate ring is a Cohen–Macauly ring.

Our first result is the following

Theorem 1. Let C be a numerically connected curve contained in a
smooth algebraic surface and let H num∼ ωC ⊗ A, with A an ample invertible
sheaf such that

degH|B ≥ 2pa(B) + 1 ∀ subcurve B ⊆ C

Then H is normally generated on C

In [5] it was shown that the above theorem is true except in some excep-
tional cases. In the present paper we show that also in these particular cases H
is normally generated. The proof of the theorem rely on the theory of Koszul
cohomology developed by Green in [6] and the classical “ Mumford’s argu-
ment” for 1-dimension Cohen–Macaulay projective scheme (see Lemma 5), via
a detailed analysis of numerically connected curves with multiple components.

The study of the ring R(C,H) for a numerically connected curve has many
applications in several aspects of the theory of algebraic surfaces. For instance
if one consider the resolution of a normal surface singularity π : S → X or the
relative canonical algebra of a fibration f : S → B (cf. [5]).

Another application of these kind of results can be found in the analysis
of pluricanonical maps of algebraic surface of general type. Indeed, simply
by restriction to divisors in an appropriate linear system we can get further
information on the degree of the generators of the canonical rings or on the
projective normality of a surface embedded by a pluricanonical system. In
particular the above theorem 1 turns out to be particular useful in the special
situations where it is impossible to consider theorems of Bertini type.

Our result on pluricanonical embeddings is the following

Theorem 2. Suppose that S is a smooth surface of general type with KS

ample.
Assume (KS)2 ≥ 3, pg(S) = h0(S,KS) ≥ 2 and q = h1(S,OS) = 0.
Then K⊗3

S is normally generated on S.

We remark that, with mild assumptions, the very ampleness of K⊗3
S has

been proved in [2] (see [2, §5] for the proof). Here the hypotheses pg(S) ≥ 2
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and q = 0 are needed to apply our restriction methods. The theorem then
follows by the methods used in [3] simply applying theorem 1.

The paper is organized as follows: in §2 some useful background results are
pointed out; in §3 we study Koszul groups for curves with many components; in
§4 we analyze some properties of even curves and even divisors; in §5 we prove
Thm. 1; in §6 we study the tricanonical embedding of a surface of general type
S with (KS)2 ≥ 3.

2 Notation and background results

2.1 Notation and conventions

We work over an algebraically closed field K of characteristic ≥ 0.
Throughout this paper by a curve C we will mean a curve C =

∑s
i=1 niΓi

lying on a smooth algebraic surface S, and we will denote by Γi each irreducible
component of C and by ni the multiplicity of Γi in C.

Let F be an invertible sheaf on C. For each i the natural inclusion map
εi : Γi → C induces a map ε∗i : F → F|Γi

. Setting di = degF|Γi
we define the

multidegree of F on C d := (d1, ..., ds).
By Picd(C) we denote the Picard scheme which parametrizes the classes of

invertible sheaves of multidegree d = (d1, . . . , ds) (see [5]).
Two invertible sheaves F , F ′ are said to be numerically equivalent on C

(notation: F num∼ F ′) if degF|Γi
= degF ′

|Γi
for all Γi.

By a general local transverse cut ∆i we mean a 0–dimensional subscheme
of C with support a general smooth point Q of Cred such that OC(∆i) is
invertible. As a scheme, ∆i

∼= K[x]/(xν), where ν = multQ(C).
C is said to be numerically m-connected if C1 · C2 ≥ m for every effective

decomposition C = C1 +C2, where C1 ·C2 denotes their intersection number as
divisor on S. A curve C is said to be numerically connected if it is 1-connected.

We recall that a curve C is honestly hyperelliptic if there exists a finite
morphism ψ : C → P1 of degree 2. In this case C is either irreducible, or of the
form C = Γ1 +Γ2 with pa(Γi) = 0 and Γ1 ·Γ2 = pa(C)+1. (See [2] for details)

2.2 General divisors of low degree

We recall two vanishing theorem proved in [5] on “general “ invertible sheaves
of low degree.

