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Continuous LTI systems defined onLp functions
andD ′

Lp distributions: analysis by impulse response
and convolution

Maurizio Ciampa, Marco Franciosi and Mario Poletti

Abstract—In this paper it is shown that every continuous LTI
(linear time-invariant) system L defined either onLp or on D ′

Lp

(1 6 p 6 ∞) admits an impulse response∆ ∈ D ′
Lp′ (1 6 p′ 6

∞, 1/p + 1/p′ = 1).
Schwartz’ extension toD ′

Lp distributions of the usual notion
of convolution product for Lp functions is used to prove that
(apart some restrictions for p = ∞) for every f either in Lp or
in D ′

Lp we haveL (f) = ∆ ∗ f .
Perspectives of applications to linear differential equations are

shown by one example.

I. I NTRODUCTION

I N SIGNAL processing theory, a linear, time-invariant (LTI),
continuous-time system is a map

L : I → O

where:I (input space) andO (output space) are linear spaces
of signals defined onR, both closed under translation, andL
is a linear map which commutes with translation. If moreover
I and O are equipped with notions of convergence and
limit for sequences (denotedI -lim and O-lim respectively)
and for everyf ∈ I and everysequencefk ∈ I such
that I - lim

k→∞
fk = f it is O- lim

k→∞
L (fk) = L (f), then

L : I → O is said to becontinuous.
For continuous LTI systems a crucial role is plaid by the so

calledimpulse response. In recent papers (see [1], [2] and [5])
Sandberg pointed out that, even if an impulse response∆ may
be defined forL , we cannot always expect that the knowledge
of ∆ shall determine the behavior ofL . Indeed he proved that
there exist different continuous causal LTI systemsL1,L2 :
C → C with the same impulse response∆ = 0, whereC is
the space of bounded uniformly continuous complex valued
functions defined onR.

Moreover in [1]–[6] Sandberg faced the problems of defin-
ing in a natural and correct way the impulse response in the
setting of ordinary functions and how to represent a linear
system via convolution.

In particular in [4] he showed that every continuous LTI
systemL : C0 → L∞ (where C0 denotes the space of
continuous functions with limit0 at ∞) admits a general
representation as a uniform limit of a convolution, giving
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moreover necessary and sufficient conditions under which this
limit reduces to an ordinary convolution. In [3], [4] Sandberg
considered continuous LTI systems where the inputs are drawn
from Lp (with 1 6 p < ∞) and the outputs are bounded
functions, showing that an impulse response∆ always exists;
moreover he pointed out that∆ ∈ Lp′ , where p′ is the
conjugate index ofp, and that for every inputf ∈ Lp the
corresponding output is given by∆∗f , where “∗” is the usual
convolution of functions. Finally in [6] Sandberg considered
also continuous LTI systemsL : L∞ → L∞ (where the
input and output spaces are equipped with particular notions
of convergence and limit for sequences); in the same reference
he describedL as an iterated limit of a convolution and he
gave necessary and sufficient conditions under which this limit
can be written as a convolution with an integrable impulse
response function.

This paper and the previous one [7] must be considered as
an attempt to face in the realm of distribution theory some of
the problem posed by Sandberg.

Our analysis is based on the ideas and on the language
of L. Schwartz, treated for instance in its classical book on
distribution theory [8]. In particular, Thm. XXIII, Ch. 6 of [8]
allowed us to start our study, proving that for every continuous
LTI systemL : I → O it can be defined an impulse response
∆ ∈ D ′, i.e., in the space of all distributions (for a brief survey
on distributions seeNotation and conventionsat the end of this
Section), as far asI and O verify two simple assumptions
which merely exclude too strange input and output spaces
(see [7], Section I for details). Our definition agrees with the
notion of impulse response adopted by Sandberg in [1]–[6]
and withL (δ) wheneverδ ∈ I andI satisfies some natural
conditions of convergence.

To be more precise∆ is the unique element inD ′ such that,
for every sequenceϕk ∈ D with E ′- lim

k→∞
ϕk = δ, it is ∆ =

D ′- lim
k→∞

L (ϕk), whereE ′ denotes the space of distributions

with compact support (for a detailed description of∆ we refer
to [7], Section II).

In [7] there are also shown the following results:

• L (f) = ∆ ∗ f for every f ∈ D , whereD denotes the
space of allC∞ complex-valued functions defined on
R with compact support and∗ denotes the convolution
product between a distribution and a test function (see
[7], Theorem 2.1);

• if L1 : I → O is another continuous LTI system with
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the same impulse response∆, then

L1(f) = L (f) for everyf ∈ Σ(D ,I )

whereΣ(D ,I ) is the set of all input signals related to
D by limits of sequences (for the formal definition, see
[7], Section III)

Since, apart few pathologies, we haveΣ(D ,I ) = I , our
conclusion was then that, apart few pathologies, the impulse
response∆ of a continuous LTI systemsL : I → O
uniquely determinesL . The spontaneous questions is: “When
f ∈ I but f /∈ D , how can we obtainL (f) by means of∆
andf ?”

In this paper we focus on the usual Banach spacesLp and
on the distributional spacesD ′

Lp , where D ′
Lp denotes the

subspace ofD ′ spanned byLp itself and by the distributional
derivatives (of any order) of its elements.

If I = Lp or D ′
Lp in this paper we show that (apart

pathologies in the casep = ∞) the behavior ofL on all
of I can be completely understood as a convolution product
(in a suitable sense that will be clarified in Section IV)
with the impulse response∆ ∈ D ′. In this way we extend
our description ofL as convolution product with∆ from
”smooth” signalsf ∈ D to every signalf ∈ I .

To be more precise in this paper we consider continuous
LTI systemsL : I → O where

• eitherI = Lp or I = D ′
Lp , with 1 6 p 6 ∞

• O = D ′

We point out that inLp and D ′ we will consider the usual
notions of convergence for sequences, while forD ′

Lp we will
always specify whether the weak convergence or the strong
convergence has to be considered.

Notice that the choiceO = D ′ allows the widest possible
range of behaviors forL (for instance it ensures that no
continuous LTI systemLp → Lp or Lp → L1

loc is lost).
In Section II we get by an extremely technical proof that the

impulse response∆ of L is in D ′
Lp′ where as usual1/p +

1/p′ = 1.
In Section III we take into account the extension of the

usual notion of convolution betweenLp and Lq functions,
to convolution betweenD ′

Lp andD ′
Lq distributions (see [8],

Chapter VI, Section 1 and 8). In this way, given∆ ∈ D ′
Lp′

the convolution∆∗f became meaningful for everyf ∈ D ′
Lp .

This allows us to introduce for every∆ ∈ D ′
Lp′ a LTI system

L∆ : D ′
Lp → D ′

defined byL∆(f) = ∆ ∗ f . In Section IV we prove thatL∆

is a continuous LTI system.
In Section V thanks to the comparison results obtained

in [7], we compareL with L∆. As a corollary we give a
complete analysis ofL by means of its impulse response and
the notion of convolution product.

