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On Clifford’s theorem for singular curves

Marco Franciosi and Elisa Tenni

Abstract

Let C be a 2-connected projective curve either reduced with planar singularities or contained
in a smooth algebraic surface and let S be a subcanonical cluster (that is, a zero-dimensional
scheme such that the space H0(C, ISKC) contains a generically invertible section). Under some
general assumptions on S or C, we show that h0(C, ISKC) � pa(C) − 1

2
deg(S) and if equality

holds then either S is trivial or C is honestly hyperelliptic or 3-disconnected.
As a corollary, we give a generalization of Clifford’s theorem for reduced curves with planar

singularities.

1. Introduction

Since the early days of algebraic geometry, the rule of residual series has been fundamental in
studying the geometry of a projective variety. The first results of the German school (Riemann,
Roch, Brill, Noether, Klein, etc. ) on special divisors were indeed based on the deep analysis
of a linear series |D| and its residual |K −D|.

The purpose of this paper is to extend this basic approach to the analysis of special
linear series defined on an algebraic curve (possibly singular, non-reduced or reducible), giving
applications to the case of semistable curves.

In this paper, in particular, we generalize the Theorem of Clifford, which states that

dim |D| � degD
2

for every special effective divisor D on a smooth curve C (see [7]).
One can find in the literature many approaches that generalize Clifford’s theorem and other

classical results to certain kinds of singular curves, especially nodal ones. Important results
were given by Eisenbud and Harris (see [8] and the appendix in [9]) and more recently by
Esteves and Medeiros (see [10]), applying essentially degeneration techniques, in the case of
reduced curves with two components. See also the case of graph curves by Bayer and Eisenbud
[2]. Caporaso [3] gave a generalization of Clifford’s theorem for certain line bundles on stable
curves, in particular, line bundles of degree at most four and line bundles whose degree is
bounded by 2pa(Γi) for every component Γi.

Our approach is more general since we deal with rank 1 torsion-free sheaves on possibly
reducible and non-reduced curves, without any bound on the number of components, but with
very natural assumptions on the multidegree of the sheaves we consider.

Our analysis focuses on 2-connected curves, keeping in mind the classical characterization of
special divisors on algebraic curves as effective divisors contained in the canonical system. To
achieve this purpose, we introduce the notion of subcanonical cluster, that is, a zero-dimensional
subscheme S ⊂ C such that the space H0(C,ISKC) contains a generically invertible section
(see Section 2.3 for definition and main properties).
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We recall that a curve C is m-connected if degB KC � m+ (2pa(B) − 2) for every subcurve
B ⊂ C, or equivalently B · (C −B) � m if C is contained in a smooth surface.

From our point of view, it is fundamental to work only with subcanonical clusters since
our aim is to consider only clusters truly contained in a canonical divisor. Moreover, we
need to avoid clusters contained in a hyperplane canonical section but with uncontrolled
behavior. For instance, by automatic adjunction (see [5, Lemma 2.4]) a section vanishing
on a component A such that C = A+B yields a section in H0(B,KB), but considering the
embedding H0(B,KB) ↪→ H0(C,KC), we can build clusters with unbounded degree on A such
that every section in H0(C,KC) vanishing on them vanishes on the entire subcurve A.

Our main result is the following theorem.

Theorem A. Let C be a projective curve either reduced with planar singularities or
contained in a smooth algebraic surface. Assume C to be 2-connected and let S ⊂ C be a
subcanonical cluster. Assume that one of the following holds:

(a) S is a Cartier divisor;
(b) there exists H ∈ H0(C,ISKC) such that div(H) ∩ Sing(Cred) = ∅;
(c) Cred is 4-connected.

Then

h0(C,ISKC) � pa(C) − 1
2 deg(S).

Moreover, if equality holds, then the pair (S,C) satisfies one of the following assumptions:

(i) S = 0, KC ;
(ii) C is honestly hyperelliptic and S is a multiple of the honest g1

2 ;
(iii) C is 3-disconnected (that is, there is a decomposition C = A+B with A ·B = 2).

Let Cliff(ISKC) := 2pa(C) − deg(S) − 2 · h0(ISKC) be the Clifford index of the sheaf
ISKC . Note that if S is a Cartier divisor, then Cliff(ISKC) is precisely the classical Clifford
index for invertible sheaves. Theorem A is equivalent to the statement that the Clifford index
is non-negative.

If C is a smooth curve, the theorem is equivalent to the classical Clifford’s theorem, while
if C is 1-connected but 2-disconnected, then |KC | has base points and, therefore, the cluster
consisting of such base points does not satisfy the theorem. Moreover, without our assumptions
the theorem is false even for subcanonical clusters contained in curves with very ample canonical
sheaf. See for instance Example 5.2. However, we obtain a more general inequality by adding a
correction term bounded by half of the number of irreducible components of C. See Theorem 3.8
for the full result.

The proof is based on the analysis of a cluster S of minimal Clifford index and maximal degree
and of its residual S∗ (see Subsection 2.3 for definitions and main properties). When considering
the restriction to Cred, it may happen that every section in H0(C,ISKC) decomposes as a sum
of sections with small support. This behavior is completely new with respect to the smooth
case and can even lead to the existence of clusters with negative Clifford index. This is the
reason why in Subsection 2.3, we introduce the notion of splitting index of a cluster and we
run our analysis by a stratification of the set of subcanonical clusters by their splitting index.

For clusters in each strata with minimal Clifford index, the following dichotomy holds: either
S∗ ⊂ S or S and S∗ are Cartier and disjoint. In the first case, we estimate the rank of the
restriction of H0(C,ISKC) to the curve supporting S, while in the second case we give a
generalization of the classical techniques developed by Saint Donat [16].
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As a corollary of Theorem A, we are able to analyze more deeply the case of reduced
curves since the intersection products are always non-negative. The following results apply
in particular to the case of 4-connected semistable curves.

Theorem B. Let C be a projective 4-connected reduced curve with planar singularities.
Let L be an invertible sheaf and S a cluster on C. Assume that

0 � deg[(ISL)|B ] � degKC |B

for every subcurve B ⊂ C. Then

h0(C,ISL) � deg ISL

2
+ 1.

Moreover, if equality holds, then ISL ∼= ITωC where T is a subcanonical cluster. The pair
(T,C) satisfies one of the following assumptions:

(i) T = 0, KC ;
(ii) C is honestly hyperelliptic and T is a multiple of the honest g1

2 .

In the case of smooth curves, an effective divisor D either satisfies the assumptions of
Clifford’s theorem or it is non-special and h0(C,D) is computed easily by means of Riemann–
Roch Theorem. If the curve C has many components, we may have a mixed behavior, which
we deal with in the following theorem.

Theorem C. Let C be a projective 4-connected reduced curve with planar singularities.
Let L be an invertible sheaf and S a cluster on C such that

0 � deg[(ISL)|B ] for every subcurve B ⊂ C.

Assume that there exists a subcurve Γ ⊂ C such that deg(KC |Γ) < deg(ISL|Γ). and let C0 be
the maximal subcurve such that

deg[(ISL)|B ] > degKC |B for every subcurve B ⊂ C0.

Then

h0(C,ISL) � deg ISL

2
+

deg(ISL−KC)|C0

2
.

We believe that the above results may be useful for the study of vector bundles on the
compactification of the Moduli Space of genus g curves and in particular to the analysis of limit
series. Moreover, they may be considered as a first step in order to develop a Brill–Noether-type
analysis for semistable curves. Further applications will be given in a forthcoming article (see
[12]) in which we analyze the normal generation of invertible sheaves on numerically connected
curve. In particular, we are going to give a generalization of Noether’s theorem.

Finally, as shown in [5], the study of invertible sheaves on curves lying on a smooth algebraic
surface is rich in implications when Bertini’s theorem does not hold or simply if one needs to
consider every curve contained in a given linear system.

The paper is organized as follows. In Section 2, we set the notation and prove some
preliminary results. In Section 3, we prove Theorem A, in Section 4 we study the case of
reduced curves and prove Theorems B and C. Finally, in Section 5, we show some examples in
which we illustrate that the Clifford index may be negative if our assumptions are not satisfied.
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2. Notation and preliminary results

2.1. Notation and conventions

We work over an algebraically closed field K of characteristic �0.
Throughout this paper a curve C will always be a Cohen–Macaulay scheme of pure dimension

1. Moreover, if not otherwise stated, a curve C will be projective, either reduced with planar
singularities (that is, such that for every point P ∈ C, it is dimK M /M 2 � 2, where M is the
maximal ideal of OC,P ) or contained in a smooth algebraic surface X, in which case we allow
C to be reducible and non-reduced.

In both cases we will use the standard notation for curves lying on smooth algebraic
surface, writing C =

∑s
i=1 niΓi, where Γi are the irreducible components of C and ni are

their multiplicities.
A subcurve B ⊆ C is a Cohen–Macaulay subscheme of pure dimension 1; it will be written

as
∑
miΓi, with 0 � mi � ni for every i.

Given a sheaf F on C, we write H0(B,F ) for H0(B,F|B) and H0(C,F )|B for the image
of the restriction map H0(C,F ) → H0(B,F|B).
ωC denotes the dualizing sheaf of C (see [13, Chapter III, Section 7]) and pa(C) the

arithmetic genus of C, pa(C) = 1 − χ(OC). KC denotes the canonical divisor.
By abuse of notation if B ⊂ C is a subcurve of C, C −B denotes the curve A such that

C = A+B.
Note that under our assumptions every subcurve B ⊆ C is Gorenstein, which is equivalent

to say that ωB is an invertible sheaf.
Throughout the paper, we will use the following exact sequences:

0 −→ ωA −→ ωC −→ ωC |B −→ 0, (1)
0 −→ OA(−B) −→ OC −→ OB −→ 0, (2)

where OA(−B) ∼= OA ⊗ OX(−B) if C is contained in a smooth surface X and corresponds to
IA∩B · OA if C is reduced; see [1, Proposition II.6.4, 15, Chapter 3].

Definition 2.1. If A and B are subcurves of C0 ⊆ C such that A+B = C0 ⊆ C, then
their intersection product is

A ·B = degB(KC0) − (2pa(B) − 2) = degA(KC0) − (2pa(A) − 2).