Theorem 3. Assume C =
∑s

i=1 niΓi to be a curve contained in smooth
algebraic surface. Let d = (d1, ..., ds) ∈ Ns be such that for each invertible
sheaf G′ of multidegree d we have

deg G′|B ≥ pa(B) ∀ subcurve B ⊆ C

Then for [G] general in Picd(C), H1(C,G) = 0.
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Theorem 4. Assume C =
∑s

i=1 niΓi to be a curve contained in smooth
algebraic surface. Let d = (d1, ..., ds) ∈ Ns be such that for each invertible
sheaf F ′ of multidegree d we have

degF ′
|B ≥ pa(B) + 1 ∀ subcurve B ⊆ C

Then for [F ] general in Picd(C), |F| is a base-point free system.

For a proof of the above theorems see [5, Thm. 3.1, 3.2].

2.3 Mumford’s argument

To prove the surjection of a certain multiplication map Mumford’s argument
consists in finding a useful subsheaf and then analyzing the natural decompo-
sition which come out.

Proposition 5 (Mumford’s argument). Let L, H be invertible sheaves
on a curve C with |H| and |L| base point free systems.

Let F ∼= H(−∆) (∆ a 0-dimensional scheme) be an invertible subsheaf of
H so that |F| is a base point free system on C. Assume furthermore that the
sequence

0 → F → H → O∆ → 0

is exact on global sections and that the multiplication map p1 : H0(F) ⊗
H0(L) → H0(F ⊗ L) is onto. Then we have a surjection

r1 : H0(H)⊗H0(L) � H0(H⊗L)

For a proof see [9, Thm. 6]. Applying Prop. 8 and Thm. 3–4 as a corollary
of we get the following (see. [5, Thm. A])

Theorem 6. Let H be an invertible sheaf on C such that H num∼ F ⊗ G,
where F ,G are invertible sheaves such that

deg G|B ≥ pa(B) ∀ subcurve B ⊆ C (1)
degF|B ≥ pa(B) + 1 ∀ subcurve B ⊆ C (2)

Then the natural multiplication map (H0(H))⊗2 → H0(H⊗2) is onto.
Moreover, if C is numerically connected then H is normally generated on C.

3 Koszul cohomology groups of algebraic curves

3.1 Definition and basic results

In this section we recall the notion of Koszul cohomology groups as introduced
and developed by Green in [6], and we focus on some applications of Koszul
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cohomology to the analysis of invertible sheaves on a numerically connected
curve C. We recall the duality between certain Koszul cohomology groups
proved in [5] and we prove a slightly generalization of Green’s H0-Lemma.

Let H, F be invertible sheaves on C and let W ⊆ H0(C,F) be a subspace
which yields a base point free system of projective dimension r.

Let MF be the Kernel of the evaluation map W ⊗OC
eV→ F . Twisting with

H⊗Fq and taking exterior powers we get the following exact sequence

0 →Mp,q →
p∧
W ⊗H⊗Fq →Mp−1,q+1 → 0

where Mp,q denotes the sheaf
∧p

MF ⊗H ⊗ Fq. Taking cohomology we have
the following commutative diagram:

0
↓

H0(Mp+1,q−1)
↓

p+1∧
W ⊗H0(H⊗Fq−1) 0

ϕp,q ↓ ↘dp+1,q−1 ↓

0 → H0(Mp,q) →
p∧
W ⊗H0(H⊗Fq) −→H0(Mp−1,q+1)

↓ dp,q ↘ ↓

H1(Mp+1,q−1)
p−1∧

W ⊗H0(H⊗Fq+1)
↓

p+1∧
W ⊗H1(H⊗Fq−1)

where dp,q are the Koszul differentials, defined as follows:

dp,q :
∧p

W ⊗H0(C,H⊗Fq) −→
∧p−1

W ⊗H0(C,H⊗Fq+1)∑
si1 ∧ si2 ∧ . . . ∧ sip ⊗ αi1i2...ip 7→

∑
si1 ∧ . . . ŝij . . . ∧ sir−1 ⊗ αi1...̂ıj ...ip · sij

(here {s0, . . . , sr} is a basis for W .)
The Koszul groups Kp,q(C,W,H,F) are defined by ker dp,q/ im dp+1,q−1.
If W = H0(C,F) they are usually denoted by Kp,q(C,H,F), while if H ∼=

OC the usual notation is Kp,q(C,F). Notice that the multiplication map

W ⊗H0(C,H) → H0(C,F ⊗H)

is surjective if and only if K0,1(C,W,H,F) = 0 and that F is normally gener-
ated if and only if K0,q(C,F) = 0 ∀ q ≥ 1.