Going in details, forL : Lp → D ′ we prove that

• L (f) = L∆(f) = ∆ ∗ f for every f ∈ Lp if 1 6
p < ∞

• L (f) = L∆(f) = ∆ ∗ f for every f ∈ C0 (whereC0

is the space of continuous functions null at infinity) if
p = ∞

while for L : D ′
Lp → D ′ we prove that

• L (f) = L∆(f) = ∆ ∗ f for every f ∈ D ′
Lp if 1 6

p < ∞
• L (f) = L∆(f) = ∆ ∗ f for every f ∈ D ′

L∞ if
p = ∞ and L is continuous with respect to the weak
convergence inD ′

L∞

• L (f) = L∆(f) = ∆ ∗ f for every f ∈ Ḋ ′
L∞ (where

Ḋ ′
L∞ is the space of distributions null at infinity) if

p = ∞ and L is continuous with respect to the strong
convergence inD ′

L∞

The most relevant consequence of these results is that, again
except pathologies, the family of continuous LTI systems

L∆ : D ′
Lp → D ′, ∆ ∈ D ′

Lp′

coincides with the family of all continuous LTI systems
defined onD ′

Lp , while its restriction toLp coincides with
the family of all continuous LTI systems defined onLp.

Finally, in Section VI, perspectives of applications to linear
differential equations are shown by an intentionally simple
example.

Notation and conventions

To improve readability, we give here a brief survey of the
spaces of distributions we use, and of the definitions we adopt.

D denotes the space of allC∞ complex-valued functions
defined onR with compact support. Given a sequenceϕk ∈ D
and ϕ ∈ D we write D- lim

k→∞
ϕk = ϕ if there is a compact

subsetK of R such thatsupp ϕk ⊂ K for every k, and
moreover for everyh ∈ N the sequenceDhϕk converges to
Dhϕ uniformly onR.

A subsetB of D is calledboundedif there are a compact
subsetK of R and positive real numbersM0,M1, . . . such
that

supp ϕ ⊂ K for everyϕ ∈ B
sup{∥∥Dhϕ

∥∥
∞ : ϕ ∈ B} 6 Mh for everyh ∈ N

A linear functional f : D → C (as usual,f(ϕ) is
denoted by〈f, ϕ〉) is called continuousif for every ϕ ∈ D
and every sequenceϕk ∈ D such thatD- lim

k→∞
ϕk = ϕ

it is lim
k→∞

〈f, ϕk〉 = 〈f, ϕ〉. A continuous linear functional

f : D → C is called adistribution on R.
D ′ denotes the space of all distributions onR. Every f ∈

L1
loc, i.e, every functionsf : R → C which is integrable on

every compact subset ofR, becomes a distribution onR by
setting

〈f, ϕ〉 =
∫ +∞

−∞
f(t)ϕ(t)dt

In D ′ two notions of convergence for sequences are consid-
ered: a weak convergence and a strong one. Given a sequence
fk ∈ D ′ and f ∈ D ′ we say thatfk weakly (resp.strongly)
converges tof , and write

w-D ′- lim
k→∞

fk = f (resp.s-D ′- lim
k→∞

fk = f )
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if lim
k→∞

〈fk, ϕ〉 = 〈f, ϕ〉 for every ϕ ∈ D (resp. for every

ϕ ∈ D and uniformly on every bounded subsetB of D).
Obviously

s-D ′- lim
k→∞

fk = f ⇒ w-D ′- lim
k→∞

fk = f

It is worth to remark that a deep result (which holds only
for sequences and no more for filters, see [8] Chapter III,
Theorem XIII) proves that

w-D ′- lim
k→∞

fk = f ⇐⇒ s-D ′- lim
k→∞

fk = f

As a consequence, for the convergence of sequences inD ′, the
specifications “weak, strong” and the prefixes “w-, s-” will be
omitted.

In order to handle linear changes of variables for distribu-
tions, we agree to denote an elementf ∈ D ′ by a function-
like symbolf(t), so that the name “t” of the current variable
is pointed out. In this way, for every pairs of real numbers
λ, a ∈ R such thatλ 6= 0, we denote byf(λt+a) = f(a+λt)
the distribution defined by

〈f(λt+ a), ϕ(t)〉 = |λ|−1〈f(t), ϕ
(
λ−1(t− a)

)
〉

for everyϕ ∈ D . In particular, forλ = 1, a = −τ , we obtain
f(t− τ) defined by

〈f(t− τ), ϕ(t)〉 = 〈f(t), ϕ (t+ τ)〉

and, forλ = −1, a = τ , we obtainf(τ − t) defined by

〈f(τ − t), ϕ(t)〉 = 〈f(t), ϕ (τ − t)〉

For everyf ∈ D ′, ϕ ∈ D , the convolutionf ∗ϕ is theC∞

function defined, for everyt ∈ R, by

(f ∗ ϕ)(t) = 〈f(x), ϕ(t− x)〉 = 〈f(t− x), ϕ(x)〉

Observe that, wheneverf is a locally integrable function, this
definition agrees with the usual definition

(f ∗ ϕ)(t) =
∫ +∞

−∞
f(x)ϕ(t− x)dx =∫ +∞

−∞
f(t− x)ϕ(x)dx

For every distributionf(t), we denote bỹf(t) the distribu-
tion defined byf̃(t) = f(−t).

Now we illustrate the definition and some properties of the
distributional spacesD ′

Lp .
For 1 6 p 6 ∞, D ′

Lp denotes the subspace ofD ′ spanned
by Lp itself and by the derivatives (of any order) of its
elements. In particular everyf ∈ D ′

Lp may be written as
a finite sum of the following form

f =
∑

h

f
(h)
h with fh ∈ Lp for everyh

wheref (h)
h means distributional derivative of orderh of the

function fh.
The meaning ofD ′

Lp rests on this definition: for instance,
if Lp voltages across a capacitor are accepted, then alsoD ′

Lp

currents through the same capacitor must be accepted. For

a deeper understanding and an easier handling, two other
equivalent definitions ofD ′

Lp are needed.
Firstly, D ′

Lp may be introduced as the space of distributions
f ∈ D ′ such that, for everyϕ ∈ D , it is f ∗ ϕ ∈ Lp (see [8],
Chapter VI, Theorem XXV).

Secondly, just asD ′, also D ′
Lp may be introduced via a

duality pairing as a space of functionals as follows (see [8],
Chapter VI, Sect. 8 and in particular Theorem XXV).

For 1 6 p 6 ∞, let DLp be the space of allC∞ complex-
valued functionsϕ defined onR, such thatDhϕ ∈ Lp for
everyh ∈ N. Given a sequenceϕk of members ofDLp , and
ϕ ∈ DLp we write DLp- lim

k→∞
ϕk = ϕ if for every h ∈ N

the sequenceDhϕk converges toDhϕ in Lp. For p = ∞,
ḊL∞ denotes the subspace ofDL∞ , whose elements are the
ϕ such that lim

|t|→∞
Dhϕ(t) = 0 for everyh ∈ N, equipped with

a similar notion of convergence anḋDL∞ - lim for sequences.
We point out that if1 < p < q < ∞ there are the following
inclusions

DL1 ⊂ DLp ⊂ DLq ⊂ ḊL∞ ⊂ DL∞

A subsetB of DLp is calledboundedif there are positive
real numbersM0,M1, . . . such that for everyh ∈ N it is

sup
{
‖Dhϕ‖p : ϕ ∈ B

}
6 Mh

Forp = ∞, boundedsubsets ofḊL∞ have a similar definition.
For1 < p 6 ∞, D ′

Lp is the space of linear and continuous
functional f from DLp′ into C, where p′ is defined by
1/p′ + 1/p = 1. For p = 1, D ′

L1 is the space of linear and
continuous functionals fromḊL∞ into C. As usual, for every
f ∈ D ′

Lp , ϕ ∈ DLp′ if 1 < p ≤ ∞ and for everyf ∈ D ′
L1 ,

ϕ ∈ ḊL∞ if p = 1 the complex numberf(ϕ) is denoted by
〈f, ϕ〉, and wheneverf ∈ Lp it is

〈f, ϕ〉 =
∫ +∞

−∞
f(t)ϕ(t)dt

Notice that also inD ′
Lp two notions of convergence for

sequences need to be considered, aweakand astrong. Now
we illustrate what do they mean.

