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Abstract. In this article we give a numerical criterion, valid in
all characteristics, for the very ampleness of a line bundle H on a
curve C (possibly reducible and non reduced) lying on a smooth
algebraic surface.

We show by the way that this criterion essentially implies the
results of Bombieri and Ekedahl on pluricanonical embeddings of
surfaces of general type.

We use our numerical criterion to obtain the �ne classi�cation
of non special rational surfaces in P

4 (with one exception dealt
with in a forthcoming article).

We also describe in full detail the embeddings when C is a curve
of genus 2 and H has degree 5.
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1. Introduction

One of the archetypal results in algebraic geometry is that the linear
system of plane cubics passing through 6 points yields an embedding
of the rational surface S obtained by blowing up the plane at those
points, provided that no one of them is in�nitely near, no 3 of them lie
on a line, and that they do not all lie on a conic; S is embedded in P3

as a smooth cubic surface, and all smooth cubic surfaces are obtained
in this way.
Almost half of the classical book "Le Super�cie Razionali" by Conforto-

Enriques (cf. [Co], the racial laws prohibiting in 1939 the name of
Enriques to appear as an author) is devoted to a beautiful analysis of
the linear system of plane curves yielding models of rational surfaces of
degree up to 5, but when the degree gets higher the intricacy increases
tremendously.
A still open problem is the determination of the smooth rational

surfaces in P4: up to now is even unknown the determination of their
possible degrees, which are bounded by the result of [E-P] (an e�ective
bound for the degree, which is still not sharp, is given in [B-F]).
J. Alexander in [Al] has classi�ed the possible linear systems of plane

curves jaL �
P
bixij which could give non special surfaces in P4 (i.e.

with H1(OS(1)) = 0): he has determined the values of the integers a
and of the bi's, and has indeed shown that for a suÆciently general
choice of the points xi these surfaces do in fact exist (the existence
of rational surfaces of degree � 8 had been previously established by
classical authors, by P.Ionescu in [Io 1-2] and by C.Okonek in [Ok 1-3]).
For non special rational surfaces the degree is at most 9, and recently

examples of special rational surfaces of higher degree has been found
by many authors, in particular a novel interesting method (relying also
on computer calculations) and a huge list can be found in the article
by Decker,Ein and Schreyer ([D-E-S]).
The complete determination of the Bordiga surfaces (the non special

rational surfaces of degree 6) was done e.g. in the thesis of Weinfurtner
(cf. [Wei]) by using Reider's method, which cannot longer apply when
the degree is at least 7.
By complete determination we mean, as in the case of cubic surfaces

in P3, the statement of precise necessary and suÆcient conditions on
the points xi in order that the sytem jaL�

P
bixij be very ample.

The motivation for our work was thus the desire to develop more
powerful methods in order to analyse the problem whether a linear
system is very ample, e.g. on a rational surface.
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One of the corollaries of our results (see section 5) is the complete
determination (with a simple proof) of the non special rational surfaces
of degree � 8, and also the remainig case of degree 9 can be settled
by a re�nement of the present methods (work in progress by the �rst
author and K.Hulek).
Such a complete determination, with the further assumption that

our surface S would be a projection of a smooth surface in P5 from an
inner point, had been previously obtained by I.Bauer in [Ba], and was
extended to the general case in the thesis [Fra] of the second author,
but with a too long and complicated proof.
Further applications of the present methods to the problem of k-very-

ampleness have been given in [Fra], and improvements will be given in
a forthcoming article by the second author.
Morally, the advantage of rational surfaces is that they have a lot

of curves: this on the one hand forces some necessary conditions in
order that a divisor H on S may be very ample (for instance, it should
have intersection at least 3 with curves of arithmetic genus 1, whereas
H:C � 5 if C has genus 2), on the other hand, as shown by I. Bauer in
[Ba], the existence of these curves can be used e�ectively to show that
H is very ample simply by restricting to them.
The more precise form of the criterion used in [Ba] (which holds in

any dimension) is as follows: if H = C+D, with C e�ective, dimjDj �
1, and jHj restricts to very ample linear systems on C and on each �
in jDj, then H is very ample.
The main new contribution of the present paper is an embedding the-

orem, valid in all characteristic (cf. section 3), which gives a suÆcient
numerical criterion for very ampleness of a divisor H on a curve C.
The criterion applies to curves C lying on a smooth algebraic surface
S (C may be reducible and non reduced), or to the irreducible reduced
Gorenstein curves, and states that if the degree of H on each subcurve
D of C is at least 2pa(D) + 1, pa(D) being the arithmetic genus of D,
then necessarily H is very ample on C.
To illustrate the power of this result, we show (cf. section 4) that it

immediately implies the results of Bombieri and Ekedahl (cf. [Bo] and
[Ek]) on pluricanonical embeddings of surfaces of general type with KS

ample once one knows that the cohomology groups H1(mKS) vanish
for m � 2 (this being easy to prove in characteristic zero nowadays,
and false in char=p only in a very special case, for m = 2; p = 2; and
two families with � = 1, cf. [Ek] and section 4).
It took us perhaps more fatigue to discover the statement of the

above embedding theorem for curves than to prove it: in fact for our
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applications it suÆces to know the result in the case where C has genus
pa = 1 and H has degree d = 3; 4, or when pa = 2, d = 5.
Originally we studied intensively the geometry of these curves of

genus � 2, which turns out to be particularly beautiful and intricate
in the case pa = 2; d = 5, and gave us a lot of fun.
Therefore, after showing in the brief section 6 that the case pa =

1,d = 3 yields plane cubics, and that the one pa = 1; d = 4 gives rise
to only two cases (complete intersection of 2 quadrics in P3, or the
union of a plane cubic with a line meeting it, possibly in�nitely near),
we devote the long section 7 to the complete classi�cation and to a
detailed study of the geometry of the case pa = 2; d = 5; we show in
particular that one obtains only curves in P3 of degree 5 which are
projectively Cohen-Macaulay.
In section 5 one �nds, for all non special rational surfaces of degree �

8, a table of the suÆcient and necessary conditions for very ampleness
of the linear system jaL�

P
bixij, and proofs.

Finally, a brief mention of the tools we employ for the embedding
theorem: essentially they are deriving from the basic notion of k-
connectedness, introduced by Franchetta for a curve C on a smooth sur-
face S, and Franchetta-Ramanujam's inequality (cf. [Ram]), through
a series of re�nements ([Bo], [B-C], [Ca 1], [Ba]).
C is said to be k-connected if for all decomposition C = Y + Z,

then Y:Z � k, and Ramanujam's inequality says that if a section of a
line bundle L vanishes identically exactly on the subcurve Z, then the
degree of L on Y is at least Y:Z.
With the above notions, non reduced curves can be treated as re-

duced curves, and the Gorenstein property (cf. [Ser],[Ca 1]) plays also
a crucial role.

Aknowledgements
The present cooperation took place in the framework of the SCI-

ENCE contract n. SCI-0398-C(A). The �rst author is a member of
G.N.S.A.G.A. and of the M.U.R.S.T. 40% Program "Geometria Alge-
brica".

2. General results on linear systems on curves

Throughout this paper S will be a smooth algebraic surface over an
algebraically closed �eld of characteristic p � 0, C a (possibly reducible
and non reduced) curve lying on S and H a divisor on C. Therefore C
will be written (as a divisor on S) as

P
miCi, and a subcurve C 0 � C

will mean a curve
P
niCi, with ni � mi. If D = Ci for some i, the

multiplicity mD of D in C is simply the integer ni.
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We will denote by pa(C) the arithmetic genus of C, by H:C the
degree of H on C and by KC the divisor associated to the dualizing
sheaf !C , so that KC :C = 2pa(C)� 2.
A general problem is to study the behaviour of the rational map 'jHj

associated to the linear system jHj of divisors of sections ofH0(C;OC(H)).
Firstly, one can predict the dimension of H0(C;OC(H)) if H has

suÆciently "positive multidegree" on C:

Lemma 2.1. Let C be a curve lying on a smooth algebraic surface S
and let H be a divisor on C:
Then H1(C;OC(H)) = 0 if for all subcurves B � C, H:B � (2pa(B)�

1).

Proof. If h1(OC(H)) = h0(OC(KC �H)) 6= 0 there exists a non zero
section � 2 H0(OC(KC �H)).
Let Z be the maximal curve � C on which � � 0 (i.e. � maps to

0 in H0(Z;OZ(KC �H))), and let Y = C � Z: Then (cf. [Ram]) by
virtue of the following exact sequence introduced by Franchetta and
Ramanujam

0! OY (KC �H � Z)!OC(KC �H)!OZ(KC �H)! 0;

upon dividing � by a section � with div(�) = Z, we obtain �=� = �0 a
section of H0(Y;OY (KC �H � Z) vanishing on a �nite set.
Whence we have what from now on we will call the standard Ra-

manujam inequality (KC �H):Y � Z:Y . This inequality, since by ad-
junction OY (KC) = OY (KY + Z), is equivalent to H:Y � 2pa(Y )� 2,
a contradiction.
In particular the following corollary holds:

Corollary 2.2. Let C and H be as in lemma 2.1.
Then h0(OC(H)) = C:H � pa(C) + 1.