For our analysis the main applications of Koszul cohomology are the fol-
lowing propositions.
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Proposition 7 (Duality). Let W ⊆ |F| be a base point free system of
dimension r. Then

Kp,q(C,W,H,F) d Kr−p−1,2−q(C,W,ωC ⊗H−1,F)

(where d means duality of vector space).

For a proof see [5, Prop. 1.4].

Proposition 8 (H0-Lemma). Let F , H be invertible sheaves on C and
assume W ⊆ H0(C,F) to be a subspace of dim = r + 1 which yields a base
point free system. If either

(i) H1(C,H⊗F−1) = 0,
or

(ii) C is numerically connected, ωC
∼= H⊗F−1 and r ≥ 2,

or

(iii) C is numerically connected, h0(C,ωC⊗H−1⊗F) ≤ r−1 and there exists
a reduced subcurve B ⊆ C such that:

• W ↪→W|B ,

• H0(C,ωC ⊗H−1 ⊗F) ↪→ H0(B,ωC ⊗H−1 ⊗F),

• every non–zero section of H0(C,ωC ⊗ H−1 ⊗ F) does not vanish
identically on any component of B;

then K0,1(C,W,H,F) = 0, that is, the multiplication map

W ⊗H0(C,H) → H0(C,F ⊗H)

is surjective.

Proof. By duality we need to prove that Kr−1,1(C,W,ωC ⊗ H−1,F) = 0.
To this aim let {s0, . . . , sr} be a basis for W and let α =

∑
si1 ∧ si2 ∧ . . . ∧

sir−1 ⊗ αi1i2...ir−1 ∈
∧r−1

W ⊗ H0(C,ωC ⊗ H−1 ⊗ F) be an element in the
Kernel of the Koszul map dr−1,1.

In cases (i) and (ii) obviously α = 0 (see [5] for details).
In the latter case by our assumptions we can restrict to the curve B. Since B

is reduced we can choose r+1 “sufficiently general points” on B so that sj(Pi) =
δi
j . But then α ∈ ker(dr−1,1) implies for every multiindex I = {i1, . . . ir−2} the

following equations (up to sign)

αj1i1...ir−2 · sj1 + αj2i1...ir−2 · sj2 + αj3i1...ir−2sj3 = 0.

(where {i1, . . . ir−2} ∪ {j1, j2, j3} = {0, . . . , r + 1}).
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Evaluating at P ′
js and reindexing we get

αi1...ir−1(Pik
) = 0 ∀k = 1, . . . , r − 1.

But now, since the P ′
js are in general positions and every section ofH0(C,ωC⊗

H−1 ⊗F) does not vanish identically on any component of B, we may assume
that any (r − 1)-tuple of points Pi1 , . . . , Pir−1 imposes independent conditions
on H0(C,ωC ⊗H−1 ⊗F).

The proposition then follows by a dimension count since by assumptions
h0(C,ωC ⊗H−1 ⊗F) ≤ h0(C,F)− 2 = r − 1.

Sometimes it turns out to be very useful the classical base point free pencil
trick. For curves with several components we need some accuracy. It can be
stated as follows:

Proposition 9 (Base point free pencil trick). Let C be a numerically
connected curve and let F , H be invertible sheaves on C. Assume that s1
and s2 are two sections in H0(F) having no common zeros and not vanishing
identically on any subcurve of C. Assume furthermore that for every nonzero
section t ∈ H0(H), t does not vanish identically on any subcurve of C.

Then the kernel of the map

H0(H)s1 ⊕H0(H)s2 −→ H0(F ⊗H)
( t1 , t2 ) 7→ t1 ⊗ s1 + t2 ⊗ s2

is isomorphic to H0(H⊗F−1).