Let 1 < p 6 ∞. Given a sequencefk ∈ D ′
Lp and f ∈

D ′
Lp we say thatfk weakly (resp.strongly) converges tof ,

and write

w-D ′
Lp- lim

k→∞
fk = f (resp.s-D ′

Lp- lim
k→∞

fk = f )

if lim
k→∞

〈fk, ϕ〉 = 〈f, ϕ〉 for everyϕ ∈ DLp′ (resp. for every

ϕ ∈ DLp′ and uniformly on every bounded subsetB of DLp′ ).
Weak and strong convergence for sequences inD ′

L1 , have
similar definitions by usingϕ ∈ ḊL∞ and bounded subsets
of ḊL∞ . We remark that the implications-D ′

Lp- lim
k→∞

fk =
f ⇒ w-D ′

Lp- lim
k→∞

fk = f still holds, but there are weakly

convergent sequences which are not strongly convergent (for
instance, the sequencefk(t) = δ(t − k) is weakly —but not
strongly— convergent to0).

Thus for LTI systemsL : D ′
Lp → D ′, we have to consider

both notions of convergence. A systemL is said to beweakly
continuous(resp.strongly continuous) if it is continuous with
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respect to the weak convergence (resp. strong convergence) in
the input space.

Notice that, despite their name, ifL : D ′
Lp → D ′ is weakly

continuous thenL : D ′
Lp → D ′ is strongly continuous.

Finally Ḋ ′
L∞ denotes the space of distributions converg-

ing to 0 at infinity, i.e., of the distributionsf such that
D ′- lim

|τ |→∞
f(t− τ) = 0 (see [8], Chapter VI, Section 8). We

point out that if1 < p < q <∞ then there are the following
inclusions

D ′
L1 ⊂ D ′

Lp ⊂ D ′
Lq ⊂ Ḋ ′

L∞ ⊂ D ′
L∞

II. I MPULSE RESPONSE OF A CONTINUOUSLTI SYSTEM

DEFINED ONLp AND ON D ′
Lp

Let 1 6 p 6 ∞, let (as usual)p′ be defined by

1 6 p′ 6 ∞,
1
p

+
1
p′

= 1

and let us consider continuous LTI systemsL : I → D ′

where eitherI = Lp or I = D ′
Lp . In both cases input

and output spaces verifyAssumptions1,2 of [7], hence by the
theory developed in Section II of [7] there exists the impulse
response∆ ∈ D ′.

In this Section we prove that we can say much more about
the nature of∆, namely we prove that∆ is an element of
D ′

Lp′ .
Before proving this result, we need a lemma. The extremely

technical proof we give here, is inspired by ideas and tools
developed by Schwartz in Sections 7 and 8 of ChapterV I of
[8].

Lemma 2.1:Let 1 6 q 6 ∞, and let Υ ∈ D ′ be a
distribution such that for everyϕ ∈ D it is Υ ∗ ϕ ∈ D ′

Lq .
Then it isΥ ∈ D ′

Lq .
Proof: The proof will be given in various steps, each with

its own proof.
LetK = [−1, 1]. The symbolDK denotes the space ofC∞

functions whose support is a subset ofK. It is well known
(see Chapter 7, Section 2 of [9]) thatDK is a Fŕechet space
with respect to the family of seminorms

pm(ϕ) = sup{‖ϕ(0)‖∞, . . . , ‖ϕ(m)‖∞}
with m ∈ N. A fundamental set of open neighborhoods of0
is given by

{ϕ ∈ DK : ‖ϕ(0)‖∞, . . . , ‖ϕ(m)‖∞ < ε}
with m ∈ N, ε > 0.

For m ∈ N, the symbolDm
K denotes the space ofCm

functions whose support is a subset ofK. Dm
K is a Banach,

hence Fŕechet, space with respect to the norm

p(ϕ) = sup{‖ϕ(0)‖∞, . . . , ‖ϕ(m)‖∞}
A fundamental set of open neighborhoods of0 is given by

{ϕ ∈ Dm
K : ‖ϕ(0)‖∞, . . . , ‖ϕ(m)‖∞ < ε}

with ε > 0.
Step1. For everyα, β ∈ D it is

Υ ∗ α ∗ β ∈ Lq

Moreover the bilinear map

ξ : DK ×DK → Lq

defined byξ(α, β) = Υ ∗ α ∗ β, for every fixed value of one
variable is continuous with respect to the other variable.

Proof of Step1. By the assumption onΥ, it is Υ∗α ∈ D ′
Lq ;

hence by Theorem XXV, Chapter VI, Section 8 of [8] it is
Υ ∗ α ∗ β ∈ Lq.

To prove the second statement, letα ∈ DK , and letF =
Υ ∗ α ∈ D ′

Lq . By definition F may be written in the form

F =
r∑

h=0

f
(h)
h , with fh ∈ Lq for everyh. As a consequence,

for everyβ ∈ DK it is

‖ξ(α, β)‖q = ‖F ∗ β‖q =

‖
r∑

h=0

fh ∗ β(h)‖q 6
r∑

h=0

‖fh ∗ β(h)‖q

By Young’s Theorem it is‖fh ∗ β(h)‖q 6 ‖fh‖q · ‖β(h)‖1.

Hence‖ξ(α, β)‖q 6 2
r∑

h=0

‖fh‖q · ‖β(h)‖∞.

End of Proof of Step1
Step2. The bilinear map

ξ : DK ×DK → Lq

defined byξ(α, β) = Υ ∗ α ∗ β is continuous.
As a consequence there existm0 ∈ N, ε0 > 0 such that,

defining

U0 = {ϕ ∈ DK : ‖ϕ(0)‖∞, . . . , ‖ϕ(m0)‖∞ < ε0}
for everyα, β ∈ U0 it is

‖ξ(α, β)‖q = ‖Υ ∗ α ∗ β‖q 6 1

Proof of Step2. SinceDK andLq are Fŕechet spaces, Step
1 allows us to apply Corollary 1 of Chapter III, Section 5 of
[10] to ξ. End of Proof of Step2

Let m0, ε0, U0 be as in Step2. The family
ε

ε0
U0, ε > 0

is a fundamental set of open neighborhoods of0 for the
topology induced byDm0

K in DK .