If C is contained in a smooth algebraic surface X, this corresponds to the intersection product
of curves as divisors on X.

If A+B = C0 ⊆ C, we have the key formula (cf. [13, Exercise V.1.3])

pa(C0) = pa(A) + pa(B) +A ·B − 1. (3)

Following the original definition of Franchetta, a curve C is (numerically) m-connected if
C1 · C2 � m for every decomposition C = C1 + C2 in effective, both non-zero curves. See [5]
for a more general definition in the case of Gorenstein curve. To avoid ambiguity between the
various notions of connectedness for a curve, we will say that a curve is numerically connected
if it is 1-connected, and topologically connected if it is connected as a topological space (with
the Zariski topology).
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Let F be a rank 1 torsion-free sheaf on C. We write deg F|C for the degree of F on C,
deg F|C = χ(F ) − χ(OC). By Serre duality we mean the Grothendieck–Serre–Riemann–Roch
duality theorem:

H1(C,F ) d Hom(F , ωC)

(where d denotes duality of vector spaces).
If C =

∑
niΓi, then for each i the natural inclusion map εi : Γi → C induces a map ε∗i : F →

F|Γi
. We denote by di = deg(F|Γi

) = degΓi
F the degree of F on each irreducible component

and by d := (d1, . . . , ds) the multidegree of F on C. If B is a subcurve of C, by dB we mean
the multidegree of F|B . We remark that there exists a natural partial ordering given by the
multidegree.

F is numerically eventually free (NEF) if di � 0 for every i.
We say that two rank 1 torsion-free sheaves F and G are numerically equivalent if their

degrees coincide on every subcurve and we will use the notation F
num∼ G .

If S and S1 are linearly equivalent Cartier divisor, we will use the notation S lin∼ S1.

Definition 2.2. A curve C is honestly hyperelliptic if there exists a finite morphism
ψ : C → P1 of degree 2.

In this case C is either irreducible or of the form C = Γ1 + Γ2 with pa(Γi) = 0 and Γ1 · Γ2 =
pa(C) + 1 (see [5, Section 3] for a detailed treatment). For a given point P ∈ P1, ψ∗(P ) is a
cluster of degree 2, which we will denote by a honest g1

2 .

Definition 2.3. A cluster Z of degree degZ = r is a zero-dimensional subscheme with
length OZ = dimk OZ = r. The multidegree of Z is defined as the opposite of the multidegree
of IZ . We consider the empty set as the degree 0 cluster.

Definition 2.4. The Clifford index of a rank 1 torsion-free sheaf F on C is

Cliff(F ) := deg(F ) − 2h0(C,F ) + 2.

If S is a cluster and F ∼= ISKC , then the Clifford index of S may be defined as the Clifford
index of ISKC and reads as follows:

Cliff(ISKC) := 2pa(C) − deg(S) − 2 · h0(ISKC).

If F is an invertible sheaf (in particular, if S is a Cartier divisor), then Cliff(F ), resp.
Cliff(ISKC) is precisely the classical Clifford index of the line bundle F , resp. ISKC .

2.2. Preliminary results on projective curves

In this section, we recall some useful results on invertible sheaves on projective curves.
In the following theorem, we summarize the main applications of the results proved in [5] on

Cohen–Macaulay one-dimensional projective schemes. For a general treatment: see [5, Sections
2 and 3].

Theorem 2.5. Let C be a Gorenstein curve, KC the canonical divisor of C. Then the
following properties hold.
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(i) If C is 1-connected, then H1(C,KC) ∼= K.
(ii) If C is 2-connected and C 
∼= P1, then |KC | is base point free.
(iii) If C is 3-connected and C is not honestly hyperelliptic (that is, there does not exist a

finite morphism ψ : C → P1 of degree 2), then KC is very ample.

(cf. [5, Theorems 1.1, 3.3, 3.6]).
The main instrument in the analysis of sheaves on projective curves with several components

is the following proposition, which holds in a more general setup.

Proposition 2.6 [5, Lemma 2.4]. Let C be a projective scheme of pure dimension 1 and
let F be a coherent sheaf on C, and ϕ : F → ωC a non-vanishing map of OC-modules. Set J =
Annϕ ⊂ OC , and write B ⊂ C for the subscheme defined by J . Then B is Cohen–Macaulay
and ϕ has a canonical factorization of the form

F � F|B ↪→ ωB = H omOC
(OB , ωC) ⊂ ωC ,

where F|B ↪→ ωB is generically onto.

A useful corollary of the above result is the following:

Corollary 2.7. Let C be a pure one-dimensional projective scheme, let F be a rank 1
torsion-free sheaf on C. Assume that

deg(F )|B � 2pa(B) − 1

for every subcurve B ⊆ C.
Then H1(C,F ) = 0.

Proof. The proof is a slight generalization of the techniques used in [4, Lemma 2.1].
Let us assume by contradiction that H1(C,F ) 
= 0. Pick a non-vanishing section ϕ ∈

Hom(F , ωC) ∼= H1(C,F )∗. By Proposition 2.6, there exists a curve B such that ϕ induces
an injective map F|B → ωB . Thus,

deg(F )|B � degKB = 2pa(B) − 2,

which is impossible.

During our analysis of the curve C we will need to estimate the dimension of H0(A,OA) for
some subcurve A ⊂ C. To this purpose, we give a slight generalization of a result of Konno
and Mendes Lopes (see [14, Lemma 1.4]).

Lemma 2.8. Let C be a projective curve, either reduced with planar singularities or
contained in a smooth algebraic surface and let C = A+B a decomposition of C. Assume
A =

∑h
i=1Ai, where the Ai are the topologically connected components of A.

(i) If C is 1-connected, then h0(A,OA) � A ·B.
(ii) If C is 2-connected, then h0(A,OA) � (A ·B)/2.
(iii) If C is m-connected with m � 3, then h0(A,OA) � (A ·B)/2 − h · (m− 2)/2, where

h = #{Ai}. Moreover, equality holds if and only if h0(Ai,OAi
) = 1 and Ai ·B = m for

every component Ai.
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Proof. The 1-connected case is treated in [14, Lemma 1.4]. We will apply the same
arguments for the m-connected case with m � 2.

If h0(A,OA) = 1, the inequality holds trivially. If h0(A,OA) � 2, then by [14, Lemma
1.2] there exist a decomposition A = A1 +A2 with OA1(−A2) NEF and such that the
restriction map H0(OA1(−A2)) → H0(Γ,OΓ(−A2)) is injective for every irreducible Γ ⊂ A1.
Since OA1(−A2) is NEF, we can conclude that

h0(OA1(−A2)) � h0(Γ,OΓ(−A2)) � 1 −A2 · Γ � 1 −A1 ·A2.

Therefore by induction on the number of irreducible components of A we get

h0(A,OA) � h0(A2,OA2) + h0(OA1(−A2))

� A2 · (C −A2)
2

− m− 2
2

+ 1 −A1 ·A2

=
A · (C −A)

2
− m− 2

2
+ 1 − A1 · (C −A1)

2

� A · (C −A)
2

− m− 2
2

+ 1 − m

2
.

This is enough to prove (ii). Applying the above dimension count to every topologically
connected component of A, we get the inequality stated in (iii). Moreover, if m � 3 and
h0(Ai,OAi

) � 2 for a topologically connected component Ai ⊂ A, then by the above com-
putation we have h0(Ai,OAi

) < (Ai ·B)/2 − (m− 2)/2. Therefore, equality holds if and only
if for every Ai we have h0(Ai,OAi

) = 1 and Ai · (C −Ai) = Ai ·B = m.

2.3. Subcanonical clusters and Clifford index

In this section, we introduce the notion of subcanonical cluster and we analyze its main
properties. Note that our results work under the assumption C Gorenstein.

Definition 2.9. Let C be a Gorenstein curve. A cluster S ⊂ C is subcanonical if the space
H0(C,ISKC) contains a generically invertible section, that is, a section s0 that does not vanish
on any subcurve of C.

Note that if S is a general effective Cartier divisor such that the inequality degB(S) �
1
2 degB(ωC) holds for every subcurve B ⊆ C (or by duality such that its multidegree satisfies
1
2 degB(ωC) � degB(S) � degB(ωC) for every subcurve B ⊆ C), then by Franciosi [11, Section
3] S is a subcanonical cluster.

Definition 2.10. Let C be a Gorenstein curve, S ⊂ C be a subcanonical cluster and let
s0 ∈ H0(C,ISKC) be a generically invertible section. The residual cluster S∗ of S with respect
to s0 is defined by the following exact sequence

0 �� H om(ISωC , ωC) α �� H om(OC , ωC) �� OS∗ �� 0,

where the map α is defined by α(ϕ) : 1 �→ ϕ(s0).

By duality it is IS∗ωC
∼= H om(ISωC , ωC). Moreover, denoting by Λ := div(s0) the effective

divisor corresponding to s0, we have the following exact sequence:

0 −→ IΛωC −→ ISωC −→ OS∗ −→ 0.

Therefore, S∗ is subcanonical since s0 ∈ H0(C,IS∗KC) and it is straightforward to see that
(S∗)∗ = S.
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Note that if C is contained in a smooth surface and s0 is transverse to C at a point P ∈
supp(S) such that P is smooth for Cred and C has multiplicity n at P , writing IΛ = (x) and
IS = (x, yk) ⊂ K[x, y]/(x, yn), then IS∗ ∼= (x, yn−k).

Remark 2.11. If S is a subcanonical cluster and S∗ is its residual with respect to the
section s0, then the sheaf IS∗ωC is the subsheaf of ωC given as follows:

IS∗ωC = {ϕ(s0) s.t. ϕ ∈ H om(ISωC , ωC)}. (4)

This is clear from the analysis of the commutative diagram

0 �� H om(ISωC , ωC) α ��

β1

��

H om(OC , ωC) ��

β2

��

OS∗ �� 0

0 �� IS∗ωC
�� ωC �� OS∗ �� 0

where the map α is defined by α(ϕ) : 1 �→ ϕ(s0) and the maps β1 and β2 are isomorphisms.