Through a conversation of the �rst author with K.Hulek came out
the following proposition which is an improvement of a useful criterion
introduced �rstly in [Ba], thm.2.15. This criterion gives suÆcient con-
ditions in order that a divisor H yields a linear system on C which is
basepoint free, respectively very ample.
We shall prove here only part (I). The proof of (II) and (III) is

similar, and the proof of (III) can be found in [C-H], whereas for (II),
a di�erent argument will be given in the course of proving thm.3.1.

Proposition 2.3. Let C be a curve lying on a smooth algebraic surface
S and let H be a divisor on C:
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(I) A point x 2 C is not a base point for jHj if for every subcurve Y
of C we have:

H:Y � 2pa(Y ):

(II) Two points x; y 2 C such that x 6= y are separated by jHj if for
every subcurve Y of C we have:

H:Y � 2pa(Y ) + 1:

(III) jHj is a local embedding at x 2 C if every subcurve Y of C we
have either:

(i) x is not in Y and H:Y � 2pa(Y )� 1 or
(ii) x is in Y , x is smooth for C and H:Y � 2pa(Y ) + 1

or
(iii) x is in Y , x is singular for C and H:Y � 2pa(Y ) �

1 +multx(Y ):

Now we procede analysing the case where a point x 2 C is a base
point for a linear system jHj when there are subcurves Y of C such
that H:Y � 2pa(Y )� 1.

Proposition 2.4. Let C be a curve lying on a smooth algebraic surface
S and let H be a divisor on C such that

(1)H:C � 2pa(C)� 2
(2) For each proper subcurve Y of C H:Y � 2pa(Y )� 1 .

Then:
(a) x is a base point for jHj if there exists a decomposition C = Y +Z
such that Y:Z = 1, x is a smooth point of Y and OY (H) �= OY (KY +x).

(b) jHj is free from base points if there exists no point x as in (a) and
moreover, either

(b:1) H:C � 2pa(C) � 1 and there exists no smooth point
x 2 C such that OC(H) �= OC(KC + x) or
(b:2) OC(H) �= OC(KC), C 6= P1, or
(b:3) H:C = 2pa(C)� 2, there exists no point x of multi-

plicity 2 for C such that, � : Ĉ ! C being the blow up of C
at x, O

Ĉ
(��(KC�H)) �= O

Ĉ
, and there does not exist a pair

of distinct smooth points x, y of C such that H = KC+x�y.

Recall (cf.[Ram]) that a curve C � S is said to be m-connected if for
every decomposition C = Z + Y , then Z:Y � m.
We shall also express the 1-connectedness of C by saying that C is

numerically connected.
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Corollary 2.5. Let C be a curve of genus pa(C) � 1 lying on a smooth
algebraic surface S.
(i) If C is numerically connected then the base points of jKC j are

precisely the points x such that there exists a decomposition C = Y +Z
with Y:Z = 1, where x is smooth for Y and OY (x) �= OY (Z).
(ii) If C is 2-connected then j!Cj is free.
(iii) If C is 2-connected and H is numerically equivalent to KC then

H is free if there exists no point x of multiplicity 2 for C such that,
� : Ĉ ! C being the blow up of C at x, O

Ĉ
(��(KC �H)) �= O

Ĉ
, and

there does not exist a pair of distinct smooth points x, y of C such that
H = KC + x� y.

Remark 2.6. In (i) of cor.2.5 it could happen that Y = Z andOY (x) �=
OY (Z).

Proof of prop.2.4. Consider the exact sequence

0!Mx(H)! OC(H)! OC=Mx ! 0;

where Mx is the maximal ideal of the local ring OC;x.
Then x is not a base point for jHj if H1(Mx(H)) ,! H1(OC(H)).
From our assumptions and lemma 2.1 it follows that either H is non

special, i.e., H1(OC(H)) = 0, or H � KC .
If H is non special x is not a base point for jHj if and only if

H1(Mx(H)) = 0, or equivalently, by the Serre-Grothendieck duality, if
Hom(Mx;KC �H) = 0.
If instead H � KC , x is not a base point for jHj if and only if

dim(Hom(Mx;KC �H)) = 1.
We shall proceed by contradiction, by choosing a nonzero ' 2 Hom(Mx; (KC�

H)) in the case H 6� KC , and by considering a particular ' in the case
H � KC , where wemake the assumption dim(Hom(Mx;KC�H)) = 2.

Case 1.There exists a nonzero ' 2 Hom(Mx;KC�H) vanishing only
on a �nite set.
(1.1) If x is smooth for C then ' is a section of H0(C;OC(KC �

H + x)):
Whence if H:C � 2pa(C), OC(KC �H + x) has negative degree and

' � 0, absurd.
If H:C = 2pa(C)�1, OC(KC�H+x) has degree 0, whence ' yields

an isomorphism ' : OC(H)! OC(KC + x), and conversely if we have
such an isomorphism, x is a base point.
In the case where H:C = 2pa(C)� 2, ' is a section of a line bundle

of degree 1, whence it de�nes a smooth point y.
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If H 6� KC this contradicts our assumptions.
If H � KC , let D be the irreducible component containing x.
If it were C = D, we would have C �= P1 (OD(KC �H + x) is a line

bundle of degree 1 and 2 independent sections), a contradiction.
Thus D < C and, since C is connected by 2), let y be a point

of D \ (C � D); we can choose then ' to be a non zero section of
H0(C;OC(KC �H+x)) vanishing at y: then ' vanishes identically on
a component of C and so case 2 applies.
(1.2) If x is singular for C, take a; b local parameters on S at x

(a; b are a basis of Mx=M2
x) such that a; b do not give tangents to

any branch of C at x, so that in particular a; b do not restrict to zero
divisors of OC .
Now, if x is singular for C, by lemma 2.1 of [Ca 1] Hom(Mx;OC)

embeds in H0(Ĉ;OĈ), where � : Ĉ ! C is the blow up of C at x, and
' is given locally by multiplication with '(b)=b = '(a)=a.

Let '̂ 2 H0(Ĉ;OĈ(�
�(KC �H))) be the image of '.

Since (��(KC �H)):Ĉ = (KC �H):C; if degKC < degH, '̂ must be
identically zero, a contradiction.
If degH = degKC then '̂ is a never vanishing section of OĈ(�

�(KC�
H)) �= OĈ .

Let Ĉ be the conductor ideal HomOC
(��OĈ

;OC).
It is well known (cf. e.g. [O-R], prop.1.8) that, ifm is the multiplicity

of C at x, Ĉ =Mm�1
x .

Moreover, since length(��OĈ=OC) = length(OC=Ĉ), it follows, e.g.

from thm.1.5.c) of [Ca 1], that ��OĈ
= HomOC

(Ĉ;OC).
Notice that, by the exact sequence

0!Mx ! OC ! OC=Mx ! 0;

Ext1OC
(OC;Mx) = 0.

Therefore, dualizing the exact sequence

0! Ĉ !Mx !Mx=Ĉ ! 0

we get an exact sequence

0!HomOC
(Mx;OC)! ��OĈ ! �! 0;

where � = Ext1OC
(OC;Mx=Ĉ) and length(�) = length(Mx=Ĉ) =

(m(m� 1)=2) � 1 (cf. [Ca 1], 1.5.c)).
Therefore, ifm � 3 and ' 2 HomOC

(Mx;OC(KC�H)), length(O
Ĉ
(��(KC�

H))='̂ � OĈ) � 1, absurd.
If instead m = 2 the fact that ' is never vanishing contradicts

our assumptions if H 6� KC , whereas if H � KC , we have assumed
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dim(Hom(Mx;KC�H)) � 2. Therefore we can �nd a ' 2 (Hom(Mx;KC�
H)) vanishing at a point y 6= x.
But then the corresponding '̂ is also vanishing at y and therefore

our chosen ' vanishes on a component of C and case 2 applies.

Case 2.There exists a nonzero ' vanishing on a component of C.
Let then Z be the maximal subcurve of C on which ' vanishes

identically and let Y = C � Z.
Let a; b local parameters at x as in (1.2) and �; � be the respective

local equations for Z and Y at x.
(2.1) If x is smooth for Y we claim that '=� gives a section of

H0(OY (KC �H � Z � x)) vanishing on a �nite set.
This is obvious if x is smooth also for C. Otherwise, notice that ' is

given by multiplication by '(b)=b. By our assumptions '(b) = �u with
u vanishing on a �nite set, thus '=� = u=b. Since MxjY is invertible
and spanned by b, we are done.
But now, by adjunction, OY (KC �H � Z � x) �= OY (KY �H � x),

therefore H0(OY (KC �H � Z � x)) = 0 if H:Y � 2pa(Y ).
If insteadH:Y = 2pa(Y )�1 then ' provides an isomorphismOC(H) �=

OC(KC + x), and conversely if there exists such an isomorphism x is
base point for jHj.
(2.2) If x is singular for Y notice that a'(b) � b'(a) gives a local

equation of C and recall that, locally, '(b) = �u.
Since � divides a'(b)� b'(a) = �au� b'(a) there exists v such that

�v = b'(a), and au� v is a local equation of Y at x. Therefore, since
x is singular for Y , u 2 Mx.
Therefore '=� = u=b yields a section '̂ 2 H0(Ŷ ;OŶ (�

�(KC � H �

Z))), where Ŷ is the blow-up of Y at x.
Since by adjunction O

Ŷ
(KC �H � Z) �= O

Ŷ
(KY �H) and by as-

sumption H:Y � 2pa(Y )� 1, '̂ is a section of a line bundle of negative
degree, a contradiction.