Step3. Let ε1, ε2 > 0. Then for everyα ∈ ε1
ε0
U0, and for

everyβ ∈ ε2
ε0
U0 it is

‖ξ(α, β)‖q = ‖Υ ∗ α ∗ β‖q 6
ε1ε2
ε20

Proof of Step3. Since
ε0
ε1
α,
ε0
ε2
β ∈ U0, by Step2 it is

‖ξ(α, β)‖q = ‖Υ ∗ α ∗ β‖q =

ε1ε2
ε20

‖Υ ∗
(
ε0
ε1
α

)
∗

(
ε0
ε1
β

)
‖q 6

ε1ε2
ε20

End of Proof of Step3
Let Dm0

(−1,1) be the space of theCm0 functions whose
support is a subset of the open interval(−1, 1).
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Step4. For everyα, β ∈ Dm0
(−1,1) it is

Υ ∗ α ∗ β ∈ Lq

Proof of Step4. By the assumption, there existsρ > 0
such that(supp α) + [−ρ, ρ] ⊂ K, (supp β) + [−ρ, ρ] ⊂ K.
Let ϕ ∈ D be such thatsupp ϕ ⊂ [−ρ, ρ], ϕ(t) > 0 for every

t ∈ R,
∫
ϕ = 1. For j > 1 let ϕj(t) = jϕ(jt), and let

αj = α ∗ ϕj , βj = β ∗ ϕj ∈ DK

For every0 6 h 6 m0 it is α(h), β(h) ∈ C0, hence

α
(h)
j = α(h) ∗ ϕj converges toα(h)

β
(h)
j = β(h) ∗ ϕj converges toβ(h)

uniformly onK. Hence, in the spaceDm0
K , αj converges toα

andβj converges toβ. As a consequenceαj , βj are Cauchy
sequences inDK with respect to the topology induced by
Dm0

K ; by Step3 it is easily seen thatξ (αj , βj) = Υ ∗αj ∗ βj

is a Cauchy sequence inLq. SinceLq is a Banach space, there
existsf ∈ Lq such thatLq- lim

j→∞
Υ ∗ αj ∗ βj = f and hence

such that
D ′- lim

j→∞
Υ ∗ αj ∗ βj = f

SinceE ′- lim
j→∞

ϕj ∗ ϕj = δ ∗ δ = δ, it is also

D ′- lim
j→∞

Υ ∗ αj ∗ βj =

D ′- lim
j→∞

(Υ ∗ α ∗ β) ∗ (ϕj ∗ ϕj) = Υ ∗ α ∗ β

As a consequenceΥ ∗ α ∗ β = f ; henceΥ ∗ α ∗ β ∈ Lq.
End of Proof of Step4

Step5. There existα0, β0 ∈ Dm0
(−1,1) such that

δ = α0 +Dm0+2β0

Proof of Step5. Let D (−1,1) be the space ofC∞ functions
whose support is a subset of the open interval(−1, 1). Let
γ ∈ D (−1,1) be such thatγ(t) = 1 for everyt ∈ (−1/2, 1/2);
let H(t) be the Heaviside function; and let

B0(t) =
tm0+1

(m0 + 1)!
H(t) ∈ Cm0

Then

β0 = γB0 ∈ Dm0
(−1,1)

α0 = −
m0+1∑
h=0

(
m0 + 2
h

)
γ(m0+2−h)B

(h)
0 ∈

D (−1,1) ⊂ Dm0
(−1,1)

verify the statement. End of Proof of Step5
We can now prove thatΥ ∈ D ′

Lq . Indeed:Sinceδ = α0 +
Dm0+2β0, then

δ = δ ∗ δ = α0 ∗ α0+

2Dm0+2 (α0 ∗ β0) +D2m0+4 (β0 ∗ β0)

As a consequence

Υ = Υ ∗ δ = Υ ∗ α0 ∗ α0+

2Dm0+2 (Υ ∗ α0 ∗ β0) +D2m0+4 (Υ ∗ β0 ∗ β0)

Since α0, β0 ∈ Dm0
(−1,1), by Step 4 we obtain thatΥ is a

finite sum of derivatives ofLq functions; hence, by definition,
Υ ∈ D ′

Lq .
We can now prove the result on∆ for continuous LTI

systemL : Lp → D ′.
Theorem 2.1:Let L : Lp → D ′ be a continuos LTI system,

and let∆ ∈ D ′ be its impulse response. Then∆ ∈ D ′
Lp′ .

Proof: Let ϕ ∈ D , and let

Φϕ :

{
DLp → C for 1 6 p < ∞

ḊL∞ → C for p = ∞

be the linear functional defined by

Φϕ(f) = 〈L (f), ϕ̃〉

where, as pointed out inNotation and conventions(Section I),
ϕ̃(t) = ϕ(−t).

Obviously for every sequencefk converging to anf in the
domain ofΦϕ it is alsoLp- lim

k→∞
fk = f ; as a consequence,

D ′- lim
k→∞

L (fk) = L (f), and hence lim
→k→∞

〈L (fk), ϕ̃〉 =

〈L (f), ϕ̃〉; henceΦϕ is continuous. As a consequence there
existsΓϕ ∈ D ′

Lp′ such that

Φϕ(f) = 〈Γϕ, f〉 for everyf ∈

{
DLp if 1 6 p <∞

ḊL∞ if p = ∞

In particular, for everyψ ∈ D , since by Theorem 2.1 of [7]
it is L (ψ) = ∆ ∗ ψ, it is also

〈∆ ∗ ψ, ϕ̃〉 = 〈Γϕ, ψ〉

Observe that∆ ∗ ψ ∈ C∞, ϕ ∈ D ; hence

〈∆ ∗ ψ, ϕ̃〉 =
∫

(∆ ∗ ψ)(τ)ϕ̃(τ)dτ =∫
(∆ ∗ ψ)(τ)ϕ(0− τ)dτ = ((∆ ∗ ψ) ∗ ϕ)(0) =

((∆ ∗ ϕ) ∗ ψ)(0) = 〈∆ ∗ ϕ, ψ̃〉 = 〈∆̃ ∗ ϕ,ψ〉

As a consequencẽ∆ ∗ ϕ = Γϕ ∈ D ′
Lp′ , hence∆ ∗ϕ = Γ̃ϕ ∈

D ′
Lp′ .
Applying Lemma 2.1 toΥ = ∆ and q = p′, we obtain

∆ ∈ D ′
Lp′ .

Now we also prove the result on∆ for continuous LTI
systemL : D ′

Lp → D ′.
Theorem 2.2:Let L : D ′

Lp → D ′ be a weakly (resp.
strongly) continuous LTI system, and let∆ ∈ D ′ be its
impulse response. Then∆ ∈ D ′

Lp′ .
Proof: Since weak continuity implies strong continuity,

it is sufficient to prove the statement for strongly continuous
systems; hence we assume thatL is strongly continuous.

Let ϕ ∈ D , and let

Φϕ :

{
DLp → C for 1 6 p < ∞

ḊL∞ → C for p = ∞

be the linear functional defined by

Φϕ(f) = 〈L (f), ϕ̃〉
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Hölder’s Inequality easily proves that for every sequence
fk converging to anf in the domain of Φϕ it is also
s-D ′

Lp- lim
k→∞

fk = f ; hence, as in the Proof of Theorem 2.1,

Φϕ is continuous. As a consequence there existsΓϕ ∈ D ′
Lp′

such that

Φϕ(f) = 〈Γϕ, f〉 for everyf ∈

{
DLp if 1 6 p <∞

ḊL∞ if p = ∞

Proceeding as in the Proof of Theorem 2.1, we obtain∆ ∈
D ′

Lp′ .
Concerning LTI systems defined onD ′

L1 we can say some-
thing more, which will turn out to be very useful in the next
section. Our result is the following

Theorem 2.3:Let L : D ′
L1 → D ′ be a weakly continuous

LTI system. Then∆ ∈ Ḋ ′
L∞ .