Remark 2.12. The product map H0(C,ISKC) ⊗H0(C,IS∗KC) → H0(C, 2KC) satisfies
the following commutative diagram:

H0(C,ISKC) ⊗ Hom(ISKC ,KC)

β

��

ev �� H0(C,KC)

·s0

��
H0(C,ISKC) ⊗H0(C,IS∗KC) �� H0(C, 2KC)

where the first row is the evaluation map i⊗ ϕ �→ ϕ(i), the map β is the isomorphism defined
by β(i⊗ ϕ) = i⊗ ϕ(s0), and the second column is the multiplication by the section s0 defining
the residual S∗.

The diagram is commutative: on the stalks the elements s0 · ϕ(i) and i · ϕ(s0) must coincide.
In particular, consider i ∈ H0(C,ISKC) and j ∈ H0(C,IS∗KC): we can write j = ϕ(s0) for
some ϕ ∈ Hom(ISKC ,KC), from which we have

i · j = i · ϕ(s0) = s0 · ϕ(i) in H0(C, 2KC). (5)

Remark 2.13. Note that, by Serre duality, it is H1(C,ISKC) d H0(C,IS∗KC), and
Cliff(ISKC) = Cliff(IS∗KC).

The following technical lemmas will be useful in the proof of Theorem A.

Lemma 2.14. Let C be a Gorenstein curve. Let S, S∗, T, T ∗ subcanonical clusters such
that

(i) S∗ is the residual to S with respect to H0 ∈ H0(C,ISKC);
(ii) T ∗ is the residual to S with respect to H1 ∈ H0(C,ISKC);
(iii) T is the residual to S∗ with respect to H2 ∈ H0(C,IS∗KC).

Then the cluster U defined as the union of T and T ∗ (that is, IU = IT ∩ IT∗) and the cluster
defined by the intersection R = T ∩ T ∗ (that is, IR = IT + IT∗) are subcanonical.

Proof. R is obviously subcanonical, since it is contained in the cluster T .
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Since H1 ∈ H0(C,ISKC), there exists an element ϕ1 ∈ Hom(IS∗KC ,KC) such that H1 =
ϕ1(H0) by equation (4). Similarly, there exists ψ2 ∈ Hom(ISKC ,KC) such that H2 = ψ2(H0).

By equation (4), ψ2(H1) ∈ H0(C,IT∗KC) and ϕ1(H2) ∈ H0(C,ITKC).
By equation (5), we have

H0 · ψ2(H1) = H1 · ψ2(H0) = H1 ·H2 = ϕ1(H0) ·H2 = H0 · ϕ1(H2) (6)

and since H0, H1 and H2 are generically invertible, we conclude that ψ2(H1) = ϕ1(H2) in
H0(C,KC) and it is generically invertible. In particular,

ψ2(H1) = ϕ1(H2) ∈ H0(C,ITKC) ∩H0(C,IT∗KC) ⊂ H0(C,IUKC)

and we may conclude.

Remark 2.15. It is not difficult to prove that the clusters T and T ∗ defined in the
previous lemma are reciprocally residual with respect to the section H3 = ψ2(H1) = ϕ1(H2) ∈
H0(C,KC). This induces an equivalence relation on the set of clusters with properties similar
to the classical linear equivalence relation between divisors.

Definition 2.16. A non-trivial subcanonical cluster S is called splitting for the linear
system |KC | if for every H ∈ H0(C,ISKC) there exists a decomposition H = H1 +H2 with
H1, H2 ∈ H0(C,ISKC) and a decomposition Cred = C1 + C2 such that supp(H1|Cred

) ⊂ C1

and supp(H2|Cred
) ⊂ C2.

The splitting index of S is the minimal number k such that for every element H ∈
H0(C,ISKC) there exists a decomposition H =

∑k
i=0Hi with Hi ∈ H0(C,ISKC) and a

decomposition Cred =
∑k

i=0 Ci such that supp(Hi|Cred
) ⊂ Ci. We define the splitting index

of the zero cluster to be zero.

Proposition 2.17. Let C =
∑s

i=1 niΓi be a Gorenstein curve and let S be a subcanonical
cluster. Then the following properties hold.

(i) If the splitting index of S is k, then there is a decomposition Cred =
∑k

i=0 Ci such that

every H̄ ∈ H0(C,ISKC) can be decomposed as H̄ =
∑k

i=0 H̄i with supp(H̄i|Cred) ⊂ Ci.
Moreover, if H̄ is generic, then the sections H̄i cannot be further decomposed.

(ii) Given the above minimal decomposition Cred =
∑k

i=0 Ci, we have that Ci ∩ Cj is in the
base locus of |ISKC | for every i and j.

(iii) If there exists a section H ∈ H0(C,ISKC) such that div(H) ∩ (Γi ∩ Γj) = ∅ for every
Γi 
= Γj irreducible components in C, then the splitting index of S is zero.

Proof. To prove the first statement, since the possible decompositions of Cred are finite,
there exists a decomposition Cred =

∑k
i=0 Ci such that the generic element H̄ ∈ H0(C,ISKC)

decomposes as H̄ =
∑k

i=0 H̄i, supp(H̄i|Cred) ⊂ Ci. Call Y the set of sections with this property,
we are going to show that Y = H0(C,ISKC). Y is obviously a linear subspace ofH0(C,ISKC)
and, since it is dense, it must coincide with the entire space.

Similarly, we can prove that the subset X of H0(C,ISKC) whose elements can be
decomposed in at least k + 2 summands is the union of a finite number of proper subspaces of
H0(C,ISKC), and hence, its complement is open.

To prove the second statement, assume that there exists a decomposition H = H1 +H2

with H1,H2 ∈ H0(C,ISKC) and a decomposition Cred = C1 + C2 such that supp(H1|Cred
) ⊂

C1 and supp(H2|Cred
) ⊂ C2. Then H1 and H2 vanish on C1 ∩ C2, and hence, H vanishes

there too.
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In particular, if div(H) ∩ (Γi ∩ Γj) = ∅ for every Γi 
= Γj , such a decomposition cannot exist.
The third statement follows easily from the second.

Remark 2.18. If S is a subcanonical cluster and S∗ is its residual with respect to a
section H, then their splitting indexes are the same. Indeed, H0(C,IS∗KC) = {ϕ(H) s.t. ϕ ∈
Hom(ISKC ,KC)} and if H can be decomposed as in Lemma 2.17, then the same is true for
ϕ(H). By the symmetry of the situation, we may conclude.

Lemma 2.19. Let C be a 1-connected Gorenstein curve and let S be a non-trivial
subcanonical cluster with minimal Clifford index among the clusters with splitting index smaller
than or equal to k ∈ N. Then H0(C,ISKC) is base point free, that is, for every P ∈ C, the
evaluation map

H0(C,ISKC) ⊗ OC,P −→ IS |P ⊂ OC,P

generates the ideal IS |P as OC,P -module.

Proof. The statement is equivalent to saying that for every subscheme T containing S with
length(T ) = length(S) + 1, it is h0(C,ITKC) < h0(C,ISKC).

If T is not subcanonical, then by definition of subcanonical cluster there exists a
decomposition C = A+B and a suitable cluster TA with support on A such that

H0(A,ITA
ωA) ∼= H0(C,ITKC)

and then we conclude since

H0(A,ITA
ωA) ↪→ H0(A,ISA

ωA)

and h0(A,ISA
ωA) < h0(C,ISKC) because S is subcanonical and C is 1-connected.

If T is subcanonical and its splitting index is greater than k, then necessarily the vector
spaces H0(C,ITKC) and H0(C,ISKC) cannot be equal.

If T is subcanonical and its splitting index is smaller than or equal to k, then

Cliff(ITKC) = 2pa(C) − deg(S) − 1 − 2h0(C,ITKC) � Cliff(ISKC)

if and only if h0(C,ITKC) < h0(C,ISKC).

3. Clifford’s theorem

In this section, we will prove Theorem A. The proof of the theorem is given arguing by
contradiction by assuming the existence of a very special cluster for which its Clifford index is
non-positive.

The first two lemmas work under the assumption C Gorenstein. The rest of the section needs
an assumption on the singularities of C, namely C with planar singularities, or C contained in
a smooth algebraic surface if non-reduced.

In the following lemma, we will show that there exists a special relation between a maximal
cluster with non-positive Clifford index and its residual with respect to a generic section.

Lemma 3.1. Let C be a 2-connected Gorenstein curve. Fix k ∈ N and let S be a non-trivial
subcanonical cluster with minimal non-positive Clifford index and maximal total degree among
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the clusters with splitting index smaller than or equal to k. Let S∗, T, T ∗ be subcanonical
clusters such that

(i) S∗ is the residual to S with respect to a generic section H0 ∈ H0(C,ISKC);
(ii) T ∗ is the residual to S with respect to a generic section H1 ∈ H0(C,ISKC);
(iii) T is the residual to S∗ with respect to a generic section H2 ∈ H0(C,IS∗KC).

Then either T ∗ ∩ T = ∅ and Cliff(ISKC) = 0 or T ∗ ⊂ T .

Proof. Let Σk be the set of clusters with splitting index smaller than or equal to k.
Note at first that deg T = degS, h0(C,ITKC) = h0(C,ISKC) and similarly for S∗ and T ∗

by Remark 2.13.
Cliff(ISKC) is minimal non-positive if and only if h0(C,ISKC) = pa(C) − degS/2 +M

with M � 0 maximal.
Call R the intersection of the two clusters T and T ∗, that is, the subscheme defined by

the ideal IT + IT∗ , and U the minimal cluster containing both, that is, IU = IT ∩ IT∗ .
Then R and U are subcanonical clusters by Lemma 2.14 and they belong to Σk. Indeed
by Proposition 2.17 and Remark 2.18, the splitting indexes of T and T ∗ are equal to the
one of S. Regarding U , by equation (6), we know that there is a section H3 ∈ H0(C,KC)
vanishing on U such that H0 ·H3 = H1 ·H2. Notice that, since H0 and H1 are generic,
H3 can be seen as a deformation of H1 ∈ H0(C,IT∗KC), hence it is generic too in
H0(C,IT∗KC). Thus, the splitting index of U is smaller than or equal to the splitting
index of T ∗. With regard to R, with a similar argument we can prove that R∗ ∈ Σk and
hence R ∈ Σk too.

Moreover, we have the following exact sequence:

0 −→ IUωC −→ ITωC ⊕ IT∗ωC −→ IRωC −→ 0.