Proof of prop.2.3(I). By (a) of prop.2.4 jHj is free unless there exists
a decomposition C = Y + Z such that Y:Z = 1, x is a smooth point
of Y and OY (H) �= OY (KY + x): but then H:Y = 2pa(Y )� 1 against
our assumptions.

Proof of cor.2.5 C is 1-connected i� for each decomposition C =
Y + Z, Y:Z � 1.
Hence, if H is numerically equivalent to KC , H:Y = 2pa(Y ) � 2 +

Y:Z � 2pa(Y )� 1:
Thus (i) follows from (a) and (b.2) of prop.2.4.
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If C is 2-connected and H is numerically equivalent to KC then
8Y < C; H:Y � 2pa(Y ), hence a point x as in (a) of 2.4 does not exist,
whence (ii) follows from (b.2), (iii) from (b.3).
In the case where jHj is base point free let us consider the schematic

image of C:

Lemma 2.7. Let C be a curve lying on a smooth algebraic surface S
and let H be a divisor on C such that jHj is basepoint free and yields
a �nite morphism ' = 'jHj : C ! Pn. Let � be the schematic image
of C.
Then � is "pure" of dimension 1.

Proof. Let V = H0(C;H) and let R = R(C;H) be the graded ring
associated to the invertible sheaf OC(H).
Then '� : S = Sym(V ) ! R and � is de�ned by the graded ideal

I = ker'�.
If l is a linear form such that dim('(C)

T
fl = 0g) = 0, then we have

the vanishing of s = '�(l) on a �nite set � � C. We can show that s
is a non 0-divisor in R. In fact s � � = 0 implies � � 0 outside �. But
C is pure of dimension 1, thus � � 0 and then l is a non 0-divisor in
every localization of S=I. We must then see that 8x 2 �, there exixts
a non 0-divisor in O�;x. For this it is suÆcient to choose l vanishing in
x such that dim('(C)

T
fl = 0g) = 0.

3. The embedding theorem

In this section we extend to the case of a curve lying on a smooth
surface (possibly singular, reducible and non reduced) and of an irre-
ducible (reduced) Gorenstein curve the following well known result: a
divisor H on a smooth curve C of genus p is very ample if its degree is
> 2p.

Theorem 3.1. Let C be a curve lying on a smooth algebraic surface
S and let H be a divisor on C such that

8B � C; (2pa(B) + 1) � H:B:

Then H is very ample on C.

Let us deal �rst with the case where C is irreducible. We generalize
the statement to every Gorenstein curve, i.e., to every curve C such
that !C is invertible.

Proposition 3.2. Let C be an irreducible Gorenstein curve and let H
be a divisor on C such that H:C = degCH � 2pa(C) + 1.
Then H is very ample on C.
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Proof. Suppose C is singular and let � : ~C ! C be the normalization
of C. Moreover let C be the conductor of O ~C in OC, let A be the divisor

on ~C corresponding to C and let 2Æ = degA. Now, identifying H with
its pull-back to ~C, we have

H:C � (2pa(C) + 1), ((H �A): ~C) � (2pa( ~C) + 1);

whence jH �Aj is very ample on ~C.
Thus we have the following commutative diagram:

0 0
# #

0 ! C(H)
�
! ��(O ~C(H �A))

# #
0 ! OC(H) ! ��(O ~C(H)) ! ��(O ~C)=OC ! 0

# # jj
0 ! OC=C ! ��(O ~C)=C ! ��(O ~C)=OC ! 0

# #
0 0

The middle rows and columns are exact on global sections sinceH1(OC(H)) =
H1(O ~C(H �A)) = 0, whence all rows and columns are exact on global
sections.
Let us �rst show that jHj gives a local embedding. We have seen

that the map H0(OC(H))! OC=C is onto, but C � M2
x unless x is a

double point or a smooth point (cf. Remark 3.23 of [Ca 1], proven in
[O-R] cor.2.9).
In this last case, though, the tangent dimension of C at x is at most

2 and cor.2.2 applies verbatim.
In order to separate a pair of distinct points x and y:

(i) if x and y are both singular, then C � MxMy, therefore
the map H0(OC(H))! OC=MxMy is onto;
(ii) if x is singular and y is smooth, since jH �Aj is base

point free on ~C, there is a section in H0(C(H)) vanishing at
x but not at y;
(iii) if both x; y are smoothH0(C(H)) separates them since

jH �Aj is very ample on ~C.

Observe that the condition H:C � (2pa(C) + 1) is equivalent to
(KC � H):C � �3, whence there exists an irreducible D � C such
that (KC �H):D < 0.
We de�ne such a D to be H-positive and we denote by C 0 the curve

C �D.
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Such a curve D plays an important role in the proof of theorem 3.1:

Lemma 3.3. Let C and H be as in theorem 3.1 and let D be H-positive.
Then the exact sequence

0! OD(H � C 0)!OC(H)!OC0(H)! 0

is exact on global sections.
Moreover if the multiplicity mD of D in C is � 2 then jHj is very

ample on C i� it is very ample on C 0.

Proof. Since H1(OD(H � C 0))_ �= H0(!D(C 0 �H)) �= H0(OD(KC �
H)) = 0 by degree consideration, the above exact sequence is exact on
global sections.
Suppose then jHj to be very ample on C 0. Since the multiplicitymD

of D in C is at least 2, C 0 and C are the same set theoretically.
Therefore 'jHj is 1-1 on C since jHj embeds C 0.
Let x be a point 2 D and let M, M0 be the maximal ideals of OC ,

respectively OC0, at x.
If mD � 3 we have a factorization

OC ! OC0
�= OC=ID

# #
OC=M2 �= OC0=M02

whence jHj is very ample on C since it is very ample on C 0.
If mD = 2, by the same argument, 'H is a local embedding at every

point x which is singular for C 0.
But in the case where x is a smooth point for C 0 we can apply cor.2.2.

Proof of theorem 3.1. The proof will be given by induction on the
number � of components of C taken with multiplicity, � =

P
mi. If

� = 1 we apply prop.3.2.
Let � � 2. By lemma 3.3 and by induction it suÆces to deal with

the case where every H-positive component has multiplicity = 1.
Let D be H � positive and notice that by induction we know that

jHj is very ample on C 0 = C�D; consider moreover the following exact
sequence

0! H0(OD(H � C 0))! H0(OC(H))! H0(OC0(H))! 0:
(1)

(I) If there exists an irreducible D such that D:(KC �H) � �3 since,
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by adjunction, (KC �H):D = 2pa(D) � 2 + C 0:D �H:D, jH � C 0j is
very ample on D by prop 3.2.
Thus 'H separates each pair x, y. In fact if both points belong to

C 0 or both belongs to D � C 0, then we consider the restriction jHjjC0

or the subseries jH � C 0jjD, while if x 2 C 0, y 2 D � C 0 it suÆces to
know that jH � C 0j is basepoint free.
Since jHj is very ample on C 0 and H � C 0 is very ample on D then

'H is a local embedding at every point x 2 C 0 � D or D � C 0. If
x 2 C 0\D and x is singular for C 0, then (beingM;M0 as in lemma.3.3)
OC=M2 �= OC0=M02, whence jHj is a local embedding, while if x is
smooth for C 0 consider the following exact sequence

IC0=M2 \ IC0 !OC=M
2 ! OC0=M02:

Since x is smooth for C 0, then IC0=M2 \ IC0 = IC0=IC0 �M.
Therefore we have again a local embedding since the subseries jH �

C 0j is basepoint free.
Thus jHj is very ample on C.

(II) If 8D � C D:(KC �H) > �3 and there exists an irreducible D
such that D:(KC �H) = �2, then jH � C 0j is basepoint free on D.
Thus 'H separates each pair x, y except possibly if both x, y 2

D � C 0, and it is a local embedding at a point x 2 C except possibly
if x 2 D � C 0.
But now, there is also a � � C, � 6= D such that �:(KC�H) � �1.

Consider the decomposition C = � + C 00: if x, y 2 D � C 0 then x,
y 2 C 00, therefore 'H separates x and y, and it is an embedding at x.

(III) If 8D � C, D:(KC �H) > �2 it follows that there exist at least
3 di�erent irreducible curvesD1, D2, D3, such that Di:(KC�H) = �1:
Let C 0

i = C �Di and let x; y 2 C. Let us show that 9i such that
x; y 2 C 0

i. Else, possibly renumbering the indices, we can assume x 2
C 0
1, y 2 D1 �C 0

1. But then y 2 C
0
2 and C

0
3, whence either x 2 C

0
2 or, if

x 2 C 0
1 � C 0

2, x 2 D2 � C 0
2, i.e., x 2 C

0
3.