Proof. With this given hypotheses the proof works essentially in the same
way as the classical proof. Indeed, by our assumptions the kernel is isomorphic
to the space of pairs t1, t2 such that t1⊗ s1 = −t2⊗ s2. Since these sections do
not vanish identically on any subcurve of C, and s1, s2 have no common zeros,
this is equivalent to say that t1 is zero at the zeros Λ2 of s2, i.e., we can write
t1 = λ · s2 and then t2 = λ · s1 with λ ∈ H0(C,H(−Λ2)) ∼= H0(H⊗F−1).

4 Even curves and even divisors

Even divisors and even curves can be defined in a very natural way as follows.

Definition 10. Let C =
∑s

i=1 niΓi be a curve contained in a smooth
algebraic surface and let H be a numerically effective invertible sheaf on C.
Then H is said to be even if

degH|Γi
is even ∀ irreducible Γi ⊂ C
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Definition 11. Let C =
∑s

i=1 niΓi be a numerically connected curve
contained in a smooth algebraic surface. Then C is said to be even if

degωC |Γi
is even ∀ irreducible Γi ⊂ C

(this is equivalent to say Γi · (C − Γi) even ∀i.)

Even curves and even divisors appear for instance if you consider the canoni-
cal system |KS | for a surface S of general type and may have useful applications
to the analysis of pluricanonical maps of algebraic surfaces. Indeed, by adjunc-
tion, for every curve C ∈ |KS | we have |(2KS)|C | = |KC |, that is every curve
in the canonical system is even.

4.1 Combinatorial properties of even curves

Now we analyze some useful combinatorial properties of numerically connected
even curves.

First of all we have

Remark 12. Let C =
∑s

i=1 niΓi be a numerically connected even curve.
Then there exists an invertible sheaf G of multidegree δ = (δ1, . . . , δs) such that

G⊗2 num∼ ωC .

The following technical lemmas will turn out to be useful in the analysis of
the particular cases of Theorem 1.

Lemma 13. Let C =
∑s

i=1 niΓi be a numerically connected curve con-
tained in a smooth algebraic surface.

Suppose that there exists an invertible sheaf G of multidegree δ = (δ1, . . . , δs)
such that G⊗2 num∼ ωC .

Then for a general effective divisor OC(∆) in Picδ every non–zero section
in H0(C,OC(∆)) does not vanish identically on any proper subcurve of C.

Proof. The lemma follows since for every decomposition C = A + B we
have

0 → H0(B,OB(∆)⊗OB(−A)) → H0(C,OC(∆)) → H0(A,OA(∆)) → 0

and by a degree argument it isH0(B,OB(∆)⊗OB(−A)) = 0. Indeed by duality
and adjunction it is equivalent to prove that H1(B,ωC ⊗OB(∆)−1) = 0. This
follows by Thm. 3 since by numerically connectedness deg(ωC⊗OC(∆)−1)|B′ =
1
2 degωC |B′ ≥ pa(B′) for every B′ ⊆ B.

Finally we consider the particular situation where Γ · (C −Γ) = 2 for every
irreducible component Γ
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Lemma 14. Let C be 2- connected, C 6= nΓ and assume that for all
irreducible Γ ⊂ C, Γ · (C − Γ) = 2. Then

(i) for every Γ, multC(Γ) ≤ 2;

(ii) if C is nonreduced we can write C = Cred +B where Cred =
∑s

i=1 Γi and

B =
∑k

i=1 Γi (k ≤ s) are chains of reduced and irreducible components
such that:

• Cred ·B = 2;

• both Cred and B are numerically connected (and their dual graphs
are simply connected);

• Cred · Γ1 = Cred · Γk = 1, while Cred · Γi = 0 ∀ i = 2, . . . , k − 1.

Proof. (i) Let n = multC(Γ) and let D = C − nΓ. Assume that n ≥ 3. By
hypotheses

Γ · (D + (n− 1)Γ) = 2

and ∀ m, 1 ≤ m ≤ n− 2 we have (n−m)Γ · (D +mΓ) ≥ 2 i.e.,

Γ2 ≥ 1− Γ ·D
m

.