Thus, we know that

h0(C,ITKC) + h0(C,IT∗KC) � h0(C,IRKC) + h0(C,IUKC).

By Riemann–Roch and Serre duality the LHS is equal to pa(C) + 1 + 2M , whilst the RHS is
� pa(C) − degU/2 +M + pa(C) − degR/2 +M = pa(C) + 1 + 2M .

By the maximality of the degree of T then one of the following must hold:

(i) U = KC , R = 0, whence T ∩ T ∗ = ∅ and M = 0, that is, Cliff(ITKC) = 0; moreover,
it is h0(C,ISKC) + h0(C,IS∗KC) = h0(C,KC) + 1;

(ii) U = T, R = T ∗ and in particular T ∗ ⊆ T .

Lemma 3.2. Let C be a 2-connected Gorenstein curve and S be a subcanonical cluster.
Assume that there is an irreducible component Γ ⊂ C such that

dim[H0(C,ISKC)|Γ] � 2.

Then for a generic P ∈ Γ, the cluster S + P is still subcanonical.

Proof. We argue by contradiction.
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If S is subcanonical but P + S is not, that is, H0(C,IS+PKC)|B = 0 for some subcurve B ⊂
C (clearly, Γ � B since H0(C,IS+PKC)|Γ 
= 0 by our assumption), we consider the following
commutative diagram:

H0(C −B,IP I1KC−B)� �

��

�� H0(C,IS+PKC)� �

��

�� H0(B,IS+PKC)|B = 0

H0(C −B,I1KC−B)

��

�� H0(C,ISKC)

��

�� H0(B,ISKC)|B = K

H0(P,OP ) = �� H0(P,OP )

where I1 is the ideal sheaf on C −B given as the kernel of the map IS → (IS)|B .
By a simple diagram chase the restriction map H0(C −B,I1KC−B) → H0(P,OP ) must

be zero, and hence, by genericity of the point P , the global restriction map from H0(C −
B,I1KC−B) to Γ must be zero. This is impossible, since this would imply that the restriction
of the global space H0(C,ISKC) to Γ would be at most one-dimensional, contradicting our
assumption.

The following lemma generalizes the classical techniques showed by Saint Donat [16].

Lemma 3.3. Let C be a 2-connected projective curve, either reduced with planar
singularities or contained in a smooth algebraic surface.

Fix k ∈ N and let S be a non-trivial subcanonical cluster with minimal non-positive Clifford
index and maximal total degree among the clusters with splitting index smaller than or equal
to k. Let S∗ be the residual to S with respect to a generic hyperplane section H.

Suppose that there is an irreducible component Γ ⊂ C such that

dim[H0(C,ISKC)|Γ] � 2,

dim[H0(C,IS∗KC)|Γ] � 2.

Then S∗ is a length 2 cluster such that h0(C,IS∗KC) = pa(C) − 1. In particular, C is either
honestly hyperelliptic or 3-disconnected.

Proof. We divide the proof in four steps.
Let Σk be the set of clusters with splitting index smaller than or equal to k. By Remark 2.18,

we know that S∗ ∈ Σk.
Note that since C is 2-connected, then 2 � deg(S) � deg(KC) − 2.

Step 1 : S and S∗ are Cartier divisor and non-splitting. Consider a generic point
P ∈ Γ. In particular, P /∈ S. By Lemma 3.2, P + S is subcanonical and by Lemma 2.19
h0(C,IP ISKC) = h0(C,ISKC) − 1.

Consider a generically invertible section H in H0(C,ISKC) vanishing at P and the residual
S∗ with respect to H. We have P ∈ S∗ and we can apply Lemma 3.1 because P is general, and
hence, the corresponding invertible section is general as well. Since S∗ 
⊂ S we have S∗ ∩ S = ∅
and both are Cartier divisors.
S and S∗ Cartier with minimal Clifford indexes among the clusters in Σk implies that both

the linear systems |KC(−S)| and |KC(−S∗)| are base point free by Lemma 2.19. Hence, we can
find a divisor S∗ ∈ |KC(−S)| not passing through the singular locus of Cred. This implies that
the splitting index of S∗ is zero by Proposition 2.17 and Remark 2.18 shows that the splitting
index of S is zero as well.
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Step 2 : h0(C,ISKC)|D � h0(C,IS∗KC)|D for any D ⊂ C. Consider again a generic point
P ∈ Γ, P /∈ S and P /∈ S∗. With the same argument adopted in step 1, we take a cluster S∗

1

residual to S such that P ∈ S∗
1 and a second cluster S2 residual to S∗ such that P ∈ S2. By

Lemma 3.1, S∗
1 ⊂ S2 since their intersection contains P . This gives us the following inequality

for every subcurve D ⊂ C:

dim[H0(C,IS∗KC)|D] = dim[H0(C,IS∗
1
KC)|D] � dim[H0(C,IS2KC)|D]

= dim[H0(C,ISKC)|D]. (7)

Step 3 : h0(C,ISKC) = 2. We argue by contradiction, assuming that h0(C,ISKC) � 3.
Case (a):

∃ irreducible Γ ⊂ C s.t. dim[H0(C,ISKC)|Γ] � 3.

We may apply Lemma 3.2 twice to conclude that, given two generic points P and Q in
Γ, the cluster P +Q+ S is subcanonical and the points impose independent conditions to
H0(C,ISKC). Hence, there exists a generically invertible H ∈ H0(C,ISKC) passing through
P +Q. Consider T ∗, the residual to S with respect to H: P +Q ⊂ T ∗.

Step 2 allows us to apply Lemma 3.2 to the cluster S∗ as well, and hence, P + S∗ is
subcanonical and P and Q impose independent conditions to H0(C,IS∗KC). Hence, there
exists a generically invertible section H1 ∈ H0(C,IP IS∗KC) but H1 /∈ H0(C,IQIP IS∗KC).
Let T1 be the residual to S∗ with respect to this section. We have that P ∈ T1 but Q /∈ T1.

This is impossible: P ∈ T1 ∩ T ∗ but Q ∈ T ∗, Q /∈ T1. Thus, ∅ 
= T1 ∩ T ∗ � T ∗, contradicting
Lemma 3.1.

Hence, this case cannot happen, that is, for every irreducible component Γ, the restriction
of H0(C,ISKC) to Γ is at most two-dimensional.

Case (b): {
dim[H0(C,ISKC)|Cred ] � 3,
dim[H0(C,ISKC)|Γ0 ] � 2 for every irreducible Γ0 ⊂ C.

We want to argue as in case (a) finding two points P and Q which lead to the same
contradiction.

Since case (a) cannot happen, we know that dim[H0(C,ISKC)|Γ] = 2, and hence, there
must exist a topologically connected reduced subcurve D ⊃ Γ, minimal up to inclusion, such
that

dim[H0(C,ISKC)|D] � 3.

By minimality of D, there exists an irreducible component Γ1 ⊂ D, with Γ1 
= Γ, and a section
H0 ∈ H0(C,ISKC) such that H0|Γ1 
= 0 while H0|D−Γ1 = 0. In particular, H0 vanishes on
Γ1 ∩ (D − Γ1).

We consider a generic point P ∈ Γ. Thanks to Lemma 3.2 and Step 1, there exists a
generically invertible section H ∈ H0(C,IS+PKC) not vanishing on any singular point of
Cred.

Hence, we know that the sections H and H0 span a two-dimensional subspace of
H0(C,IS+PKC)|Γ1 . We apply Lemma 3.2 to Γ1 taking a point Q generic in Γ1 such that
S + P +Q is subcanonical and P and Q impose independent conditions on H0(C,ISKC).

We may conclude as in case (a) that this case cannot happen.
Case (c): {

dim[H0(C,ISKC)|Cred ] = 2,
dim[H0(C,ISKC)] � 3.
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Consider a generic point P ∈ Γ. By Lemma 3.2, S + P is subcanonical and by
genericity of P

H0(C,IS+PKC)|Cred = 〈H〉,
whereH is generically invertible and does not vanish on any singular point of Cred. In particular,
P + S is non-splitting.

We want to show that (P + S)|Cred = KC|Cred . If not, there would exists a point Q in
Cred not imposing any condition on H0(C,ISKC), that is, the unique non-zero section
H ∈ H0(C,IS+PKC)|Cred would vanish at Q. In particular, S + P +Q would be subcanonical,
since the section H must be generically invertible. But our assumptions are that S has maximal
degree among the non-splitting non-trivial cluster of minimal Clifford index. Therefore, since
P +Q+ S 
= KC (otherwise dim[H0(C,ISKC)] � 2), we should have

Cliff(IS+P+QKC) > Cliff(ISKC),

which is equivalent to
h0(C,IS+P+QKC) < h0(C,ISKC) − 1

contradicting our hypotheses.
Thus, (P + S)|Cred = KC|Cred and we can argue as in Step 1 taking a cluster S∗

1 residual
to S with respect to a generic section and passing through P . Hence S∗

1 |Cred
= P and the

multiplicity of Γ in C is at least 2 since degS∗
1 > 1.

In this case, we consider a generic length 2 cluster σ0 supported at P . Since S and S∗ are
Cartier and supported on smooth points of Cred, it is easy to check by semicontinuity that σ0

imposes independent conditions on H0(C,ISKC) and H0(C,IS∗KC), and we can treat σ0 as
we did with the length 2 cluster P +Q in the previous case, that is, we take T1 and T ∗ such
that P ∈ T1 ∩ T ∗ but σ0 
⊂ T1 ∩ T ∗. By Lemma 3.1 this is a contradiction.

Hence, we are allowed to conclude that

dim[H0(C,ISKC)] = 2.

Step 4 : degS∗ = 2 and h0(C,IS∗KC) = pa(C) − 1. By our assumptions and Step 3

0 � Cliff(ISKC) = deg(ISKC) − 2h0(C,ISKC) + 2 = deg(ISKC) − 2,

which implies that
degS∗ = deg(ISKC) � 2.

But if degS∗ = 1, then the point S∗ would be a base point for KC , which is absurd by
Theorem 2.5 since C is 2-connected and has genus at least 2 since pa(C) = h0(C,KC) �
dim[H0(C,ISKC)|Γ] � 2.