Thus jHj separates x and y.
Moreover, jHj is an embedding at x if there exists an h such that

x 2 C 0
h�Dh. Otherwise x 2 D1\D2\D3 and we can conclude applying

the above argument since then x is singular for every C 0
i.

Q.E.D. for thm. 3.1

Remark 3.4. The result of theorem 3.1 should hold more generally for
a Gorenstein curve which is reduced. In fact, the hypothesis that C is
Gorenstein is used in the irreducible case but does not guarantee in the
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reducible case that the ideal IC0, appearing in (I), is invertible (cf. [Ca
1], Lemma 1.12).
It would be interesting to see what happens by further removing some

assumptions, e.g. the Gorenstein assumption in the reduced case, or
the assumption that C is reduced in the Gorenstein case. The deadline
for the present Proceedings being expired is suÆcient motivation for us
not to treat the problem here.

4. Pluricanonical maps of surfaces of general type

In this section we are going to give further applications of our curve
embedding theorem, deriving from it in particular the results of Bombieri
and Ekedahl on pluricanonical embeddings of surfaces of general type
(cf. [Bo], [Ek]) in the case where the canonical bundle KS is ample,
that is, S has a smooth canonical model.

Theorem 4.1. Let S be a minimal model of a surface with KS ample
and H1(mKS) = = 0 8m � 2. Then the linear system jmKSj is very
ample if m � 5; if m = 4 and K2

S � 2; m = 3 and pg � 3;K2
S � 3:

(cf. [Ca 2] for a survey of results of this type).
Proof.
Step I. We have h0((m� 2)KS) � 3:
In fact, for m = 3, this is just the assumption pg � 3:
For m � 4; if pg � 2; then clearly h0(2KS) is at least 3 and step I

follows, otherwise, by Noether's formula

10 + 12pg = 8h1(OS) + 2� + b2 +K2
S

where � = 2h1(OS)� b1, � � 0 and =0 if char = 0 (cf. [B-M]).
Since all the terms are nonnegative, it follows immediately that if

pg � 1; then h1OS) � 2, if pg = 0; then h1OS) � 1.
Therefore if pg � 1 , then � � 0, hence for m � 4, by Riemann-Roch

h0((m� 2)KS) � �+ 1=2(m � 2)(m � 3)K2
S which is � 3 for m � 5,

and for m = 4 if either � � 2 or K2
S � 2:

Step II. By I, for each pair of points x; y (possibly y in�nitely near to
x), there is a curve C in j(m� 2)KS j passing through x and y:
Since H1(2KS) = 0 by our assumptions, it suÆces to show that

jmKSj restricted to C is very ample.

Step III. By the embedding theorem it suÆces then to show that if
D � C, then mKS:D � 2pa(D) + 1: I.e., mKS:D � 3+D2 +D:KS , or
equivalently

(m� 1)KS :D � D2 + 3: (2)
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(2) obviously holds for m � 3 if D2 � �1; or D2 = 0 (since in this last
case KS :D is even, so � 2).
If D2 � 1; write (m� 2)KS = D +D0:
We want KS :D +D:D0 � 3, i.e., D2 + 2D:D0 � 3:
If D0 = 0; D = (m� 2)KS and D2 � 3 by our assumptions.
Otherwise, since C is 1-connected, as it is well known, our inequality

holds unless KS :D = 1: But in this latter case by the index theorem
K2 = D2 = 1:

Remark 4.2. Observe that the hypothesis H1(mKS) = 0 8m � 2 is
easy to be proven in characteristic zero nowadays, and false in char=p >
0 only in a very special case, for m = 2; p = 2; � = 1 and S is (bi-
rationally) an inseparable double cover of a K-3 surface or a rational
surface (cf. [Ek], thm. II:1.7).

The following is a particular case of a result of P.Francia (cf. [Fr]).

Theorem 4.3. Let S be a minimal surface of genreral type with q =
0; pg � 1.
Then j2KS j is free from base points.

Proof. Take C 2 jKS j. Since 2C 2 j2KS j it suÆces to show that there
are no base points on C.
Since q = 0, the map H0(S;OS(2KS)) ! H0(C;OC(KC)) is surjec-

tive. Since C is 2-connected (cf. [Bo]), the result follows from cor.2.5
(ii).

5. Embeddings of rational surfaces

In this section we shall give (cf. the table at the end of the section,
with the exception of the family of degree 9) the complete determina-
tion of the non special rational surfaces in P4 listed by Alexander in
[Al]. We remind the reader that Alexander's list is complete in char-
acteristic 0.
We start with the diÆcult cases of degree 7 and 8, then we simply

indicate the proof of the remaining cases, which are extremely easy to
deal with by the present method.

Let � : S = P̂
2

(x1; : : : ; xl)! P2 be the blow-up of P2 = P2(C) in l
distinct points, possibly in�nitely near.
As usual we denote by Ei the total trasform ��1(xi), by L the pull-

back of the divisor class of a line in P2. Fix a; bi 2 N and let
jHj = jaL �

P
biEij: jHj is the pull-back of the linear system of the

curves of degree a and multiplicity at least bi in xi, whence we will also
use the notation jaL�

P
bixij.
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In the study of surfaces in P4 it is important to point out for which
value of l; a; bi, and for which position of the xi's the rational map
associated with the linear system jHj is an embedding of S in P4.
A suÆcient condition in order to verify the very ampleness of H

was introduced by I.Bauer in [Ba]. This method consists in choosing
a particular curve C on S and a positive dimensional linear system
jDj such that H = C + D. Then we consider the restriction jHjjC
of the linear system jHj to the curve C (i.e., the restriction to C of
each e�ective divisor � linearly equivalent to H) and, similarly, for all
� 2 jDj we consider the restriction jHjj�.
If jHjjC and jHjj� are very ample we claim that jHj itself is very

ample. This is generally true for every projective variety of dimension
� 2:

Proposition 5.1. Let X be a smooth projective variety and let C, D
be e�ective divisors with dimjDj � 1. Let H be the divisor H = C+D:
If jHjjC is very ample, and for all � 2 jDj, jHjj� is very ample, then

H is very ample on X.

For the reader's bene�t we reproduce the proof, appearing in [Ba],
claim 2.19.
Proof. We need to prove :

0. jHj is basepoint free;
1. jHj separates two distinct points;
2. jHj is a local embedding at every point x 2 X.

0. Let x 2 X.By hypothesis 9 � 2 jDj s.t. x 2 �. jHjj� is very
ample, in particular it is basepoint free; thus 9H s.t. x =2 H.

1.(i) Assume x; x0 2 X � C.By hypothesis 9� 2 jDj s.t. x 2 �.
If x0 2 �, being H very ample on �, 9� 2 jHj s.t. x 2 � but x0 =2 �.
If x0 =2 �, since x; x0 =2 C, � + C is a divisor in jHj s.t. x 2 �+ C

but x0 =2 �+ C.
(ii) Assume x; x0 2 C. Since H is very ample on C by hypothesis,

9� 2 jHj s.t. x 2 � but x0 =2 �.
(iii) Finally assume x 2 X�C and x0 2 C. Then if we �nd a � 2 jDj

s.t. x =2 �, x0 2 �+C but x =2 �+C. Otherwise, if 8� 2 jDj x 2 �,
let us choose � such that � 3 x0. Thus we can conclude since jHjj� is
very ample.

2. We need to show that if x 2 X, v 2 TxX then 9 � 2 jHj s.t. x 2 �
but v =2 Tx�.
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(i) Assume x 2 X � C. By hypothesis 9� 2 jDj with x 2 �. If
v =2 Tx� then � + C is the desired divisor. If v 2 Tx�, since jHjj� is
very ample 9� 2 jHj s.t. x 2 �; v =2 Tx�.
(ii) Let x 2 C . If v 2 TxC, being jHjjC very ample, 9� 2 jHj s.t.

� 3 x but v =2 Tx�.
If v =2 TxC and x is not a base point for jDj, we choose � 2 jDj s.t.

x =2 �. So we have v =2 Tx(� + C), while x 2 �+ C.
Otherwise, if x is a base point for jDj, being dimjDj � 1, 9� 2 jDj

s.t. v 2 Tx�, thus we can conclude by the very ampleness of jHj on �.

We have some obvious necessary conditions in order that 'H be an
embedding.