Proof: Assume the contrary. By definition the statement

D ′- lim
|h|→∞

∆(t− h) = 0

is false; hence there existϕ ∈ D and a sequencehj ∈ R with
lim

j→∞
hj = ∞, such that the statement

lim
j→∞

〈∆ (t− hj) , ϕ(t)〉 = 0

is false.
Observe thatw-D ′

L1- lim
j→∞

δ(t− hj) = 0. Since L is

weakly continuous, we have

D ′- lim
j→∞

∆(t− hj) = D ′- lim
j→∞

L (δ(t− hj)) = 0

and hence it islim
j→∞

〈∆ (t− hj) , ϕ(t)〉 = 0: absurd.

III. E XTENSION OFYOUNG’ S THEOREM TO

DISTRIBUTIONS: CONVOLUTION IN D ′
Lp SPACES

In this Section we recall Schwartz’ extension toD ′
Lp spaces

of the usual notion of convolution product defined forLp

functions. Convolution so extended is obviously commutative
and, by Schwartz’ results has a good behavior on strongly
convergent sequences. We give here an easy proof, in a very
general set up, that convolution so extended is also associative,
and use this property to show that it has a good behavior even
on weakly convergent sequences.

Let 1 6 p, q 6 ∞ be such that

1
p

+
1
q
− 1 > 0

and letr be defined by

1 6 r 6 ∞,
1
r

=
1
p

+
1
q
− 1

Let f ∈ D ′
Lp , g ∈ D ′

Lq . By definition f and g may be
written as finite sums of the form

f =
∑

h

f
(h)
h with fh ∈ Lp for everyh

g =
∑

k

g
(k)
k with gk ∈ Lq for everyk

By the classical Young’s Theorem for integrable functions, for
everyh, k we have
• the function

(fh ∗ gk) (t) =
∫
R

fh(t− τ)gk(τ)dτ

is defined for almost allt ∈ R
• fh ∗ gk ∈ Lr

• ‖fh ∗ gk‖r 6 ‖fh‖p · ‖gk‖q

As a consequence theconvolutionof f and g may then be
defined by

f ∗ g =
∑
h,k

(fh ∗ gk)(h+k) ∈ D ′
Lr

By [8], Chapter VI, Section 8, Thm. XXVI, this is a good
definition, and it agrees with other usual settings in which
convolution is already defined.

Commutativity of convolution is obvious. Concerning the
behavior of convolution on strongly convergent sequences,
by the above mentioned reference1we immediately obtain the
following result.

Theorem 3.1:Let g = s-D ′
Lq - lim

k→∞
gk. Then we havef ∗

g = s-D ′
Lr - lim

k→∞
f ∗ gk.

Concerning associativity it is well known that iff ∈ Lp, g ∈
Lq, h ∈ Ls with

p = q = s = 1 or p = 1, s = q′

then
(f ∗ g) ∗ h = f ∗ (g ∗ h)

(see [11], Chapter III, Section 11).
Here we extend this result to everyf ∈ D ′

Lp , g ∈
D ′

Lq , h ∈ D ′
Ls , where

1
p

+
1
q
− 1 > 0 and

1
p

+
1
q

+
1
s
− 2 > 0

To this aim, firstly we show the origin of this condition and
then we give the complete proof.

So, as above, letp, q be such that

1
p

+
1
q
− 1 > 0

let f ∈ D ′
Lp , g ∈ D ′

Lq , and letr be defined by

1 6 r 6 ∞ 1
r

=
1
p

+
1
q
− 1

then
• f ∗ g is defined
• f ∗ g ∈ D ′

Lr

Let 1 6 s 6 ∞ be such that

1
r

+
1
s
− 1 > 0 i.e.

1
p

+
1
q

+
1
s
− 2 > 0

let σ be defined by

1 6 σ 6 ∞,
1
σ

=
1
r

+
1
s
− 1 =

1
p

+
1
q

+
1
s
− 2

1As it can be seen by the corresponding proof, the termcontinue in
Statement2◦ of Theorem XXVI, Section 8, Chapter VI of [8] must be
substituted byhypocontinue.
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and leth ∈ D ′
Ls ; then

• (f ∗ g) ∗ h is defined
• (f ∗ g) ∗ h ∈ D ′

Lσ

Since
1
σ

=
1
p

+
1
q

+
1
s
− 2, we have then

1
q

+
1
s
− 1 = 1 +

1
σ
− 1
p

> 1− 1
p

> 0

Let now η be defined by

1 6 η 6 ∞,
1
η

=
1
q

+
1
s
− 1

then
• g ∗ h is defined
• g ∗ h ∈ D ′

Lη

Observe that
1
p

+
1
η
− 1 =

1
p

+
1
q

+
1
s
− 2 =

1
σ

thus finally we have
• f ∗ (g ∗ h) is defined
• f ∗ (g ∗ h) ∈ D ′

Lσ

Now we can prove associativity. Our proof is based on Theo-
rem 3.1, the representation results obtained in Theorems 2.3,
3.2 and 4.1 of [7] and on usual associativity of composition
of maps.

Theorem 3.2:Let f, g, h be as above. Then

(f ∗ g) ∗ h = f ∗ (g ∗ h)

Proof: Assume first thats 6= ∞, and consider the
following LTI systems

H : D ′
L1 → D ′

Ls defined byH (α) = h ∗ α
G : D ′

Ls → D ′
Lη defined byG (β) = g ∗ β

F : D ′
Lη → D ′

Lσ defined byF (γ) = f ∗ γ
By Theorem 3.1,H ,G , andF are continuous with respect
to the strong convergence in their domain and codomain. As
a consequence, also the LTI systems

FG : D ′
Ls → D ′

Lσ , G H : D ′
L1 → D ′

Lη

are continuous (in the same sense). By Theorem 2.3 of [7],
the impulse response ofG H is

(G H )(δ) = G (H (δ)) = G (h ∗ δ) = G (h) = g ∗ h

Let P : D ′
L1 → D ′

Lη be the continuous LTI system defined
by P(α) = (g ∗ h) ∗ α. The impulse response ofP is g ∗ h.
By Theorems 4.1 and 3.2 of [7] we obtainG H = P. Hence

(G H )(α) = (g ∗ h) ∗ α for everyα ∈ D ′
L1

Sinces 6= ∞, a similar argument proves that

(FG )(β) = (f ∗ g) ∗ β for everyβ ∈ D ′
Ls

As a consequence we obtain

((FG )H )(δ) = (FG )(h) = (f ∗ g) ∗ h
(F (G H ))(δ) = F (g ∗ h) = f ∗ (g ∗ h)

By associativity of composition of maps, it is(FG )H =
F (G H ); hence(f ∗ g) ∗ h = f ∗ (g ∗ h).