Finally, Riemann–Roch Theorem and Serre duality implies that

h0(C,IS∗KC) = pa(C) − 1,

hence S∗ is a length 2 cluster not imposing independent condition on KC . This happens if and
only if C is honestly hyperelliptic or C is 3-disconnected.

The following three technical lemmas will be used in the proof of Theorem 3.7 in order to
give estimates for the rank of the restriction map r : H0(C,ISKC) → H0(B,ISKC) for some
particular subcurves B ⊂ C.

Lemma 3.4. Let C be a 2-connected curve contained in a smooth algebraic surface and S a
non-trivial subcanonical cluster with minimal Clifford index among the clusters with splitting
index smaller than or equal to k ∈ N.
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If there is an irreducible component Γ and a point P ∈ Γ such that S|P is not contained in
Cred, then the restriction map H0(C,ISKC) → H0(mΓ,ISKC) has rank 1, where m is the
minimal integer such that S|P ⊂ mΓ.

Proof. Let S be a non-trivial subcanonical cluster with minimal Clifford index and let
P ∈ C be a point such that S|P is not contained in Cred.

Let OC,P be the local ring of C at P , N be the maximal ideal of OC,P and M be the
maximal ideal of OC red,P .

Thanks to Lemma 2.19, locally at P the ideal IS |P ⊂ OC,P can be written as

IS |P = (H,H1, . . . , Hk, p1, . . . , pl),

where H,H1, . . . , Hk, p1, . . . , pl are linearly independent sections in H0(C,ISKC).
Moreover, we ask H,H1, . . . , Hk, to be of minimal degree when restricted to Sred, whereas

p1, . . . , pl must have degree strictly bigger. Algebraically, if ISred |P ⊂ M n but ISred |P 
⊂
M n+1, then we ask H,H1, . . . , Hk to be a basis of the K-vector space ISred/(ISred ∩ M n+1)
and p1, . . . , pl to satisfy pi|Cred

∈ M n+1.
Let us consider a subcluster Ŝ ⊂ S of colength =1, such that Ŝ 
= S precisely at P . In

particular, we ask the ideal IŜ to coincide with (IS ,H∞), where H∞ ∈ I(m−1)Γ|P .
Define now a one-dimensional family {Sλ} of clusters, each of them given locally at P by

the ideal

ISλ
= (H + λH∞,H1, . . . , Hk, p1, . . . , pl)

and coinciding with Ŝ elsewhere. By construction every Sλ contains Ŝ and we have H 
∈
H0(C,ISλ

KC), which implies H0(C,ISλ
KC) � H0(C,IŜKC) for every λ 
= 0. Indeed, if

locally H ∈ ISλ |P , there would exist elements α, αi, βi ∈ OC,P such that

H = α(H + λH∞) +
∑

αiHi +
∑

βipi.

Since {H,H1, . . . , Hk} represents a basis for the K-vector space ISred/(ISred ∩ M n+1), we
should have α ∼= 1mod N , the maximal ideal of OC,P . In particular, α should be invertible in
OC,P and, since λ ∈ C∗, the above equation should imply

H∞ ∈ (H,H1, . . . , Hk, p1, . . . pl) = IS |P ,

that is, IŜ |P
∼= IS |P , which is impossible by construction of H∞.

On the contrary, since Cliff ISKC is minimal, it is H0(C,ISKC) = H0(C,IŜKC) by
our numerical assumptions. Indeed, let us consider the residual to S, respectively Ŝ, with
respect to a section in H0(C,ISKC). We have S∗ ⊂ Ŝ∗ and we know that S∗ satisfies the
assumptions of Lemma 2.19 since S does. Hence, h0(C,IŜ∗KC) < h0(C,IS∗KC) and, in
particular, h0(C,ISKC) = h0(C,IŜKC) by Riemann–Roch theorem and Serre duality for
residual clusters.

To conclude the proof, we are going to show that this vector space is spanned by H and a
codimension 1 subspace given by sections vanishing on mΓ.

Our claim is that for every λ 
= 0 every section in H0(C,ISλ
KC) vanishes on the curve mΓ.

Fix a cluster Sλ, let σ ∈ H0(C,ISλ
KC) and consider a generic Sμ. Since bothH0(C,ISλ

KC)
and H0(C,ISμ

KC) are codimension 1 subspaces of the same vector space, then there exists a
linear combination σ + bμH ∈ H0(C,ISμ

KC).
Localizing at P , we can write σ =

∑
αipi + α(H + λH∞) +

∑
γiHi. Since σ + bμH belongs

to ISμ
, there exists elements βi, δi and β ∈ OC,P such that

α(H + λH∞) + bμH =
∑

βipi + β(H + μH∞) +
∑

δiHi.
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Both the polynomials are in IŜ . By the description above, we must have

α+ bμ = β mod N ,

αλ = βμ mod N ,

where N as above is the maximal ideal of OC,P . This forces

bμ = α(mod N )
(
λ

μ
− 1

)
.

Suppose now that α /∈ N . Then, apart from H, any element in 〈σ,H〉 should be written as
a(σ + bμH) for some μ. In particular, for c 
= 0 every ideal of the form

(cσ + dH,H1, . . . , Hk, p1, . . . , pl)

is contained in some ISμ
.

This implies that length OC,P /(cσ + dH,H1, . . . , Hk, p1, . . . , pl) is at least lengthS + 1 since
the ideal vanishes on S and Sμ (since σ ∈ H0(C,ISλ

KC) ⊂ H0(C,ISKC)).
But its degeneration OC,P /(H,H1, . . . , Hk, p1, . . . , pl) = OC,P /IS = OS has strictly smaller

length. This is impossible since the length is upper semicontinuous.
We must conclude that α ∈ N and that bμ = 0. This means that the original σ ∈

H0(C,ISλ
KC) belongs to H0(C,ISμ

KC), that is, H0(C,ISλ
KC) = H0(C,ISμ

KC) for every
λ, μ ∈ C∗.

In particular, every section in H0(C,ISλ
KC) must vanish on every Sμ, and in particular, it

vanishes on the scheme theoretic union
⋃

μ∈K
Sμ which has infinite length. This may happen

only if H0(C,ISλ
KC))|mΓ = {0}.

Lemma 3.5. Let C be a 2-connected projective curve either reduced with planar singu-
larities or contained in a smooth algebraic surface. Let B ⊂ C be a subcurve such that the
restriction map

H0(C,IKC|BKC) −→ H0(mΓ,OmΓ)

has rank 1 for every subcurve mΓ ⊂ B.
If B =

∑l
j=1Bj is the decomposition of B in topologically connected component, then the

restriction map

H0(C,IKC|BKC) −→ H0(B,OB)

has rank � l (where l is the number of components).

Proof. The lemma follows from Lemma 3.4 since the restriction map has rank 1 on every
topologically connected component.

Lemma 3.6. Let C be a 2-connected projective curve either reduced with planar singular-
ities or contained in a smooth algebraic surface. Suppose that Cred is μ-connected. Let S be a
subcanonical cluster, and assume that there exists a subcurve B such that Cred ⊂ B and the
restriction map

H0(C,ISKC) −→ H0(mΓ,ISKC)

has rank 1 for every subcurve mΓ ⊂ B. Then the following hold.

(i) The restriction map H0(C,ISKC) → H0(B,ISKC) has rank k + 1 (where k is the
splitting index of S).

(ii) If k > 0, we have degKC|B − degS|B � max{k; (μ/2)(k + 1)}.
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Proof. Since the restriction map to every mΓ has rank 1, it is generated by the restriction
of a generically invertible section H ∈ H0(C,ISKC). By genericity, we may assume that H
verifies the minimum for the splitting index, that is, H =

∑k
i=0Hi with Hi ∈ H0(C,ISKC)

and there is a maximal decomposition Cred =
∑k

i=0 Ci with supp(Hi|Cred
) = Ci and H cannot

be further decomposed.
(i) To prove the first part of the statement, notice that the restriction map

H0(C,ISKC)|B −→ H0(C,ISKC)|Cred

is an isomorphism. Indeed the above restriction map is obviously onto. It is injective as well,
since otherwise there would be a section Ĥ in H0(C,ISKC) vanishing on Cred but not on B,
that is, there would be a subcurve mΓ ⊂ B such that Ĥ vanishes on Γ but not on mΓ. But
the rank of the restriction H0(C,ISKC) → H0(mΓ,ISKC) is 1 by our assumptions, as well
as the rank of H0(C,ISKC) → H0(Γ,ISKC), and hence, the section Ĥ cannot exist.

Thus, without loss of generality, we can assume B = Cred and we take the decomposition
Cred =

∑k
i=0 Ci.

The first statement follows if we prove that for every Ci it is H0(C,ISKC)|Ci
= 〈Hi〉. For

simplicity, we are going to prove it for C1.
Write C1 =

∑J0
j=1 Γj , where the curves Γj are the irreducible components. Note that C1 is

connected, hence 1-connected, since the decomposition of C is maximal. We are going to prove
by induction that there exists a decomposition sequence

Γ1 = B1 ⊂ B2 ⊂ · · · ⊂ BJ0 = C1

such that H0(C,ISKC)|BJ
= 〈H1〉 for every J � J0.

The first case, J = 1, follows from our assumptions. Assume now that it holds for BJ−1. Since
C1 is 1-connected, then BJ−1 ∩ (C1 −BJ−1) 
= ∅. Take H1 and evaluate it on BJ−1 ∩ (C1 −
BJ−1). If it is zero, then H1 can be decomposed as the sum of two sections of H0(C,ISKC)|C1 ,
one supported on BJ−1 the other on C1 −BJ−1. But then we may apply Proposition 2.17, part
1, to conclude that this would force H1, and H as well, to be decomposed as the sum of more
sections than allowed.

Hence, there exists at least one component, say ΓJ , such that H1 does not vanish on BJ−1 ∩
ΓJ . Define BJ := BJ−1 + ΓJ . Our claim is that H0(C,ISKC)|BJ

= 〈H1〉. If not there would
exist H̄ ∈ H0(C,ISKC)|DJ

linearly independent of H1 such that H̄|DJ−1 = 0 (possibly after a
linear combination of sections). Moreover, we would have H̄|ΓJ

= H1|ΓJ
up to rescaling by our

assumptions, and hence, H1 must vanish on DJ−1 ∩ ΓJ , which is absurd.
(ii) Suppose now that the splitting index k is at least 1. We are going to study degKC − degS

on B.
Assume at first that B = Cred. Consider a decomposition sequence C0 = D0 ⊂ D1 ⊂ . . . ⊂

Dk = B = Cred, where Di −Di−1 = Ci. Up to reindexing the subcurve Ci we can suppose that
the curves Di are topologically connected, hence 1-connected since they are reduced.