Proposition 5.2. Let S be a smooth projective surface and H a very
ample divisor on S. Let C � S be an e�ective divisor. Then:

1) C:H > 0
2) pa(C) � 1) C:H � 3
3) pa(C) � 2) C:H � 4
4) pa(C) = 2) C:H � 5

Proof. If H is very ample we obviously have C:H > 0 8C > 0.
Concerning the other inequalities we can observe that h0(OC(H)) =

2 ) (C;OC(H)) �= (P1;OP1(1)), while h0(OC(H)) = 3 ) C is iso-
morphic to a plane curve, and in this case the inequalities are achieved.
Let us assume now h0(OC(H)) � 4. Since H is very ample, we know

that there exists a section with 0-dimensional set of zeroes, so we have
the following exact sequence

0! OC ! OC(H)! �! 0

where the length of � is H:C, and then h0(OC) +H:C � h0(OC(H)).
If h0(OC) � 2, then there exists a decomposition C = C1 + C2 with

C1:C2 � 0. Since pa(C) � pa(C1)+pa(C2), by induction we can reduce
to consider the case where C is numerically connected and therefore
h0(OC) = 1. In this case C:H � 3 but equality cannot hold, since then

H1(OC) �= H1(OC(H))() H0(KC) �= H0(KC(�H))

and then H should be contained in the �xed part of KC , absurd since
H moves.
It remains to be proven that if pa(C) = 2, and C is numerically

connected (h0(OC(H)) � 4), then H:C � 5.
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Otherwise H0(OC(KC � H)) would have dimension at least 1 and
there would be a decomposition C = A + B with B > 0 s.t. (KC �
H):A � A:B, or equivalently s.t. KA:A � H:A.
Since we can assume pa(A) � 1 (else A:H � 4, thus C:H � 5), then

the above contradicts the ampleness of H.

We are now able to consider the rational surfaces of degree 7 and 8
mentioned in the introduction.
The next theorem deals with the case of degree =7.
These surfaces were constructed by Ionescu in [Io 1] (pag.179, prop.8.1)

and by Okonek in [Ok 2].

Theorem 5.3. Let S = P̂
2

(x1; : : : ; x6; y0; : : : ; y4) and let jHj = j6L�P6

i=1
2xi �

P4

j=0
yjj.

H is very ample if and only if:

0) The only possibility of in�nitely near points is a point yj in�nitely
near
to a point xi; given a point xi, there is at most one such yj.

1) h0(L�
P

i2� xi �
P

j2� yj) = 0 8� � f1; : : :6g; � � f0; : : : ; 4g
s:t: 2#�+#� � 6

2) h0(2L �
P

i2� xi �
P

j2� yj) = 0 8� � f1; : : : ; 6g; � � f0; : : : ; 4g
s:t: 2#�+#� � 12

3) h0(3L �
P6

i=1
xi �

P
j 6=h yj) = 0 8h 2 f0; : : : ; 4g

PROOF
Necessity of the above conditions:
The necessity of the above conditions 0),1), 2) follows otherwise we

would have an e�ective divisors with a non positive intersection product
with H, against the ampleness of H.
The condition 3) is due to the fact that a divisor A 2 j3L�

P6

i=1
Ei�P

j 6=h Fjj has pa(C) = 1,while H:C = deg'H(C) = 2, contradicting
prop.5.2.

The above conditions are suÆcient:
We choose a particular decomposition H = C +D that veri�es the

assumption of proposition 5.1. We let

C = 3L �
P6

i=1
Ei �

P
j�2 Fj;

jDj = jH � Cj = j3L �
P

6

i=1 Ei � F0 � F1j
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Observe that dimjDj � 9 � 8 = 1, whence we can apply prop. 5.1.
Moreover the following lemmas hold:

Lemma 5.4. jHjC j = jHjjC.

Proof. Consider the rational surface Z = P̂2(x1; : : : ; x6): since for all
yj there is no xi in�nitely near to yj, we have a surjective morphism
f : S �! Z.
M = 3L �

P6

i=1
Ei is very ample on Z (the xi satisfy the standard

hypotheses, cf. e.g. theorem 4.6 cap.V in [Ha]) and embeds Z as a
cubic surface in P3, thus H1(Z;OZ(M)) = 0.
Considering the Leray spectral sequence relative to f we get also the

vanishing of H1(S;OS(3L �
P6

i=1 Ei)).
Moreover, since M is very ample on Z we have an injective map

H1(S;OS(3L�
6X
i=1

Ei � F0 � F1)) ,! H1(S;OS(3L�
6X
i=1

Ei))

and then also 0 = H1(S;OS(3L �
P6

i=1Ei � F0 � F1)) = H1(H � C).

Lemma 5.5. jHj�j = jHjj� 8� 2 jH � Cj.

Proof.By Riemann-Roch h1(S;OS(H ��)) = h1(S;OS(C)) = 0,since
h0(S;OS(C)) = 1 by the assumption 3) and h2(S;OS(C)) = h0(S;OS(KS�
C)) � h0(S;OS(K)) = 0.

To conclude the proof of the theorem we need only to show that HjC

is very ample, and Hj� is very ample 8� 2 jDj:
Observe that pa(C) = 1, pa(�) = 1 while C:H = 3 and �:H =

4. Our purpose is then to verify the assumptions of the embedding
theorem 3.1.

Lemma 5.6. Let S and H be as in theorem 5.3. Let C = 3L �P6

i=1
Ei �

P
j�2 Fj and let � 2 j3L �

P
i=16

Ei � F1 � F0j. Then:

(i) 8B � C; B:H � (2pa(B) + 1)
(ii) 8B0 � �; B0:H >� (2pa(B0) + 1)

Proof. Let B � aL�
P
biEi �

P
cjFj.

First of all observe that an e�ective divisor B is such that C�B � 0
or � � B � 0 only if 0 � a � 3, so it is suÆcient to consider the
e�ective divisors B (B as above) such that bi; cj 2 Z and 0 � a � 3.
Let us show �rstly that jHj is ample.
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To this purpose it is suÆcient to consider the case where B is irre-
ducible. If a � 2 the ampleness of H follows by conditions 0) for the
irreducible curves contracted by �, and conditions 1),2) for the rest.
Let a = 3. If 8i 2 f1; : : :6g bi � 1 and 8j 2 f0; : : : 4g cj � 1 we have

B:H � 18� 12� 5 = 1. Otherwise, since B is irreducible, there exists
exactly one index among the bh's and the ck's which equals 2 (the other
ones being � 1).
Let � = fijbi = 1g,  = #�, � = fjjcj = 1g and � = #�.

Thus if there is a bh = 2

B:H � 0,  = 5 and � = 4 or 5

while if there is a ck = 2

B:H � 0,  = 6 and � = 4;

and in both cases we have B � 3L�
P6

i=1
Ei�

P
j 6=k Fj (k 2 f0; : : : 4g)

contradicting condition 3).
Now, pa(B) < 1 except if a = 3 and bi; cj = 0; 1 (in which case

pa(B) = 1). This follows by the genus formula

2pa(B)� 2 = a(a� 3)�
X

bi(bi � 1) (3)

since bi(bi � 1) � 0 and > 0 if bi is negative.
In this last case we want to show that B:H � 3. But if pa(B) = 1

and B:H � 2 condition 3) is violated.
Q.E.D. for thm. 5.3

We pass now to the case of surfaces of degree 8. These surfaces were
constructed by Okonek in [Ok 3]; later their existence was reproven by
Alexander in [Al].

Theorem 5.7. Let S = P̂2(x0; : : : ; x10), jHj = j7L �
P10

i=1
2xi � x0j.

H is very ample if and only if

0) The point x0 is the unique point which can be in�nitely
near to another xi.

1) h0(L�
P

i2� xi) = 0 8� � f0; : : : ; 10g s:t:#� � 4:

2) h0(2L �
P

i2� xi) = 0 8� 2 f1; : : : ; 10g s:t:#� � 7:

3) h0(3L �
P

i6=h xi) = 0 8h 2 f0; : : : ; 10g:

PROOF
Necessity of the above conditions:
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The necessity of the above conditions 0),1), 2) follows otherwise we
would have an e�ective divisors with a non positive intersection product
with H, against the ampleness of H.
For 3) it is enough to notice that A 2j 3L�

P
i6=h Ei j has arithmetic

genus 1 while A:H � 2.

The above conditions are suÆcient:
Let

C = 3L �
P

i>1
Ei

jDj =j H � C j=j 4L �
P

i>1 Ei � 2E1 � E0j

Observe that dimjH � Cj � 1. Our purpose is then to verify the very
ampleness of H studying jHjjC and jHjj� for all � 2 jH � Cj.

Lemma 5.8. jHjC j = jHjjC.

Proof. Since x0 is the unique point that could be in�nitely near to
another xi ;9h 2 f0; 2; : : : ; 10g such that x0 is not in�nitely near to
xh. Without loss of generality we may assume h = 1: considering the

surface Z = P̂
2

(x0; x2; : : : ; xn) we have a surjective morphism g : S !
Z.
NowM = 4L�

P
i6=1 Ei is well known to be very ample on Z (cf. e.g.

[Wei] cor. 1.6a)), and H1(Z;OZ(M)) = 0 since H1(M;OM (M)) = 0
(because 6 =M2 > 4 = 2pa(M)� 2 and M is smooth).
Considering the spectral sequence relative to g we obtainH1(S;OS(4L�P
i6=1 Ei)) = 0 and, since M is very ample on Z we have an injective

map

H1(S; 4L �
X
i6=1

Ei � 2E1) ,! H1(S; 4L �
X
i 6=1

Ei);

thus H1(S;H � C) = 0.

Lemma 5.9. jHj�j = jHjj� 8� 2 jH � Cj:

Proof. Since h0(S;C) = 1 by condition 3) and h2(S;C) = 0 because
the surface is rational, by Riemann-Roch we get that h1(S;C) = 0.