Writing Γ2 = 2−Γ·D
(n−1) then we have

2−Γ·D
(n−1) ≥

1−Γ·D
m ⇔

2m−(n−1)
(n−1)m ≥

(
Γ ·D

) (
m−(n−1)
(n−1)m

)
⇔

1 > 1− m
(n−1)−m ≥ Γ ·D

which is absurd since Γ ·D ≥ 1 by numerically connectedness.
(ii) Let Γ ⊂ C be an irreducible subcurve of multiplicity 2 and let Γ′ be

another irreducible component which intersects Γ. If multC(Γ′) = 1 then Γ′ ·
(2Γ) ≥ 2 implies Γ′ · (2Γ) = Γ′ · (C − Γ′) = 2 and then Γ′ is extremal in the
graph.

Now let us consider the nonreduced part of C, say C ′ =
∑k

i=1 2Γi and
write C = C ′ +C ′′, where C ′′ consists of disconnected extremal components of
multiplicity 1, so that B = C ′

red =
∑k

i=1 Γi and Cred = C ′
red + C ′′.

Notice that, by the above remark, for every Γi ⊂ C ′ there exists at least a
Γj ⊂ C ′ which intersects Γi. Moreover by 2-connectedness

B · Cred = (
k∑

i=1

Γi)(
k∑

j=1

Γj + C ′′) ≥ 2.
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Since for every i we have Γi(C − Γi) = 2 this inequality can be read as

k∑
i=1

Γi ·
[
(C − Γi)−

k∑
j = 1
j 6= i

Γj

]
=

k∑
i=1

[
2−

k∑
j = 1
j 6= i

Γi · Γj

]
≥ 2

which is equivalent to
k∑

i, j = 1
j 6= i

2Γi · Γj ≤ 2k − 2

i.e., ∀ i = 1, . . . , k ∃ unique j > i s.t. Γi · Γj = 1 and equalities hold
throughout.

This exactly means that B and then Cred are chains of irreducible and
reduced components, such that Cred · B = 2. In particular B and Cred are
numerically connected since C is 2-connected (cf. [4] ).

The last assertion follows since for every i we have Γi(C − Γi) = 2.

4.2 Numerically connected even irreducible curves

Next we focalize on irreducible but nonreduced curves.

Lemma 15. Let C = 3Γ be an irreducible but reduced curve of multiplic-
ity 3 contained in a smooth algebraic surface. Suppose C 3-connected.

Then h1(C,ωC(−∆)) = 1 for a general effective divisor ∆ of (multi)degree
δ ≤ 1

2 (degΓ ωC).

Proof. First of all notice that ωC is very ample and yields an embedding
ϕωC

(C) ⊂ PN since C is 3-connected and not honestly hyperelliptic (see [2,
§3]), and that for a general ∆ of degree δ ≤ 1

2 (degΓ ωC), by [5, Thm. 3.1] it is

H0(C,ωC) � H0(2Γ, ωC) � O∆|2Γ

The proof will be made by induction on δ.
For δ = 1 take a point Q. ∆ will be chosen among all the Cartier divisors

of degree 1 with support Q.
We recall that the set of all Cartier divisor of multidegree = 1 concentrated

at Q is isomorphic to

BQ = {[g] | g ∈ OQ,C ; vQ(σ(g)) = 1}

where σ : C → Γ is the reduction morphism and vQ(·) is the valuation at Q in
OQ,Γ (see [10, §4]). Furthermore if C = nΓ is contained in a smooth algebraic
surface then BQ

∼= An−1 (see e.g. [10, 4.3.1]).
Now it isH0(C,ωC) � KQ andH0(C,ωC) � ∆|2Γ for every local transverse

cut ∆ supported at Q since ωC is very ample and length(∆|2Γ) = 2. Finally,
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two sections in H0(C,ωC) vanishing at Q, vanish contemporarily on ∆ if and
only if they define the same element in BQ.

Thus, if H0(C,ωC) � BQ we can take ∆ to be any local transverse cut.
Otherwise we take ∆ not in the image of H0(C,ωC) → BQ, which exactly
means that there exists a section of H0(C,ωC) which vanish on ∆|2Γ but not
on ∆, i.e. H0(C,ωC) � O∆.