We prove by induction that deg(ISKC)|Di
� i. For i = 0 it is obvious. For i > 0 consider

the commutative diagram

0 �� N ��
� �

��

(ISKC)|Di

πi ��
� �

��

(ISKC)|Di−1
��

� �

��

0

0 �� KC |Ci
(−Di−1) ��

����

KC |Di
��

����

KC |Di−1
��

����

0

0 �� Z �� S|Di
�� S|Di−1

�� 0
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where N is the kernel of πi and Z a subsheaf of S|Di
, both considered as sheaves with support

on Ci. Note that by our assumptions the section Hi restricts to a non-zero generically invertible
section of N , and thus, degCi

N � 0. Computing degrees, we obtain

degCi
Z = degKC |Ci

(−Di−1) − deg N = degKC |Ci
− Ci ·Di−1 − deg N

� degKC |Ci
− Ci ·Di−1 � degKC |Ci

− 1. (8)

But degS|Di
= degS|Di−1 + degCi

Z, and by induction hypothesis, we may assume
deg(ISKC)|Di−1 � (i− 1). Hence,

deg(ISKC)|Di
= degKC |Di

− degS|Di

= (degKC |Di−1 − degS|Di−1) + (degKC |Ci
− degCi

Z)

� (i− 1) + 1 = i.

In particular, we have the first inequality we wanted to prove, that is,

degKC|B − degS|B � k.

Moreover, equation (8) yields degKC|Ci
− degS|Ci

� Ci ·Di−1. Taking sum over all the
irreducible components we obtain

degKC|Cred − degS|Cred � 1
2

k∑
i=0

Ci · (Cred − Ci).

Thus, if the reduced curve Cred is μ-connected, we have

degKC|B − degS|B � μ

2
(k + 1).

We deal now with the case Cred � B. We just proved that

deg(ISKC)|Cred = degKC|Cred − degS|Cred � max
{
k,
μ

2
(k + 1)

}
.

Consider the following diagram, which exists and commute since S is subcanonical:

OB−Cred(−(Cred)) � � �� ��
� �

��

OB� �

��

�� �� OCred� �

��
ker(ρ) � � �� (ISKC)|B

ρ �� �� (ISKC)|Cred

Computing degrees, we may conclude by the following equation

deg(ISKC)|B = χ((ISKC)|B) − χ(OB)
= χ((ISKC)|Cred) + χ(ker(ρ)) − χ(OCred) − χ(OB−Cred(−(Cred)))
= deg(ISKC)|Cred + χ(ker(ρ))) − χ(OB−Cred(−(Cred)))

� max
{
k,
μ

2
(k + 1)

}
.

Our main result follows from the following theorem.

Theorem 3.7. Let C be a projective curve either reduced with planar singularities or
contained in a smooth algebraic surface. Assume C to be 2-connected and Cred μ-connected.

Let S ⊂ C be a subcanonical cluster of splitting index k. Then

h0(C,ISKC) � pa(C) − 1
2

deg(S) +
k

2
. (9)
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The following holds:

(i) if Cred is 2-connected, then h0(C,ISKC) � pa(C) − 1
2 deg(S) + max{0, k

2 − 1
2};

(ii) if Cred is 3-connected, then h0(C,ISKC) � pa(C) − 1
2 deg(S) + max{0, k

4 − 3
4};

(iii) if Cred is 4-connected, then

h0(C,ISKC) � pa(C) − 1
2 deg(S). (10)

Moreover, if equality holds in equation (9) or in equation (10), then the pair (S,C) satisfies
one of the following assumptions:

(i) S = 0, KC and k = 0;
(ii) C is honestly hyperelliptic, S is a multiple of the honest g1

2 and k = 0;
(iii) C is 3-disconnected (that is, there is a decomposition C = A+B with A ·B = 2).

Proof. Fix k ∈ N and let Σk be the set of clusters with splitting index smaller than or
equal to k.

Then equation (9) is equivalent to

Cliff(ISKC) := 2pa(C) − deg(S) − 2 · h0(ISKC) � −k
for every cluster S ∈ Σk.

If the Clifford index of non-trivial clusters is always positive, the claim is trivially true.
Suppose then the existence of a non-trivial subcanonical cluster with non-positive Clifford
index in Σk.

Step 1 : Clusters of minimal Clifford index and maximal degree. We are going to prove at
first that the claim is true for a cluster S of minimal Clifford index and maximal degree,
more precisely that the required inequalities hold for such a cluster and if equality holds in
equation (9) or in equation (10), then the pair (S,C) satisfies one of the conditions listed in
the statement.

Let S be a non-trivial subcanonical cluster in Σk with minimal Clifford index and maximal
total degree. Let S∗ be its residual with respect to a generic hyperplane section H. Without
loss of generality, we can suppose that the splitting index of S is precisely k. We have

h0(C,ISKC) = pa(C) − degS
2

+M (11)

with M � 0 maximal in Σk.
By Lemma 3.1, we know that either S∗ is contained in S or S is disjoint from S∗ and

Cliff(ISKC) = 0; in the second case, S and S∗ are Cartier divisors since they are locally
isomorphic to KC .

Case 1 : There exists an irreducible component Γ ⊂ C such that

dim[H0(C,ISKC)|Γ] � 2 and dim[H0(C,IS∗KC)|Γ] � 2.

By Lemma 3.3, we know that deg(S∗) = 2, that is, C is 3-disconnected or honestly
hyperelliptic and that h0(C,ISKC) = pa(C) − degS/2.

Case 2 : S∗ ⊂ S and the restriction map H0(C,ISKC) → H0(Γ,ISKC) has rank 1 for every
irreducible Γ ⊂ C.

Let B =
∑
miΓi be the minimal subcurve of C containing S and every irreducible component

Γi such that degΓi
KC = 0.

First of all note that S ∩ Γ 
= ∅ for every irreducible component Γ ⊂ C such that KC|Γ 
= 0
because S∗ ⊆ S. Thus, Cred ⊂ B.

By Lemma 3.4, the restriction map H0(C,ISKC) → H0(miΓi,ISKC) has rank 1 for every
irreducible Γi ⊂ B with multiplicity mi > 1 in B. We apply Lemma 3.6 and we may conclude
that the restriction map H0(C,ISKC) → H0(B,ISKC) has rank k + 1.



244 MARCO FRANCIOSI AND ELISA TENNI

Suppose at first that B 
= C (in particular, C is not reduced). Consider the following exact
sequence

0 −→ ωC−B −→ ISωC −→ ISωC |B −→ 0.

In particular,

h0(C,ISKC) = h0(C −B,KC−B) + dim Im{rB : H0(C,ISKC) −→ H0(B,ISKC)}.
Since the restriction map rB has rank k + 1, then

h0(C,ISKC) = h0(C −B,KC−B) + k + 1.

Equations (3) and (11) imply that

M = k −
(

degKC |B
2

− degS
2

)
−

(
B · (C −B)

2
− h0(C −B,OC−B)

)
.

If k = 0, that is, the cluster S is not splitting, every summand in the above formula cannot be
positive since by Lemma 2.8 (B · (C −B))/2 − h0(C −B,OC−B) � 0. Thus, we have M = 0,
S = KC|B and (B · (C −B))/2 = h0(C −B,OC−B) and, still by Lemma 2.8 we know that the
curve C is not 3-connected.

If k > 0, assume Cred to be μ-connected but not (μ+ 1)-connected. By Lemma 3.6, we know
that degKC |B − degS � max{k, (μ/2)(k + 1)}, thus by Lemma 2.8

0 � M � min
{
k

2
,
(
1 − μ

4

)
k − μ

4

}
−

(
B · (C −B)

2
− h0(C −B,OC−B)

)

� min
{
k

2
,
(
1 − μ

4

)
k − μ

4

}
.

Since M is non-negative, we have that μ � 3.
If μ � 2, then min{k/2, (1 − μ/4)k − μ/4} = (1 − μ/4)k − μ/4 and

h0(C,ISKC) � pa(C) − degS
2

+
(
1 − μ

4

)
k − μ

4

−
(
B · (C −B)

2
− h0(C −B,OC−B)

)

� pa(C) − degS
2

+
(
1 − μ

4

)
k − μ

4

and if equality holds, then C is 3-disconnected thanks to Lemma 2.8. If Cred is 2-disconnected,
that is, μ = 1, we know that min{k/2, (1 − μ/4)k − μ/4} = k/2 and

h0(C,ISKC) � pa(C) − degS
2

+
k

2
− (

B · (C −B)
2

− h0(C −B,OC−B))

� pa(C) − degS
2

+
k

2

and if equality holds, then C is 3-disconnected.
We have still to study the case in which B = C. With the same argument, we have

M = k −
(

degKC

2
− degS

2

)
.

We can argue as before: if k = 0 and M � 0, we have S = KC , which is impossible since
we asked S to be non-trivial. If k > 0 by Lemma 3.6 we conclude that M � min{k/2,
(1 − μ/4)k − μ/4} and Cred is not 4-connected. Moreover, if M = k/2, then degKC − deg
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S = k. But degS∗ = degKC − degS = k by its definition. This forces h0(C,IS∗KC) =
pa(C) − degS∗/2 + k/2 = pa(C), which is impossible since k > 0 and KC ample. Thus, M �
min{k/2 − 1

2 , (1 − μ/4)k − μ/4} and

h0(C,ISKC) � pa(C) − degS
2

+
(
1 − μ

4

)
k − μ

4
if μ = 2, 3 while

h0(C,ISKC) � pa(C) − degS
2

+
k

2
− 1

2
if μ = 1.

Case 3 : S is a Cartier divisor, Cliff(ISKC) = 0 and there exists a decomposition C = A+B
such that A and B have no common components, S = KC |B and S∗ = KC |A.