As in the previous theorem we need to show that jHjCj and jHj�j are
very ample.
Observe that pa(C) = 1, pa(�) = 2 8� 2 jH � Cj, while C:H = 3

and �:H = 5. So it is enough to prove the assumptions of theorem
3.1.
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Lemma 5.10. Let S and H be as in theorem 5.7. Let C = 3L �P
i>1 Ei and let � 2 j4L �

P
i�2 Ei � 2E1 � E0j . Then:

(i) 8 B � C; B:H � (2pa(B) + 1)
(ii) 8 B 0 � �; B:H � (2pa(B

0) + 1)

Proof. As before, it is suÆcient to consider the e�ective divisors B
such that B � aL�

P
bixi with bi 2 Z and 0 � a � 4.

Let us show �rstly that jHj is ample. To this purpose we may assume
B to be irreducible.
If a � 2 conditions 0),1),2) imply that H is ample on B.
If a = 3 there exists at most an index h 2 f0; : : : ; 10g s.t. bh = 2.

Thus, setting � = fi > 0jbi = 1g and � = #� we have B:H � 0 if and
only if � = 8, contradicting condition 3).
If B � 4L �

P
i2� biEi, observe that B � � only if b1 � 2 and

bi � 1 8i 6= 1. Thus if B � � is irreducible, there is at most an index
h 2 f0; : : : ; 10g such that bh = 2 or b1 = 3 and bi = 1 8i 6= 1 and in
both cases we have B:H � 1.
Now, if a � 3 we have pa(B) � 1 and equality, as before, holds only

if a = 3 and bi = 0; 1. In this last case we observe that A:H � 2 if and
only if A � 3L�

P
i6=k Ei, a contradiction.

Moreover if a = 4, by the genus formula we have pa(B) = 1 ifP10

i=0
bi(bi � 1) � 4, i.e. there are two indices h; k 2 f0; : : : ; 10g such

that bh = bk = 2, and 8i 6= h; k bi = 0; 1. Then B:H � 3.
To conclude it suÆces to remark that pa(B) � 2 only if a = 4 and

there is at most an index h 2 f0; : : : ; 10g such that bh = 2: but since
B � �, then must be B = � and B:H = 5 as required.

Q.E.D. for thm. 5.7
We give now a list of the non special rational surfaces S in P4 and of

the decompositions H = C +D which can be used to show that H is
very ample on each S (the list of the surfaces appears already in [Al]).
For degree � 6 the proof is easily dealt with by the already used

method; the case d = 9 will be treated in a forthcoming article by the

�rst author and K.Hulek. As usual we denote by 'H(P̂
2

(x1; :::; xn))

the image of P̂
2

(x1; :::; xn) by the linear system jHj.
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d=2 (smooth quadric):

S = 'H(P̂
2

(x1; x2)) �= P1 �P1 (� P3) jHj = j2L � x1 � x2j
d=3 (cubic ruled):

S = P̂
2

(x1) jHj = j2L � x1j
d=3 (Del Pezzo):

S = P̂
2

(x1; : : : ; x6) (� P3) jHj = j3L �
P6

i=1
xij

d=4 (Del Pezzo):

S = P̂
2

(x1; : : : ; x5) jHj = j3L �
P5

i=1
xij

d=5 (Castelnuovo):

S = P̂
2

(x1; y2 : : : ; y8) jHj = j4L � 2x1 �
P8

i=2
yij

jDj = j3L� x1 �
P8

i=2
yij pa(D) = 1; H:D = 3

jCj = jL� x1j pa(C) = 0; H:C = 2
d=6 (Bordiga):

S = P̂
2

(x1; : : : ; x10) jHj = j4L �
P10

i=1 xij

C = 3L �
P10

i=2 xi pa(C) = 1; H:C = 3
jDj = jL� x1j pa(D) = 0; H:D = 3
d=7 :

S = P̂
2

(x1; : : : ; x6; y7; : : : ; y11) jHj = j6L �
P6

i=1 2xi �
P11

j=7 yjj

C = 3L �
P6

i=1
xi �

P9

j=7
yj pa(C) = 1; H:C = 3

jDj = j3L�
P6

i=1
xi � y10 � y11j pa(D) = 1; H:D = 4

d=8 :

S = P̂
2

(x1; : : : ; x10; y11) jHj = j7L �
P6

i=1
2xi � y11j

C = 3L �
P10

i=2
xi pa(C) = 1; H:C = 3

jDj = j4L� 2x1 � y11 �
P10

i=2
xij pa(D) = 2; H:D = 5

d=9 :

S = P̂
2

(x1; : : : ; x10) jHj = j13L �
P10

i=1
4xij

C = 3L �
P10

i=2
xi pa(C) = 1; H:C = 3

jDj = j10L� 4x1 �
P10

i=2
3xij pa(D) = 3; H:D = 6

Remark 5.11. If H � C+D, dimjDj � 1) C is a plane curve, and
in the known examples either a line, conic, cubic, 4-ic (HjC � KC).

Finally we give a list of the necessary conditions of very ampleness
for non special rational surfaces of degree � 8.



24 FABRIZIO CATANESE, MARCO FRANCIOSI

d=4 (Del Pezzo):

S = P̂
2

(x1; : : : ; x5) jHj = j3L�
P5

i=1
xij

0) no in�netely near points
1) h0(L� xi � xj � xk) = 0 8i; j; k 2 f1; : : : ; 5g
d=5 (Castelnuovo):

S = P̂
2

(x1; y2 : : : ; y8) jHj = j4L � 2x1 �
P8

i=2
yij

0) at most one in�nitely near point, to x1
1) h0(L� x1 � yi � yj) = 0 8i; j 2 f2; : : : ; 8g
2) h0(L�

P
i2� yi) = 0 for #� � 4

3) h0(2L� x1 �
P

i6=j yi) = 0 8j 2 f2; : : : ; 8g

d=6 (Bordiga):

S = P̂
2

(x1; : : : ; x10) jHj = j4L �
P10

i=1
xij

0) no in�nitely near points
1) h0(L�

P
i2� xi) = 0 for #� � 4

2) h0(2L�
P

i2� xi) = 0 for #� � 8

3) h0(3L�
P10

1
xi) = 0

d=7:

S = P̂
2

(x1; : : : ; x6; y7; : : : ; y11) jHj = j6L�
P6

i=1
2xi �

P11

j=7
yjj

0) at most one yj in�nitely near to a point xi
1) h0(L�

P
i2� xi �

P
j2� yj) = 0 for 2#�+#� � 6

2) h0(2L�
P

i2� xi �
P

j2� yj) = 0 for 2#�+#� � 12

3) h0(3L�
P6

i=1 xi �
P

j 6=h yj) = 0 8h 2 f7; : : : ; 11g

d=8:

S = P̂
2

(x1; : : : ; x11) jHj = j7L �
P

10

i=1 2xi � x11j
0) x11 is the unique point which should be in�nitely near
to another xj
1) h0(L�

P
i2� xi) = 0 for #� � 4

2) h0(2L�
P

i2� xi) = 0 for #� � 7
3) h0(3L�

P
i6=h xi) = 0 8h 2 f1; : : : ; 11g

6. The geometry of the case pa(C) = 1

In this section we want to describe the geometry of the cases where
C is of arithmetic genus 1 while the degree of H equals 3 and 4.

Proposition 6.1. Let C be a curve lying on a smooth algebraic surface
S such that pa(C) = 1 and let H be a divisor on C of degree 3. Moreover
suppose that

8B � C; (2pa(B) + 1) � H:B:

Then jHj yields an isomorphism with a plane cubic.
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Proof. By cor.2.2 and thm.3.1 ' = 'H yields an embedding

' : C ,! P2:

Let � � P2 be the schematic image of C. By lemma 2.5 � is a divisor
in P2 of degree 3 since H:C = 3.

Proposition 6.2. Let C be a curve lying on a smooth algebraic surface
S such that pa(C) = 1 and let H be a divisor on C of degree 4. Moreover
suppose that

8B � C; (2pa(B) + 1) � H:B:

Then jHj = OC(H) yields an isomorphism of C with a quartic curve
in P3 given either by the complete intersection of two quadric surfaces
or by the union of a plane cubic with a line which is not contained in
the plane of the cubic but which intersects the cubic.

Proof. By our assumptions 'H yields an embedding

'H : C ,! P3:

We identify C with the pure subscheme � P3of dimension 1 and of
degree 4.
Since h1(OC(mH)) = 0 and h0(OC(mH)) = 4m 8m � 1 we have

h0(IC(mH)) =

8>><
>>:

2 m = 2
8 m = 3
19 m = 4
36 m = 5

whence H0(IC(2H)) is generated by the equations q,q0 of two quadric
surfaces Q, Q0.

(I) If Q\Q0 has dimension 1 then C and Q\Q0 have the same degree,
whence they coincide.