Now assume the theorem for δ′ < δ and consider a general divisor ∆′ of
degree δ − 1. By induction we may assume H1(C,ωC(−∆′)) = 1 and the
restriction map

H0(C,ωC(−∆′)) → H0(2Γ, ωC(−∆′))

to be of maximal rank.
Thus, we simply take a general point Q not in the base locus of |ωC(−∆′)|

and a general local transverse cut ζ supported at Q.
We have H0(C,ωC(−∆′)) � KQ and, by degree consideration, there exist

at least two independente sections s1, s2 ∈ H0(C,ωC(−∆′)) vanishing at Q but
not vanishing on any subcurve of C. Whence, arguing as above, for ζ general we
have H0(C,ωC(−∆′)) � ζ|2Γ, and then we can repeat the argument adopted
for the case δ = 1.

Taking ∆ = ∆′ + ζ we obtain the required surjection.

5 Normally generated adjoint divisors

This section is devoted to the proof of Theorem 1 stated in the introduction.
We remark that the first half page of the proof is exactly the same of [5,

Thm. B]. For completeness and for the reader’s benefit we have decided to
rewrite here also this part.
Proof of Theorem 1. For all k ∈ N we have to show the surjectivity of the
maps

ρk : (H0(C,H))⊗k −→ H0(C,H⊗k)

For k = 0, 1 it is obvious since C is numerically connected. For k ≥ 3 we use
induction applying Proposition 8 to the sheaves H⊗(k−1) and H.

Now we treat the case k = 2.
Let C =

∑s
i=1 niΓi be our curve, and for all i = 1, . . . , s set γi = degωC |Γi

,
di = degH|Γi

. By our assumptions for all i = 1, . . . , s there exists an integer
δi such that γi ≤ 2δi ≤ di. Taking δi general local transverse cuts on each
irreducible component Γi, then we find an invertible sheaf G of multidegree
(δ1, . . . , δs) such that

degωC |B ≤ deg G⊗2
|B ≤ degH|B

i.e., by 1-connectedness deg G|B ≥ pa(B) for all B ⊂ C, except possibly for
B = C.
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Set F := H(−∆) ∼= H⊗G−1. Then we have degF⊗2
|Γi

≥ degH|Γi
∀i, whence

degF|B ≥ pa(B) + 1 for all B ⊆ C.

Case 1. There exists an index h s.t. γh < 2δh ≤ dh .
In this case F and G satisfy the hypotheses of Theorem 6 and then we can

conclude.

Case 2. For all i = 1, . . . , s
{

degωC |Γi
is even

degA|Γi
= 1

Here we will treat firstly the general situation, showing that we may find a
new decomposition H num∼ F ′ ⊗ G′, with F ′ and G′ as in Theorem 6, and then
we will treat the exceptional cases.

To this aim let us consider the following list

(a) C = nΓ, n ≥ 3, Γ2 even;

(b) C = Γ1 + 2Γ2,Γ1 · Γ2 = 1;

(c) For all irreducible Γ ⊂ C, Γ · (C − Γ) = 2.

Claim 16. Assume that for all i = 1, . . . , s degωC |Γi
is even and

degA|Γi
= 1. If C does not belong to the above list then there exists a decom-

position H num∼ F ′ ⊗ G′, with F ′ and G′ as in Theorem 6.

Proof. By hypotheses there exists an irreducible component Γh of multi-
plicity nh such that Γh · (C − Γh) ≥ 4.

Taking Ah a general transverse cut on this component, we let G′ := G⊗Ah,
F ′ := F ⊗A−1

h , and we infer that G′ and F ′ satisfy respectively condition (3)
and condition (4) of Theorem 6.

For G′ this is obvious. About F ′ we have

degF ′
|B =

degωC |B

2
+ degA|B − degAh|B

Thus, if B = C the required inequality holds since degA|B − degAh|B ≥ 2
because case (a) and (b) do not occur, while if B ⊂ C and B 6= mhΓh it holds
because C is 2-connected and degA|B − degAh|B ≥ 1. Finally, if B = mhΓh

(1 ≤ mh ≤ nh) it holds thanks to our choice of Γh.

The exceptional configurations.
In the configurations (a), (b), (c) listed above we can no longer find a

suitable decomposition with F ↪→ H , |F| b.p.f. and H1(F) = H1(H⊗F−1) =
0.