If Case 1 and 2 do not hold, we may conclude by Lemma 3.1 that S and S∗ are disjoint
Cartier divisor, that their Clifford index is zero and that for every irreducible Γ ⊂ C, one of
the restriction maps to H0(Γ,ISKC) and H0(Γ,IS∗KC) has rank 1.

If for an irreducible Γ ⊂ C the restriction map H0(C,ISKC) → H0(Γ,ISKC) has rank 1,
since ISKC is base point free by Proposition 2.19, then S|Γ = KC |Γ and moreover S|nΓ =
KC |nΓ for Γ of multiplicity n since S is Cartier. Thus, S∗

|nΓ = ∅.
The same holds for S∗. Therefore, there exists a decomposition C = A+B such that A and

B have no common components, S = KC |B and S∗ = KC |A.
Note that in this case, since S and S∗ are Cartier divisor with minimal Clifford index, by

Proposition 2.19 we know that |ISKC | and |IS∗KC | are base point free, and in particular,
the generic section does not pass through the singularities of Cred. Thus the splitting index k
is 0.

In this situation, we consider the following exact sequences

0 −→ ωA −→ ISωC
rB−→ OB −→ 0,

0 −→ ωB −→ IS∗ωC
rA−→ OA −→ 0.

Since h0(C,ISKC) = h0(A,KA) + rank(rB) (and similarly for S∗), the conditions
Cliff(ISKC) = Cliff(IS∗KC) = 0 imply that

h0(A,OA) + rank(rB) =
A ·B

2
+ 1,

h0(B,OB) + rank(rA) =
A ·B

2
+ 1.

Hence,

h0(A,OA) + h0(B,OB) + rank(rA) + rank(rB) = A ·B + 2. (12)

Write A =
∑h

i=1Ai and B =
∑l

j=1Bj where the Ai and Bj are the topologically connected
components of A and B, respectively.

By Lemma 3.4 and 3.5, we know that rank(rA) � h and rank(rB) � l.
If h0(A,OA) � (A ·B)/2 − h and h0(B,OB) � (A ·B)/2 − l, equation (12) implies that

A ·B + 2 � A ·B
2

− h+
A ·B

2
− l + h+ l,

which is impossible.
Thus, we have either h0(A,OA) > (A ·B)/2 − h or h0(B,OB) > (A ·B)/2 − l. Let us

suppose that the first inequality is true.
By Lemma 2.8, we have h0(A,OA) � (A ·B)/2 − (m− 2)/2 · h assuming C m-connected

(with m � 3). Therefore, we know that C is 4-disconnected and moreover there must be a
topologically connected component of A, say A1, such that h0(A1,OA1) > (A1 ·B)/2 − 1.
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If C is 3-connected, Lemma 2.8 says that h0(A1,OA1) � (A1 ·B)/2 − 1
2 and we must conclude

that h0(A1,OA1) = 1 and A1 ·B = A1 · (C −A1) = 3. This forces C −A1 to be 2-connected by
Ciliberto, Francia and Mendes Lopes [6, Lemma A.4] and allows us to consider the subcanonical
cluster S̃∗ := S∗ ∩ (C −A1) = K(C−A1)|(A−A1). It is

h0(C,IS∗KC) = h0(C −A1,IS̃∗KC−A1) + 1.

By an induction argument, we apply Clifford’s theorem to the curve C −A1 and the
cluster S̃∗ which can be easily seen to be subcanonical for the system |K(C−A1)| since
OC−A1 ⊂ IS̃∗KC−A1 . Moreover, the splitting index of S̃∗ is zero since it is clear that
H0(C −A1,IS̃∗KC−A1) does not have any base point in Sing((C −A1)red). Thus, we have

h0(C,IS∗KC) = h0(C −A1,IS̃∗KC−A1) + 1 � pa(C −A1) − deg(S̃∗)
2

+ 1.

Since pa(C −A1) = pa(C) − pa(A1) − 2 and deg(S̃∗) = deg(S∗) − (2pa(A1) + 1), we conclude
that

h0(C,IS∗KC) � (pa(C) − pa(A1) − 2) − deg(S∗)
2

+
(
pa(A1) +

1
2

)
+ 1

= pa(C) − deg(S∗)
2

− 1
2
.

Therefore, M = − 1
2 , but we were asking M � 0, and hence C is 3-disconnected.

Step 2 : Clusters of minimal Clifford index of any degree. We deal now with the case of a
cluster S of minimal Clifford index, without any assumption on its degree.

If there exists a non-trivial cluster with minimal non-positive Clifford index S ∈ Σk, there
exists as well a non-trivial cluster Smax of maximal degree with the same Clifford index. In
particular, a straightforward computation shows that the inequalities of the statement hold for
ISKC if and only if they hold for ISmaxKC , and similarly for the equalities.

We just showed that ISmaxKC , and thus ISKC as well, satisfies the inequalities of the
statement, hence proving the first part of the statement.

Moreover, if equality holds in equation (9) or in equation (10) for ISKC (and, equivalently,
for ISmaxKC), then the pair (Smax, C) satisfies one of the conditions listed in the statement.
If C is 3-disconnected, there is nothing more to prove.

If, instead, C is 3-connected, then case (ii) must hold, and hence, C is honestly hyperelliptic.
We can repeat verbatim the classical idea of Clifford’s theorem for a smooth hyperelliptic
curve of Saint Donat (see [16] or [13, Lemma IV.5.5]) and conclude that S is a multiple of a
honest g1

2 .

As a corollary we obtain the following result in which the computation of the splitting index,
usually tricky, is avoided by the count of the number of irreducible components.

Theorem 3.8. Let C =
∑s

i=0 niΓi be a projective curve either reduced with planar
singularities or contained in a smooth algebraic surface with (s+ 1) irreducible components.
Assume C to be 2-connected and let S ⊂ C be a subcanonical cluster. Then

h0(ISKC) � pa(C) − 1
2

deg(S) +
s

2
.

Proof. If follows immediately from Theorem 3.7 since the splitting index of every cluster is
at most the number of irreducible components of C minus 1.

If S is a Cartier divisor, we have the following theorem.
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Theorem 3.9. Let C be a projective curve either reduced with planar singularities or
contained in a smooth algebraic surface. Assume C to be 2-connected and let S ⊂ C be a
subcanonical Cartier cluster. Then

h0(C,ISKC) � pa(C) − 1
2 deg(S).

Moreover, if equality holds, then the pair (S,C) satisfies one of the following assumptions:

(i) S = 0, KC ;
(ii) C is honestly hyperelliptic and S is a multiple of the honest g1

2 ;
(iii) C is 3-disconnected (that is, there is a decomposition C = A+B with A ·B = 2).

Proof. If S is not splitting, the results follows from Theorem 3.7. Thus, we can suppose
that S has splitting index k > 0. By Proposition 2.17, we know that there is a decomposition
Cred =

∑k
i=0 Ci such that every H ∈ H0(C,ISKC) can be written as H =

∑k
i=0Hi with Hi ∈

H0(C,ISKC) and suppHi ⊂ Ci.
In particular, every section H ∈ H0(C,ISKC) vanishes on Ci ∩ Cj and we can decompose

H0(C,ISKC)|Cred as the direct sum of proper subspaces.

H0(C,ISKC)|Cred =
k⊕

i=0

H0(C,ISKC)|Ci

such that the following diagram holds:⊕k
i=0H

0(C,ISKC)|Ci� �

��

∼= �� H0(C,ISKC)|Cred� �

��⊕k
i=0H

0(Ci,IS ∩ ICi∩(Cred−Ci)KC|Ci
) �� H0(Cred,ISKC|Cred) �� H0(Z,OZ)

Since the map
⊕k

i=0 IS ∩ ICi∩(Cred−Ci)ωC|Ci
→ ISωC|Cred is generically an isomorphism,

its cokernel is a skyscraper sheaf OZ . Since S is Cartier, it is not difficult to verify that OZ

is isomorphic, as sheaf on Cred, to the structure sheaf of the scheme
⋃

i,j Ci ∩ Cj , thus it has
length 1

2

∑k
i=0 Ci · (Cred − Ci).

Let S̄ be the base locus of H0(C,ISKC). We have the following exact sequence

0 −→ IS̄ −→ IS −→ F −→ 0

and F ∼= Oξ, where ξ is a cluster. It is clear from the above diagram that there is a natural
surjective morphism Oξ � OZ . In particular, the colength of S ⊂ S̄ is at least 1

2

∑k
i=0 Ci ·

(Cred − Ci) � k.
Since H0(C,ISKC) = H0(C,IS̄KC), the splitting index of Ŝ is still k and we can apply

Theorem 3.7:

h0(C,ISKC) = h0(C,IS̄KC) � pa(C) − 1
2

deg S̄ +
k

2

= pa(C) − 1
2

degS − 1
2

colength(S̄ ⊃ S) +
k

2

� pa(C) − 1
2

degS − k

2
+
k

2
= pa(C) − 1

2
degS.

Note that if equality holds, h0(C,IS̄KC) = pa(C) − 1
2 deg S̄ + k

2 , and thus by Theorem 3.7
we know that one of the three cases listed (S̄ trivial, or C honestly hyperelliptic, or C 3-
disconnected) must hold. Since we are assuming that the splitting index k is strictly positive,
we are forced to conclude that case (iii) of Theorem 3.7 holds, that is, C is 3-disconnected.
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Proof of Theorem A. It is a straightforward corollary of Theorem 3.7 if Cred is 4-
connected; of Theorem 3.9 if S is Cartier; of Proposition 2.17 and Theorem 3.7 if there is
a section H ∈ H0(C,ISKC) avoiding the singularities of Cred since in this case S is not
splitting.

4. Clifford’s theorem for reduced curves

In this section, we will prove Clifford’s theorem for reduced 4-connected curves with planar
singularities. Theorem B works under the assumptions that the sheaves ISL and its dual
H om(ISL, ωC) are NEF.

In Theorem C, we deal with the case in which the second sheaf is not NEF. We split the
curve in C0 + C1, where C1 is the NEF part. It is still possible to find a Clifford type bound for
h0(C,ISL) with a correction term which corresponds to a Riemann–Roch estimate over C0. In
the extremal case in which C = C0, we recover Riemann–Roch theorem since h1(C,ISL) = 0.