Assume nows = ∞. Since(1/r)+(1/s)−1 > 0, we have
1/r > 1; hencer = 1. Since(1/p)+(1/q)−1 = 1/r = 1, we
have(1/p) + (1/q) = 2; hencep = q = 1. As a consequence

f ∈ D ′
L1 , g ∈ D ′

L1 , h ∈ D ′
L∞

Observe that the result on associativity already proved applies
to the ordered triplet

h ∈ D ′
L∞ , g ∈ D ′

L1 , f ∈ D ′
L1

Hence(h ∗ g) ∗ f = h ∗ (g ∗ f).
By commutativity we have

(f ∗ g) ∗ h = h ∗ (f ∗ g) = h ∗ (g ∗ f)
f ∗ (g ∗ h) = f ∗ (h ∗ g) = (h ∗ g) ∗ f

Since the last terms of each chain of equalities are equal, then
f ∗ (g ∗ h) = f ∗ (g ∗ h).

Thanks to associativity, we may now prove the following
result concerning the behavior of convolution on weakly
convergent sequences.

Theorem 3.3:Let g = w-D ′
Lq - lim

k→∞
gk, and let as above

f ∈ D ′
Lp , with the ulterior request thatf ∈ Ḋ ′

L∞ if q = 1
andp = ∞. Then we havef ∗ g = w-D ′

Lr - lim
k→∞

f ∗ gk.

Proof: The proof will be given in various steps, each with
its own proof.

Step 1.Let 1 6 m 6 ∞. Let α ∈ Lm∩L̇∞, β ∈ Lm′∩L̇∞,
whereL̇∞ is the linear space of thef ∈ L∞ null at infinity.
Thenα ∗ β ∈ L̇∞.

Proof of Step 1.By Young’s Theorem it isα ∗ β ∈ L∞.
Let ε > 0. There exist−∞ < τ1 < τ2 < +∞ such

that
‖β‖m′ ·

∥∥∥α|(−∞,τ1)

∥∥∥
m

< ε/3

‖β‖m′ ·
∥∥∥α|(τ2,+∞)

∥∥∥
m

< ε/3

Observe thatα|(τ1,τ2)
∈ L1(τ1, τ2). There existsT > 0 such

that for every|t| > T it is∥∥∥α|(τ1,τ2)

∥∥∥
1
·
∥∥∥β|(t−τ2,t−τ1)

∥∥∥
∞

< ε/3

For almost allt such that|t| > T we have

|(α ∗ β)(t)| 6
∫ τ1

−∞
|α(τ)| · |β(t− τ)|dτ+∫ +∞

τ2

|α(τ)| · |β(t− τ)|dτ +
∫ τ2

τ1

|α(τ)| · |β(t− τ)|dτ

hence, by Ḧolder’s Inequality we obtain

|(α ∗ β)(t)| 6 ‖β‖m′ ·
∥∥∥α|(−∞,τ1)

∥∥∥
m

+

‖β‖m′ ·
∥∥∥α|(τ2,+∞)

∥∥∥
m

+∥∥∥α|(τ1,τ2)

∥∥∥
1
·
∥∥∥β|(t−τ2,t−τ1)

∥∥∥
∞

< ε

End of Proof of Step 1
Step 2.Let 1 6 m 6 ∞. Let α ∈ D ′

Lm ∩ Ḋ ′
L∞ , β ∈

DLm′ ∩ ḊL∞ (remember thatD ′
Lm ⊂ Ḋ ′

L∞ if m 6= ∞, and
that DLm′ ⊂ ḊL∞ if m′ 6= ∞). Thenα ∗ β ∈ ḊL∞ .

Proof of Step 2.By the result on regularization in Section 8,
Chapter VI of [8] it isα ∗ β ∈ DL∞ . We must prove that, for
everyn ∈ N it is (α ∗ β)(n) ∈ L̇∞.
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By Remark3◦ to Theorem XXV of [8],α may be written

in the formα =
∑

h

α
(h)
h with αh ∈ Lm ∩ L̇∞ for everyh.

Then

(α ∗ β)(n) =
∑

h

αh ∗ β(n+h)

Since everyβ(n+h) ∈ Lm′ ∩ L̇∞, by Step 1 we haveαh ∗
β(n+h) ∈ L̇∞; hence(α∗β)(n) ∈ L̇∞.End of Proof of Step 2

Step 3.Let 1 6 m 6 ∞. Let F ∈ D ′
Lm , ϕ ∈ DLm′ . Then

(a) F ∗ ϕ ∈ DL∞

(b) if m 6= 1, for every t ∈ R it is

(F ∗ ϕ)(t) = 〈F (τ), ϕ(t− τ)〉

(c) if m = 1 and moreoverϕ ∈ ḊL∞ , for every t ∈ R it is

(F ∗ ϕ)(t) = 〈F (τ), ϕ(t− τ)〉

Proof of Step 3.See the regularization results in Chapter VI,
Section 8 of [8]. End of Proof of Step 3

We can now prove thatw-D ′
Lr - lim

k→∞
f ∗ gk = f ∗ g.

First of all assumer = 1. Since

1
p

+
1
q
− 1 =

1
r

= 1

we have alsop = q = 1. Let ϕ ∈ ḊL∞ . Since ϕ(τ) =
ϕ̃(−τ) = ϕ̃(0− τ), by (c) of Step 3 we have

〈f ∗ gk, ϕ〉 = 〈(f ∗ gk)(τ), ϕ̃(0− τ)〉 = ((f ∗ gk) ∗ ϕ̃)(0)

By commutativity of convolution and by Theorem 3.2 (i.e.
associativity) we have

((f ∗ gk) ∗ ϕ̃)(0) = (gk ∗ (f ∗ ϕ̃))(0)

Sincef ∈ D ′
L1 = D ′

L1 ∩ Ḋ ′
L∞ , ϕ ∈ ḊL∞ = DL1′ ∩ ḊL∞ ,

by Step 2 we havef ∗ ϕ̃ ∈ ḊL∞ ; hence, by (c) of Step 3 we
obtain

(gk ∗ (f ∗ ϕ̃))(0) = 〈gk(τ), (f ∗ ϕ̃)(0− τ)〉 = 〈gk, f̃ ∗ ϕ̃〉

As a consequence〈f ∗ gk, ϕ〉 = 〈gk, f̃ ∗ ϕ̃〉. Analogously
〈g, f̃ ∗ ϕ̃〉 = 〈f ∗ g, ϕ〉. Sincew-D ′

Lq - lim
k→∞

gk = g, we obtain

lim
k→∞

〈f ∗ gk, ϕ〉 = lim
k→∞

〈gk, f̃ ∗ ϕ̃〉 =

= 〈g, f̃ ∗ ϕ̃〉 = 〈f ∗ g, ϕ〉

As a consequence

w-D ′
Lr - lim

k→∞
f ∗ gk = f ∗ g

Similar arguments prove that

w-D ′
Lr - lim

k→∞
f ∗ gk = f ∗ g

in the following two remaining cases:r 6= 1 andq 6= 1, r 6= 1
andq = 1.