In these particular configurations we have

G ∼= OC(∆) is an invertible sheaf such that ωC
num∼ G⊗2 (3)
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F = H(−∆) ∼= H⊗ G−1 is an invertible subsheaf of H s. t. F num∼ G ⊗A
(4)

In particular deg G|C = pa(C)− 1 and degF|C ≥ pa(C) + 2, while

For every subcurve B ⊆ C

{
deg G|B ≥ pa(B)
degF|B ≥ pa(B) + deg(A|B)

Hence by theorems 3, 4 and Lemma 13, for a general ∆ we may assume
H1(F) = 0, |F| b.p.f. and H1(B,G) = 0 for every proper subcurve B ⊂ C.

By Mumford’s argument the theorem will follow if we show that F and H
satisfy the hypotheses of the H0-Lemma (Prop. 8).

Now we are able to consider the exceptional configurations.

Configuration (a). C = nΓ, n ≥ 3, Γ2 even.
We will consider firstly the case n = 3 and then we will apply induction for

n ≥ 4.
Assume that C = 3Γ, Γ2 even. Let us consider F = H(−∆),G = OC(∆).

For a general choice of ∆, |F| is a base point free system of degree pa(C)+2 and
projective dimension 2 such that |F| ↪→ |F|Γ|. Furthermore (ωC⊗H−1⊗F) num∼
G i.e., h0(C,ωC ⊗H−1 ⊗F) = 1 by Lemma 15. Thus H0-lemma holds and we
can conclude .

Now let us consider the case C = nΓ, n ≥ 4, Γ2 even.
Here we can proceed by induction taking the splitting C = C ′ +C ′′, where

C ′ = 3Γ and C ′′ = (n − 3)Γ. Let us consider the following commutative
diagram:

H0(C ′, ωC′ ⊗A)⊗H0(H) ↪→ H0(H)⊗H0(H) � H0(C ′′,H)⊗H0(H)
t1 ↓ ρ2 ↓ t3 ↓

H0(C ′, ωC′ ⊗A⊗H) ↪→ H0(C,H⊗2) � H0(C ′′,H⊗2)

(where H0(H) = H0(C,H)).
On C ′′ we can apply the standard argument since we are in Case 1 discussed

above, and then we get the surjectivity of t3. On C ′ = 3Γ, we have the
multiplication of two adjoint divisors ωC′⊗A , with degA = 3 andH ∼= ωC′⊗A′

with degA′ ≥ 6, and then we can proceed as in the previous cases applying
the H0-lemma.

Configuration (b). C = 2Γ1 + Γ2,Γ1 · Γ2 = 1.
Let F = H(−∆),G = O(∆) and let us consider Cred = Γ1 + Γ2. Notice

that degF|Γi
= pa(Γi) + 1 and deg G|Γ1 = pa(Γi) for i = 1, 2.

We claim that F andH satisfy (iii) of the Proposition 8. Indeed for a general
∆ we have h0(C,F) = 3 and by 2-connectedness we may assume h0(Γ1,F ⊗
OΓ1(−Cred)) = 0, i.e., H0(C,F) ↪→ H0(Cred,F). Moreover, (ωC ⊗ H−1 ⊗
F)⊗2 num∼ G⊗2 num∼ ωC , thus by Lemma 13 each non-zero section of H0(C,ωC ⊗
H−1 ⊗F) does not vanish identically on any component of Cred.
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To apply Proposition 8 we need an estimate for h0(C,ωC ⊗H−1⊗F). This
follows since deg(ωC⊗H−1⊗F)|Γ2 = pa(Γ2), and furthermore ωC⊗H−1⊗F num∼
G: thus by Lemma 13, for a general ∆, H0(C,ωC ⊗H−1 ⊗F) ↪→ H0(Γ2, ωC ⊗
H−1 ⊗F) and we may assume this vector space being of dimension 1.