The inequality of Theorem C can be written also as

h0(C,ISL) �
deg(ISL)|C1

2
+ deg(ISL)|C0 −

deg(KC)|C0

2
.

The following trivial remark will be useful in the proof of Theorems B and C.

Remark 4.1. Let C be a reduced projective curve with planar singularities. Let C = A+B
be an effective decomposition of C in non-trivial subcurves. Consider two rank 1 torsion-free
sheaves ISA

LA and ISB
LB supported, respectively, on A and B with the property that

A ∩B ⊂ SA and A ∩B ⊂ SB. Then the sheaf on C defined as ISA
LA ⊕ ISB

LB is a rank 1
torsion-free sheaf as well, since the sheaves living on the two curves can be glued together as
they both vanish on the intersection.

Proof of Theorem B. If H0(C,ISL) = 0 or H1(C,ISL) = 0, the result follows from
Riemann–Roch theorem and the positivity of deg ISL. We will assume from now on that
both spaces are non-trivial.

We are going to show that if the sheaf ISL attains the minimal Clifford index among the
sheaves satisfying the assumption of Theorem B, then ISL is a subcanonical sheaf.

With this aim we prove firstly that there exists an inclusion OC ↪→ ISL and secondly that
there exists an inclusion ISL ↪→ ωC .

If OC 
↪→ ISL, let B ⊂ C be the maximal subcurve which annihilates every section in
H0(C,ISL) and let A = C −B. Then there is a cluster SA on A such that

0 −→ ISA
L|A(−B) −→ ISL −→ (ISL)|B −→ 0

and moreover there is an isomorphism between vector spaces:

H0(A,ISA
L|A(−B)) ∼= H0(C,ISL).

If A 
= C, consider the sheaf F = ISA
L|A(−B) ⊕ OB(A)(−A). By Remark 4.1, F is a rank

1 torsion-free sheaf and it is immediately seen that

0 � deg F|C0 � KC|C0 for every subcurve C0 ⊂ C.

Since Cliff(ISL) is minimum by our assumption then

Cliff(ISL) � Cliff(F ). (13)
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But, by our construction h0(C,F ) = h0(A,ISA
L|A(−B)) + h0(B,OB) and by definition of

degree we have

deg(ISL) = χ(ISL) − χ(OC) = χ(ISA
L|A(−B)) + χ((ISL)|B) − χ(OC)

= χ(ISA
L|A(−B)) + deg((ISL)|B) + χ(OB) − χ(OC)

� χ(ISA
L|A(−B)) + χ(OB) − χ(OC) = deg(F ).

Thus,

Cliff(F ) = deg(F ) − 2h0(C,F ) + 2

� deg(ISL) − 2h0(A,ISA
L|A(−B)) − 2h0(B,OB) + 2

� deg(ISL) − 2h0(A,ISA
L|A(−B)) = Cliff(ISL) − 2.

This contradicts equation (13), hence A = C, that is, there exist sections not vanishing on any
subcurve, or, equivalently, OC ↪→ ISL.

Now we show that ISL ↪→ ωC . The dual sheaf H om(ISL, ωC) satisfies the assumption of
Theorem B and by Serre duality it has the same Clifford index of ISL, and hence, thanks to the
previous step OC ↪→ H om(ISL, ωC). In particular, H0(C,OC) ↪→ H0(C,H om(ISL, ωC)) =
Hom(ISL, ωC). Hence, there is a map from ISL to ωC not vanishing on any component, and
by automatic adjunction (Proposition 2.6) we may conclude that ISL ↪→ ωC .

We proved that any sheaf ISL with minimal Clifford index satisfies OC ↪→ ISL ↪→ ωC , and
hence ISL ∼= ITωC , where T is a subcanonical cluster. But Theorem A holds for ITωC , which
concludes the proof.

Remark 4.2. If ISL is not isomorphic to a sheaf of the form ITKC for a subcanonical
T , then the proof of Theorem B shows that we have the stricter inequality h0(C,ISL) �
deg(ISL)/2.

Proof of Theorem C. If H0(C,ISL) = 0 or H1(C,ISL) = 0, the result follows from
Riemann–Roch theorem and the positivity of deg ISL. We will assume from now on that
both spaces are non-trivial.

Let C0 be the maximal subcurve such that

deg[(ISL)]|B > degKC |B

for every subcurve B ⊂ C0.
Consider a cluster T on C0 such that (IT ISL)|C0

num∼ KC|C0 . Such cluster must exist by
our degree assumptions. The sheaf IT ISL satisfies the assumptions of Theorem B, and thus,

h0(C,IT ISL) � deg ISL

2
− deg T

2
+ 1.

Moreover, if IT ISL ∼= IZωC with Z subcanonical cluster, we have

h1(C,IT ISL) > h1(C,ISL).

This follows from the analysis of the following commutative diagram:

H1(C,ISL)∗ ∼= HomC(ISL, ωC) � � ��

��

HomC(IT ISL, ωC) ∼= H1(C,IT ISL)∗

r0

��
0 = HomC0(ISL, ωC) �� HomC0(IT ISL, ωC)
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We have that HomC0(ISL, ωC) = H1(C0,ISL)∗ = 0 by Corollary 2.7. The map r0 corre-
sponds to the restriction map H0(C,IZ∗KC) → H0(C0,IZ∗KC), which is non-zero since Z∗

is subcanonical.
In this case, we may conclude since

h0(C,ISL) � h0(C,IT ISL) + deg T − 1 � deg ISL

2
+

deg(ISL−KC)|C0

2
.

If IT ISL is not subcanonical, by Remark 4.2 it is h0(C,IT ISL) � deg ISL/2 − deg T/2
and we have the same inequality.

5. Examples

In this section, we will illustrate some examples in which the estimates of Theorem 3.7 and
Theorems B and C are sharp. The first two examples concern Theorem 3.7 and show that
the Clifford index can be negative when Cred is 4-disconnected. Examples 5.3 and 5.4 regard
Theorem A and in particular they show how to build 3-disconnected curves and non-trivial and
non-splitting subcanonical clusters with vanishing Clifford index. The final example (first given
by Caporaso [3, Example 4.3.4]) shows a case in which H0(C,ISL) 
= 0, H1(C,ISL) 
= 0 and
equality holds in Theorem C.

Example 5.1. Let C =
∑k

i=0 Γi such that Γi · Γi+1 = 1, Γ0 · Γk = 1 and all the other
intersection products are 0. Suppose that pa(Γi) � 2. In the case k = 5, its dual graph is
the following:

Γ0

��
��

��
�

Γ1

��
��

��
�

Γ5

��
��

��
� Γ2

��
��

��
�

Γ4 Γ3

Take S∗ =
⋃

i,j(Γi ∩ Γj), which is a degree (k + 1) cluster. Since Γi · (C − Γi) = 2 every
section in H0(C,KC) vanishing on a point of Γi ∩ (C − Γi) must vanish on the other, hence
if a section H0(C,KC) vanishes on any singular point of C, it must vanish on every singular
point. In particular, h0(C,IS∗KC) = pa(C) − 1 = pa(C) − degS∗/2 + k/2 − 1

2 . It is clear that
the splitting index of S∗ is precisely k.

Example 5.2. Let C =
∑5

i=0 Γi and suppose that pa(Γi) � 2. Suppose moreover that the
intersection products are defined by the following dual graph, where the existence of the simple
line means that the intersection product between the two curves is 1.

Γ0

��
��

��
� Γ1

��
��

��
�

Γ4

��
��

��
�

Γ3

��
��

��
�

Γ5 Γ2
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Take S∗ =
⋃

i,j(Γi ∩ Γj), which is a degree 9 cluster. It is easy to check that one can decompose
H0(C,IS∗KC) ∼= ⊕5

i=0H
0(Γi,KΓi

) and that the splitting index of S∗ is k = 5. Thus, we have

h0(C,IS∗KC) =
s∑

i=0

pa(Γi) = pa(C) − degS∗

2
+

1
2

and note that 1
2 is precisely k/4 − 3

4 , which means that equality can hold when Cred is 3-
connected but 4-disconnected.

Example 5.3. Let C = Γ0 +
∑n

i=1 Γi with Γ0 · Γi = 2 for every i � 1 and Γi · Γj = 0 for
i > j � 1 (possibly Γi = Γj for some i, j).

Γ1

Γ4 Γ0 Γ2

Γ3

C is 2-connected but 3-disconnected. Taking S = KC |C−Γ0 , we have

h0(C,ISKC) = h0(Γ0,KΓ0) + h0(C − Γ0,OC−Γ0) = pa(C) − degS
2

since h0(C − Γ0,OC−Γ0) = n = Γ0 · (C − Γ0)/2.

Example 5.4. Let C = Γ0 + Γ1 with Γ1 irreducible and Γ0 irreducible and hyperelliptic.
Suppose that OΓ0(Γ1) is a g1

2 divisor on Γ0.
Let S be another divisor in the linear series g1

2 on Γ0. Then h0(Γ0,ISKC) = pa(Γ0), and
thus, h0(C,ISKC) = pa(Γ1) + pa(Γ0) = pa(C) − 1 = pa(C) − degS/2.

We believe that if C is 2-connected but 3-disconnected and Cliff(ISKC) = 0 for a
subcanonical non-splitting cluster S, then S must be the sum of clusters shaped as the two
above, that is, a linear combination of a sum of g1

2 plus a term of the form KC|B with
h0(B,OB) = (B · (C −B))/2 or h0(C −B,OC−B) = (B · (C −B))/2.

Example 5.5. Let C =
∑k

i=1 Γi +
∑k

j=1Ej , where pa(Γi) = 0, pa(Ej) = 1. Moreover, Γi ·
Ei = Γi · Ei−1 = Γ1 · Ek = 1 and every other intersection number is 0.

Γ1

��
��

��
��

E1

��
��

��
��

E3

��
��

��
��

Γ2

��
��

��
��

Γ3 E2

Take a smooth point Pi over each Γi and consider the sheaf L = OC(
∑

i Pi). Under
the notation of Theorem C, we have that C0 =

∑
Γi and C1 =

∑
Ej . A straightforward

computation shows that h0(C,L) = k = degL/2 + deg(L−KC)|C0/2.
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