(II) If Q\Q0 has dimension 2, then there are linear forms x0; x; x0 such
that Q = = fx0x = 0g, Q0 = fx0x0 = 0g, and x and x0 are independent.
In this case it is easy to see that the map

H0(IC(2))
H0(OP3(1))! H0(IC(3))

has image of dimension =7, whence there exists a g3 in H
0(IC(3)) but

not in the ideal (q; q0).
We shall show that x0jg3 gives rise to a contradiction.
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Let C 0 be the subcurve of C which equals, outside a �nite set, the
subscheme of C de�ned by the equation x0 = 0. If all components of
C are contained in C 0 we claim that C � 2C 0.
Otherwise C = 3A + B, with A:H = B:H = 1 and then pa(C) =

3(A2 +A:B � 1), contradicting pa(C) = 1.
In particular H:C 0 � 2.
If H:C 0 = 2 then C = 2C 0, whence pa(C) = 1 implies pa(C 0) = 0 and

(C 0)2 = 2. Thus, from the exact sequence

0! OC0(H � C 0)! OC(H)! OC0(H)! 0

it follows easily that x0 is the unique linear form which is � 0 on C 0.
Since x0x � 0 on C, x vanishes on C 0; similarly x0x0 � 0 implies that
x0 � 0 on C 0, whence x and x0 are linearly dependent, a contradiction.
Thus if C � 2C 0, H:C 0 = 3:
Let D be either
(i) a component of C not in C 0

or (in case where such D does not exist) set
(ii) D = C � C 0.
By what we saw D maps to a line. It is clear that H0(IC(2)) is

generated by x0l; x0l0, where fl = l0 = 0g is the line image of D.
In particular we can assume x = l,x0 = l0 and moreover g3 2 (x; x0),

g3 = xB � x0A, with A = A(x1; x2; x3), B = B(x1; x2; x3).
Thus x0jg3 implies g3 2 (q; q0) which is absurd. Therefore

C � � = rk

�
x x0 0
A B �x0

�
= 1

and the above determinantal scheme has dimension 1. Since � is pro-
jectively Cohen-Macaulay of degree 4 it equals C. In particular, the
projective ideal of C is generated by

q; q0; g3

with relations
x0q � xq0 = 0

Bq �Aq0 � x0g3 = 0

Remark 6.3. It is possible also the case x0 = x0, where C consists of
a conic � plus a double structure (not contained in fx0 = 0g) on a line
in fx0 = 0g.

Remark 6.4. The above example illustrates the philosophy that the
ideal of C is generated by quadrics i� C is 2-connected.
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7. The geometry of the case pa(C) = 2

In this section we will study the geometry of the case pa(C) =
2;H:C = 5. In particular we will show that one obtains curves in
P3 of degree 5 which are projectively Cohen-Macaulay and which lie
on each possible type of quadric surface.

Lemma 7.1. Let (C;H) be as in thm.3.1 with pa(C) = 2 and H:C =
5. Then C is 2-connected and 'H(C) is contained in a quadric surface
Q.

Proof. Assume C = A + B, with A:B � 1. Then 2 = pa(C) =
�1 + A:B + pa(A) + pa(B) . The assertion follows since pa(A); pa(B)
are � 1 and cannot both equal 1, by our assumptions.
By cor.2.2 h0(OC(2H)) = 9, whence the other assertion.

By lemma 7.1 and cor.2.5 follows immediately the following corollary.

Corollary 7.2. Let C be as above and let KC be the canonical divisor
of C. Then KC is nef and jKCj is a free linear system.

Lemma 7.3. Let (C;H) be as in thm.3.1 with pa(C) = 2 and H:C =
5. If D � C, with D irreducible, then C 6� 4D.
Moreover, if C = 3D + A, then A is reducible,A = A0 + A00 with

D2 = 0;A0:A00 = 0; D:A0 = D:A00 = 1:
In this case jHj yields an isomorphism with a divisor of type (2,3)

on P1 � P1 � P3 consisting of a triple vertical line D0 and of two
horizontal lines (observe that KC , and L = H �KC are the respective
pull backs of OP1(1) under the two projections).

Proof. We use the key formula

pa(mD) = mpa(D) � (m� 1) + (m(m� 1)=2)D2 (4)

Thus, if C = 5D, then pa(C) = �4 + 10D2 6= 2, since pa(D) = 0.
Let C = 4D + A : pa(4D) = �3 + 6D2 , whence pa(C) = �4 +

6D2 + 4D:A) D:A � 0(mod 3). Since C is connected, D:A � 3, and
pa(D +A) � 2, a contradiction.
If C = 3D + A, pa(3D) = �2 + 3D2 � 1. Whence D2 � 1, but if

D2 = 1, then, since there exists an irreducible B � C, B 6= D, such
that B:D � 1, we get pa(3D +B) � 3, a contradiction.
Thus D2 � 0.
Since 2 = pa(C) = pa(A)� 3 + 3D2 + 3D:A ) pa(A) � �1(mod 3),

and since pa(A) � 0, A is reducible, A = A0 +A00.
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Again, pa(D +A0) � 0) D:A0 � 1, similarly D:A00 � 1.
By the above expression for 2 = pa(C), since 3D:A � 6, we obtain

D2 = 0; pa(A) = = �1, and D:A = 2, whence D:A0 = D:A00 = 1.
Then �1 = pa(A) = �1 +A0:A00, and A0:A00 = 0.
To prove the isomorphism with a divisor of type (2; 3) it suÆces to

show that C is contained in a smooth quadric, the rest follows easily
since all components of C map to lines.
Now, D maps to a line, and we know, by lemma 7.1, that C is

contained in a quadric Q.
Assume that Q is reducible, Q = fh � h0 = 0g. Then it follows that

2D is contained in one of the 2 planes, else h � h0 would vanish on 2D,
but not on 3D. But then D2, the degree of the normal bundle of D,
would equal 1, and not 0.
Similarly,D2 = 1 if 3D is contained in a quadric cone Q.

Lemma 7.4. Let (C;H) be as in thm.3.1 with pa(C) = 2, H:C = 5
and assume that there are A 6= B such that C � 2A + 2B, so that
C = 2A+ 2B +D.
Assume (by lemma 7.3) that D 6= A;D 6= B. Then A:B = 1, and

we can assume either

i) A:D = 1; B:D = 1; A2 = B2 = �1 or
ii) A:D = 1; B:D = 0; A2 = B2 = 0; or
iii) A:D = 1; B:D = 0; A2 = �1; B2 = 1:

Proof. Obviously A:B;A:D;B:D � 1.
We have pa(2A) = �1 +A2 � 0, whence A2 � 1, similarly B2 � 1.
Since 1 � pa(2A + 2B) = �3 + A2 + B2 + 4A:B; A2 + B2 � 0.

Moreover 2 = pa(C) = �4 +A2 +B2 + 4A:B + 2A:D + 2B:D.
We infer from the above that A:B = 1, and that A2 + B2 is even.

Therefore either A2 + B2 = �2, A:D = B:D = 1, or we can assume
A2 +B2 = 0; A:D = 1; B:D = 0.
1 � pa(2A + B + D) = 1 + A2 + B:D ) A2 � � 1 in the former

case, A2 � 0 in the latter.
1 � pa(2B +A+D) = B2 + 2B:D) B2 � � 1 in the former case.
Thus in the former case A2 = B2 = �1.
In the latter case there are two possibilities, namely A2 = B2 = 0,

or A2 = = �1; B2 = 1 .

Lemma 7.5. Let C be as above, let KC be the canonical divisor of C,
and set L = H �KC . If L is not nef, then H embeds C in P3 as a
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subscheme of a reducible quadric. Moreover if L is not nef, there is a
unique component D such that L:D < 0.
We have pa(D) = 0, D:L = �1, KC :D = 2; if we set D0 = C �D,

then D:D0 = 4, D0 is reducible and for each B � D0 we have D:B =
H:B.

Proof. Let D be an irreducible component of C such that L:D � 0.
Since H:D � K:D � 2 then by our assumptions pa(D) = 0.
If moreover L:D < 0, then since H is ample, KC :D � 2, whence

KC :D = 2 and D is therefore unique.
In particular, D:H = 1 and D has no common components with

D0 = C �D.
By the adjunction formula, sinceKC :D = 2, it follows thatD0:D = 4.

By the same token pa(D0) = �1, in particular D0 is reducible.
Let B be an irreducible component of D0 : it has pa(B) = 0 since

KC :B = 0, and, by adjunction and 2-connectedness KB:B � �2.
Moreover, if B:D = 2, then pa(D +B) = 1, whence H:B � 2.
We conclude therefore (since D:D0 = H:D0 = 4) that H:B = D:B

for all B � D0.
Recall moreover that if B is irreducible and < D0, B:(C�B) = 2, so

that if B is irreducible and B:D = 2, B is disjoint from D0�B, unless
D0 = 2B.

Case (I) : if D0 = 2M , jHj embeds C as a subscheme of a double
plane.
Here, eitherM is irreducible, or we can apply lemma 7.4, and we are

necessarily in case i) since D:M = 2. Since pa(2M) = �1, M2 = 0.
We have the following exact sequence

0! OM(H �D �M)! OC(H)! OD+M(H)! 0:

Observe that pa(M +D) = 1 and H(M +D) = 3, whence jOM+D(H)j
embeds M +D as a plane cubic by thm.3.1. Moreover, since divisors
on M are classi�ed by their (multi)degree,OM (H �D�M) �= OM , in
particular the above exact sequence yields an exact sequence of global
sections and there is exactly one section � vanishing on D +M . Since
the square of � is zero, � = 0 provides a plane whose double contains
the schematic image of C.