IV. FUNDAMENTAL LTI SYSTEMS DEFINED OND ′
Lp AND

THEIR PROPERTIES

Let 1 6 p 6 ∞. For every∆ ∈ D ′
Lp′ , the extension of

Young’s Theorem to distributions allows the construction of
a concretefundamentalLTI system defined onD ′

Lp , namely
the system

L∆ : D ′
Lp → D ′

defined by

L∆(f) = ∆ ∗ f for everyf ∈ D ′
Lp

As we will see in this Section, all fundamental LTI systems
are continuous, and moreover, as we will see in Section V
(again apart pathologies)

• every continuous LTI system defined onD ′
Lp is a funda-

mental system
• every continuous LTI system defined onLp is the restric-

tion to Lp of a fundamental system

This is the reason of the term “fundamental” we have reserved
them.

Let us see in details the main properties of these systems.
Concerning the image ofL∆, i.e., the subsetL∆ (D ′

Lp) ⊂
D ′, we have the following result.

Theorem 4.1:Let 1 6 q 6 p′, so that

D ′
L1 ⊂ D ′

Lq ⊂ D ′
Lp′

and let∆ ∈ D ′
Lq . Then

L∆ (D ′
Lp) ⊂ D ′

Lr where
1
r

=
1
q

+
1
p
− 1

Observe that
D ′

Lp ⊂ D ′
Lr ⊂ D ′

L∞

and thatD ′
Lr progressively decreases fromD ′

L∞ to D ′
Lp as

q decreases fromp′ to 1.
In particular, independently from theq chosen,

L∆ (D ′
Lp) ⊂ D ′

L∞

Proof: The statement is a straightforward consequence
of the definition of convolution as an extension of Young’s
Theorem.

Concerning the continuity ofL∆ we have the following
results.

Theorem 4.2:The following statements hold

a) L∆ : D ′
Lp → D ′ is a strongly continuous LTI system

b) the mapL∆ : D ′
Lp → D ′

L∞ is continuous with respect
to the strong convergence in both spaces

Proof: Statement b) follows by Theorem 3.1. Statement
a) follows by b).

Theorem 4.3:Let 1 < p 6 ∞. The following statements
hold

a) the systemL∆ : D ′
Lp → D ′ is weakly continuous

b) the mapL∆ : D ′
Lp → D ′

L∞ is continuous with respect
to the weak convergence in both spaces

Proof: Statement b) follows by Theorem 3.3. Statement
a) follows by b).
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Using Theorem 4.2 above, thanks to Theorem 2.3 of [7] we
obtain the following result concerning the impulse response
of L∆.

Theorem 4.4:The impulse response ofL∆ is L∆(δ) = ∆.
At its turn, this result allows us to complete the analysis on

weak continuity given in Thm. 4.3.
Theorem 4.5:Let p = 1, so that∆ ∈ D ′

L∞ . Then L∆ :
D ′

L1 → D ′ is weakly continuous if and only if∆ ∈ Ḋ ′
L∞ .

Furthermore if∆ ∈ Ḋ ′
L∞ then the map

L∆ : D ′
L1 → D ′

L∞

is continuous with respect to the weak convergence in both
spaces.

Proof: AssumeL∆ to be weakly continuous: then by
Theorems 3.3 and 2.3 we get∆ ∈ Ḋ ′

L∞ .
Now assume∆ ∈ Ḋ ′

L∞ ; by Theorem 3.3,L∆ : D ′
L1 →

D ′
L∞ is continuous with respect to the weak convergence in

both spaces. In particularL∆ is weakly continuous.
Now we briefly prove an obvious result on causality. We

recall that a systemL : I → O is said to be causal if for
every t0 ∈ R and for everyf, g ∈ I with supp (f − g) ⊂
[t0,+∞), it is supp (L (f)−L (g)) ⊂ [t0,+∞). Concerning
causality ofL∆ we have the following result.

Theorem 4.6:L∆ : D ′
Lp → D ′ is causal if and only if

supp ∆ ⊂ [0,+∞).
Proof: AssumeL∆ causal. Then by Theorem 4.4 we

have∆ = L∆(δ). Obviouslysupp (δ− 0) ⊂ [0,+∞), hence
supp ∆ = supp (L∆(δ)−L∆(0)) ⊂ [0,+∞)

Now assumesupp ∆ ⊂ [0,+∞). Let t0 ∈ R, and letf, g ∈
D ′

Lp be such thatsupp (f − g) ⊂ [t0,+∞). ThenL∆(f)−
L∆(g) = ∆ ∗ (f − g).

Let ε > 0; part c) in the proof of Theorem XXV, Chapter
VI, Section 8, in [8], may be refined and used to prove that

• ∆ =
∑

h

∆(h)
h with ∆h ∈ Lp such thatsupp ∆h ⊂

[−ε,+∞) for everyh

• f − g =
∑

k

F
(k)
k with Fk ∈ Lp such thatsupp Fk ⊂

[t0 − ε,+∞) for everyk
A classical argument proves thatsupp (∆h ∗ Fk) ⊂ [t0 −
2ε,+∞); as a consequencesupp (∆ ∗ F ) ⊂ [t0 − 2ε,+∞).

Since supp (∆ ∗ F ) ⊂ [t0 − 2ε,+∞) for every ε > 0,
then supp (∆ ∗ F ) ⊂ [t0,+∞).

Concerning the restriction ofL∆ to Lp, as a corollary of
Theorem 4.2 we obtain the following result.

Theorem 4.7:Let 1 6 p 6 ∞ and letR : Lp → D ′ be the
restriction toLp of L∆ : D ′

Lp → D ′. ThenR is continuous.
Proof: By Hölder’s Inequality, it is easily seen that

f = Lp- lim
k→∞

fk ⇒ f = s-D ′
Lp- lim

k→∞
fk

hence,a fortiori, R is a continuous LTI system.

V. CONTINUOUS LTI SYSTEM DEFINED ONLp AND D ′
Lp :

ANALYSIS BY IMPULSE RESPONSE AND CONVOLUTION

In this Section we prove that the impulse response, as
defined in Section II of [7], and the extension of convolution
described in Section III allow a complete analysis of all

continuous LTI systemsL : Lp → D ′ andL : D ′
Lp → D ′.

Indeed (again apart pathologies) we prove that in both cases
we haveL (f) = ∆ ∗ f for everyf , where∆ is the impulse
response.

Firstly we consider systems defined onLp spaces and then
systems defined onD ′

Lp spaces.
Theorem 5.1:Let 1 6 p < ∞, let L : Lp → D ′ be

a continuous LTI system, and let∆ ∈ D ′
Lp′ be its impulse

response. Then for everyf ∈ Lp it is L (f) = L∆(f) = ∆∗f .
Proof: Let R : Lp → D ′ be the restriction toLp of

L∆ : D ′
Lp → D ′. By Theorem 4.7,R is a continuous LTI

system.
Since for everyf ∈ D it is R(f) = ∆ ∗ f , by Section II

of [7] the impulse response ofR is ∆. SinceL andR have
the same impulse response, by Theorems 3.1 and 4.1 of [7]
for everyf ∈ Lp we haveL (f) = R(f) = L∆(f) = ∆ ∗ f .

Theorem 5.2:Let L : L∞ → D ′ be a continuous LTI
system, and let∆ ∈ D ′

L1 be its impulse response. Then for
everyf ∈ C0 it is L (f) = L∆(f) = ∆ ∗ f .