Configuration (c). For all irreducible Γ ⊂ C, Γ · (C − Γ) = 2.
Let G = OC(∆) and F = H(−∆). Notice that for all irreducible Γ ⊂ C, we

have degF|Γ = pa(Γ) + 1 and deg G|Γ = pa(Γ).
If C is reduced |F| is a base point free system of projective dimension r ≥ 2

(since by numerically conditions degA ≥ 3) while ωC⊗H−1⊗F num∼ G satisfies
Lemma 13. To conclude we only need h0(C,ωC ⊗ H−1 ⊗ F) ≤ h0(C,F) − 2.
This can be easily seen since, as above, for a general ∆ we have H0(C,ωC ⊗
H−1 ⊗F) ↪→ H0(Γ, ωC ⊗H−1 ⊗F) ∼= C.

Thus H0-lemma holds and we can conclude .
Now let us assume C non reduced. By the above analyses we may assume

that Cred has at least 3 component.
Let us consider the splitting of Lemma 14, C = Cred+B where B =

∑k
i=1 Γi

is a chain of reduced curve such that

Cred · Γ1 = Cred · Γk = 1 , Cred · Γi = 0 ∀ i = 2, . . . , k − 1.

Now, by degree consideration (since we have degF|Γi
= pa(Γi) + 1,) for F

sufficiently general, we may assume h1(B,OB(F) ⊗ OB(−Cred)) = 0 i.e., the
exact sequence

0 → OB(F)⊗OB(−Cred) → F → OCred
(F) → 0

is exact on global sections.
This means that we can pick a subspace W ⊆ H0(C,F) such that W is

isomorphic to H0(Cred,F) (hence of dimension r+1 ≥ 3) and W yields a base
point free subsystem of |F| (since it is base point free on Cred).

Moreover, (ωC ⊗H−1 ⊗F)⊗2 num∼ ωC , i.e. deg(ωC ⊗H−1 ⊗F)|Γi
= pa(Γi)

for every i. Thus by the particular configuration of Cred (it is a chain of
curves), applying an induction argument on the number of components we get
h0(Cred, ωC ⊗H−1 ⊗F) = h0(C,ωC ⊗H−1 ⊗F) = 1.

Finally, by Lemma 13 every section of H0(C,ωC⊗H−1⊗F) does not vanish
on any component of Cred.

Thus H0-Lemma applies and then the theorem follows.
Q.E.D. for Theorem 1

6 Projectively normal tricanonical embeddings
of algebraic surfaces

In this section we prove that the image of the tricanonical embedding of a
surface of general type is projectively normal.
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The arguments we adopt to show the projective normality are very classical
and based on the restriction of a curve in the canonical system. The only
novelty is that now we do not make any requests on such a curve (i.e. we allow
the curve to be singular and with many components) since we can apply Thm.
1.

Proof of Thm. 2. The proof follows the ideas and the arguments illustrated
in [3, §2].

By Hypotheses we can take a section s ∈ H0(S,KS). Let C ∈ |KS | be the
(numerically connected) curve defined by (s) = 0.

To simplify the notations we write H = K⊗3
S .

Whence, by adjunction and our numerical assumptions we have (H)|C ∼=
ωC ⊗A, with A ample of degree = (KS)2 ≥ 3. Thus C and (H)|C satisfy the
hypotheses of Theorem 1 and then for every integer k the map

ρk : H0(C,H)⊗H0(C,H⊗(k−1)) −→ H0(C,H⊗k)

is surjective. The theorem now follows by the following commutative diagram
(where H = K⊗3

S )

0

��

0

��
H0(S,K⊗2

S )⊗H0(S,H⊗(k−1))

Ck

��

Ak // H0(S,K⊗(3k−1)
S )

ck

��
H0(S,H)⊗H0(S,H⊗(k−1))

Rk

��

ρk // H0(S,H⊗k)

rk

��
H0(C,H)⊗H0(S,H⊗(k−1))

��

ρk
′

// H0(C,H⊗k)

��
0 0

Indeed, for k = 2 the map Ak is surjective by [3, Lemma 3.3] since we have
assumed pg ≥ 2, q = 0; for k ≥ 3 the map Ak is surjective by the part (a) of
the proof of Thm. 4.7 in [3]. Moreover, for every integer k, the map ρk

′ is
onto since ρk and the retriction H0(S,H⊗(k−1)) → H0(C,H⊗(k−1)) are both
surjective by our numerical assumptions.

Whence for every integer k the multiplication map ρk is surjective, which
is what we wanted to prove.

Q.E.D. for Theorem 2
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