Proof: Same argument of the Proof of Theorem 5.1;
merely remember thatΣ(D , L∞) = C0 (see Section IV of
[7]).

We recall that in [7], Proposition 5.1, it is shown that this
result is sharp.

All the following results concerningD ′
Lp spaces are easy

consequences of the results on impulse response and continuity
for fundamental LTI systems stated in Section IV of this paper,
and moreover of Theorems 3.1, 3.2 and Section IV of [7].

We omit the now straightforward proves.
Theorem 5.3:Let 1 < p < ∞, let L : D ′

Lp → D ′ be a
weakly (resp. strongly) continuous LTI system, and let∆ ∈
D ′

Lp′ be its impulse response. ThenL = L∆. In particular
for everyf ∈ D ′

Lp it is L (f) = L∆(f) = ∆ ∗ f .
Theorem 5.4:Let p = 1, let L : D ′

L1 → D ′ be a weakly
continuous LTI system, and let∆ ∈ Ḋ ′

L∞ be its impulse
response. ThenL = L∆. In particular for everyf ∈ D ′

L1 it
is L (f) = L∆(f) = ∆ ∗ f .

Theorem 5.5:Let p = 1, let L : D ′
L1 → D ′ be a strongly

continuous LTI system, and let∆ ∈ D ′
L∞ be its impulse

response. ThenL = L∆. In particular for everyf ∈ D ′
L1 it

is L (f) = L∆(f) = ∆ ∗ f .
Theorem 5.6:Let p = ∞, let L : D ′

L∞ → D ′ be a weakly
continuous LTI system, and let∆ ∈ D ′

L1 be its impulse
response. ThenL = L∆. In particular for everyf ∈ D ′

L∞

it is L (f) = L∆(f) = ∆ ∗ f .
Theorem 5.7:Let p = ∞, let L : D ′

L∞ → D ′ be a
strongly continuous LTI system, and let∆ ∈ D ′

L1 be its
impulse response. Then for everyf ∈ Ḋ ′

L∞ it is L (f) =
L∆(f) = ∆ ∗ f .

As for Thm. 5.2, we recall that in [7] it is shown that this
result is sharp.

All the above theorems and the continuity properties of
the systemsL∆ described in Section IV, allow us to draw a
picture of the landscape of all continuous LTI systems defined
on Lp andD ′

Lp :

• let 1 < p < ∞, then
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– the continuous LTI systems defined onLp are the
restrictions toLp itself of theL∆ with ∆ ∈ D ′

Lp′

– the weakly continuous LTI systems defined onD ′
Lp

are theL∆ with ∆ ∈ D ′
Lp′

– the strongly continuous LTI systems defined onD ′
Lp

are theL∆ with ∆ ∈ D ′
Lp′

• let p = 1, then

– the continuous LTI systems defined onL1 are the
restrictions toL1 itself of theL∆ with ∆ ∈ D ′

L∞

– the weakly continuous LTI systems defined onD ′
L1

are theL∆ with ∆ ∈ Ḋ ′
L∞

– the strongly continuous LTI systems defined onD ′
L1

are theL∆ with ∆ ∈ D ′
L∞

• let p = ∞, then

– among the continuous LTI systems defined onL∞

there are the restrictions of all theL∆ with ∆ ∈
D ′

L1 , but there are others continuous LTI systems
defined onL∞ (see [1], [2], [5])

– the weakly continuous LTI systems defined onD ′
L∞

are theL∆ with ∆ ∈ D ′
L1

– among the strongly continuous LTI systems defined
on D ′

L1 there are all theL∆ with ∆ ∈ D ′
L1 , but

there are others strongly continuous LTI systems
defined onD ′

L∞ (see [7]).

We remark that the pathology ofD ′
L∞ may be overcome

by considering the weak convergence instead that the strong
one.

A way to overcome the pathology which arises considering
L∞ is described in a recent paper of Sandberg (cf. [6]) .

VI. PERSPECTIVES OF APPLICATIONS TO LINEAR

DIFFERENTIAL EQUATIONS

Let 1 6 p 6 ∞ and letP (D), Q(D) be linear differential
operators with constant coefficients. For everyf ∈ Lp (resp.
f ∈ D ′

Lp), let S(f) ⊂ D ′ be the set of all the (distributional)
solutions of the differential equation

P (D)x = Q(D) f

Finally, let M be the set ofall the mapsL from Lp (resp.
D ′

Lp) into D ′ such thatL (f) ∈ S(f) for everyf ∈ Lp (resp.
f ∈ D ′

Lp).
In this Section we show, by an intentionally simple example,

that the results of this paper may be used to find (again apart
pathologies) the elements inM which are continuous LTI
systems.

Let P (D) = D2 − 1, Q(D) = 1 and letM be the set of
all the mapsL from Lp into D ′ such that, for everyf ∈ Lp,
L (f) is a solution of the differential equation

(D2 − 1)x = f (1)

To find the elements inM which are continuous LTI
systems, first of all we prove that if such system exist, and
L is one of them, then the impulse response∆ must be

∆(t) = −1
2

(
etH(−t) + e−tH(t)

)
(2)

Indeed: By [7], Theorem 2.1, given a sequenceϕk ∈ D
such thatE ′- lim

k→∞
ϕk = δ, we have

• ∆ = D ′- lim
k→∞

L (ϕk)

• L (ϕ) = ∆ ∗ ϕ for everyϕ ∈ D

SinceL ∈M, for everyk we have

(L (ϕk))(2) −L (ϕk) = ϕk

hence
(∆ ∗ ϕk)(2) −∆ ∗ ϕk = ϕk

i.e. (
∆(2) −∆− δ

)
∗ ϕk = 0

As a consequence

∆(2) −∆− δ = D ′- lim
k→∞

(
∆(2) −∆− δ

)
∗ ϕk = 0

and hence∆(2) −∆ = δ. A straightforward argument proves
then that

∆(t) ∈ et − e−t

2
H(t) + {λet + µe−t : λ, µ ∈ C} =

= − etH(−t) + e−tH(t)
2

+

+ {λet + µe−t : λ, µ ∈ C}
Since by Theorem 2.1 we have∆ ∈ D ′

Lp′ , then (2) must hold.
Observe that∆ ∈ L1.

Now, if 1 6 p < ∞, then by Theorem 5.1 for everyf ∈
Lp it must beL (f) = ∆∗f ; moreover it is immediately seen
that∆∗f satisfies the differential equation (1). This proves that
the unique element ofM which is a continuous LTI system
is the restriction toLp of L∆ : D ′

Lp → D ′.
Observe that, since∆ ∈ L1, then for everyf ∈ Lp we have

L (f) ∈ Lp.
Finally, if p = ∞, by Theorem 5.2, we have that the system

defined byL (f) = ∆∗f is oneof the continuous LTI systems
defined onL∞ whose impulse response is∆. Moreover, it is
immediately seen that for everyf ∈ Lp, ∆ ∗ f satisfies the
differential equation (1). This proves thatL is a continuous
LTI system inM, but the pathology ofL∞ does not allow us
to ensure it is the unique.

A similar argument (depending on Theorems 5.3-5.7) may
be applied whenM is the set of all the mapsL from D ′

Lp

into D ′ such that, for everyf ∈ D ′
Lp , L (f) is a solution of

(1).
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