Case (II) : if D0 6= 2M , jHj embeds C as a subscheme of a union of
two planes.
In this case, we claim that there exists a decomposition D0 = B1+B2

such that pa(D +Bi) = 1, H:Bi = 2, B1 \ B2 = ;.
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If there is an irreducible component B with B:D = 2, we can choose
B1 = B, and our assertions are clearly veri�ed.
Else, there is a component B with B:D = H:B = 1, and such that

2B 6� D0. Since B:(C � B) = 2, there is exactly one component B0

of D0 with B:B0 = 1, and we choose now B1 as B + B0 . Clearly B2

is disjoint from B1 and pa(D + B1) = 1; �nally 2 = pa(C) = pa(D +
B2) + pa(B1) + 1, and pa(D + B2) � 1, pa(B1) � 0, whence equalities
hold throughout. We have the following Mayer-Vietoris sequence

0!OC(H)!OD+B1
(H) �OD+B2

(H)! OD(H)! 0:

Recall that D �= P1, and H:D = 1, whence by thm.3.1 (since pa(D +
Bi) = 1, and H:(D +Bi) = 3) we have in particular an exact sequence
of global sections and jHj embeds D +Bi as a plane cubic.
By the exact sequence above the two planes are seen to be di�erent

and they intersect only in the line which is the image of D:

Lemma 7.6. Let C be as above, let KC be the canonical divisor of C,
and assume that L = H �KC is nef.
Then if � is a section of KC , and � is a section of L, and both are

not identically zero, while �� is identically zero, then �� determines
a decomposition C = B + B0 with B:B0 = 2; pa(B) = 0; pa(B

0) = 1;
and jHj embeds C as a subscheme of a reducible quadric union of two
distinct planes.
In this case, moreover, jLj has a base point on B0:

Proof. Let B be a maximal divisor � C over which � vanishes, and
write C = B +B0: Similarly, � gives a decomposition C = A+A0 .
Our assumption is that B +A � C ( i.e., A � B0).
We have the standard exact sequences

0!OB0 ! OC(KC)! OC(KC)=�OB0 ! 0

0! F ! OC(KC)=�OB0 !OB(KC)! 0;

where dim(suppF)=0, and

0! OA0 ! OC(L)! OC(L)=�OA0 ! 0

0! G ! OC(L)=�OA0 ! OA(L)! 0;

where dim(suppG) = 0: Taking Chern classes, we get B:B0+ h0(F) =
KC :B

0, A:A0 + h0(G) = L:A0 ( � 3 since L is nef).
By 2-connectedness, B:B 0 = 2; F = 0 and � de�nes the Cartier

divisor B , whence 0 = KC :B = B2, and pa(B) = 0, pa(B 0) = 1 by
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adjunction. In particular, B0:H � 3 and since KC :B
0 = 2; B0:L �

1; B:L � 2:
Therefore 2 � H:B = L:B � L:A0 = 2; and equalities hold through-

out, in particular L:A0 = 2;G = 0;H:B = 2: But then 2 = H:B �
H:A0 � L:A0 = 2; therefore B = A0 and A = B0:
Again since G = 0, � de�nes the Cartier divisor B0.
We have therefore KC = B;L = B0; L:B0 = 1;KC :B = 0; B:B0 = 2:
Since we want to apply a Mayer -Vietoris sequence, we want to see

�rstly whether B;B0 can have a common component D.
If such D exists, since KC :D = 0, then 1 � L:D � L:B0; whence

L:D = 1 = LB0, so D is unique and B 0 is not � 2D:
If B � 2D; then H:B = 2 ) B = 2D, and since then lemma 7.3

applies, we obtain pa(B) = pa(2D) = �1, a contradiction.
Thus in this case we can write B = D+E;B0 = D+E0, where E;E0

have no common components. Since pa(B) = 0; D:E = 1; and since
KC = B;KC :D = 0; we have D2 = �D:E = �1:
In turn pa(B0) = 1 ) D:E0 � 2; but 2 = KC :B

0 = KC :E
0 =

D:E0 + E:E0: Therefore E:E 0 = 0 and E;E0 are disjoint.
We have therefore a Mayer-Vietoris sequence

0!OC(H)! OB(H)�OB0(H)! F ! 0

where F = OD(H) = OP1(1) if B;B0 have a common component,
otherwise F is a skyscraper sheaf of length 2.
By thm.3.1, �rstly by pure dimension count the sequence of global

sections is exact, secondly jHj embeds B as a plane conic and B 0 as a
plane cubic. A similar proof as the one in lemma 7.5 shows that the
two planes are distinct.
Notice that if B;B0 have a common component, C maps to a double

line plus a line '(E) and a conic '(E0).
The last assertion follows easily since L:B0 = 1, pa(B0) = 1, L is nef,

B0 is 2-connected, thus h0(OB0(L)) = 1:

Lemma 7.7. If L = H �KC , then h0(L) = 2.

Proof. By Riemann-Roch h0(L) = 2 + h1(L) = 2 + h0(KC � L).
Let � 2 H0(KC � L), � 6� 0, and let Z be the maximal curve � C

contained in f� = 0g. Set Y = C � Z: we have then the standard
Ramanujam inequality, whence (remembering also that KC is nef and
C is 2-connected)

2� L:Y � (KC � L)Y � ZY � 2:
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In particular L:Y � 0:
If L is not nef, in view of lemma 7.5, D being the unique component

with L:D < 0, L:Y � �1, and if L:Y < 0, then L:Y = �1 and Y = D
(if Y = D + Y 0, since KC :Y

0 = L:Y 0 = 0; we have Y 0 = 0 by the
ampleness of H).

(a) If L:Y = 0, thenKC :Y = Z:Y = 2, whence, by adjunction, pa(Y ) =
1: since H:Y = 2 we have a contradiction.

(b) If L:Y < 0, then D = Y and Y:Z = 4, which is not � 2�L:Y since
L:Y = �1: again a contradiction.

We shall proceed by analyzing the natural linear map

b : H0(KC)
H0(L)! H0(KC + L) = H0(H)

between the above 4-dimensional spaces, and we denote by W the
kernel of b, by � the quadric P(H0(KC)) � P(H0(L)) of rank one
tensors inside P(H0(KC)
H0(L)).
Recall that any tensor has rank 1 or 2, therefore it can be written,

for a suitable choice of bases, f�0; �1g of H0(KC), f�0; �1g of H0(L)
either in the form

1)�0 
 �0
or
2)�0 
 �1 � �1 
 �0:

Lemma 7.8. Ker b=W does not contain subspaces of the form � 

H0(L) or of the form H0(KC)
 � ; moreover dim(W ) � 2.
The base locus of jLj has dimension 1 if and only if L is not nef: in

this case its curve part equals the irreducible divisor D with L:D = 1.
Finally, if L is not nef, then dim(W ) = 2, P(W ) being a trasversal

line to � in case (II), and a tangent line in case (I).

Proof. If � is such that � � � � 0 for each � 2 H0(KC), then � � 0
since H0(KC) is free.
If � is such that � � � � 0 for each � 2 H0(L), then � is � 0 outside

the base locus of jLj, in particular � � 0 unless the base locus of jLj
has dimension 1.
Let Z be the curve part of the base locus of jLj (the maximal curve

� C such that �jZ � 0 8� 2 jLj) and write C = Z+Y , so that we have
the inequalities

2 � Z:Y < L:Y � 4

(the second inequality since dimjLj � 1).
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If L:Y = 4, then L is not nef and H:Y � 4; whence Z = D:
If L:Y = 3, then Z:Y = 2, Z:L = 0, whence Z:H = Z:KC � 2

implies pa(Z) � 0; but by adjunction pa(Z) = (1=2)KC :Z, whence
KC :Z = 0, and H:Z = 0, contradicting the ampleness of H.
Assume again � to be such that � �� � 0 for each � 2 H0(L), so that

we are in the case where L is not nef. By the above we can choose �
such that it vanishes identically only on the curve D. Then � � 0 on
C �D.
Since D:(C �D) = 4 > KC :D, the Ramanujam inequality is contra-

dicted and � � 0.
Assume that dim(W ) � 3: then P(W ), by the above, intersects �

in a smooth conic and for each � 2 H0(KC) there exists a � 2 H0(L)
such that � � � � 0, � 6� 0: but jKC j being free, we can choose � to
vanish only at a �nite set, whence � � 0.
If L is not nef, �nally, we can consider the two cases of lemma 7.5.

Case (I): Since OM(L �D) �= OM
�= OM (KC) and M2 = 0, there is

a basis f�0; �1g of H
0(L) such that D is the subscheme of zeroes of �0,

D +M the one of �1, and a basis f�0; �1g of H0(KC) such that M is
the subscheme of zeroes of �0, and �1 6� 0 on M .
Since there is exactly one section of OC(H) vanishing on D+M (up

to a non zero constant), multiplying � by a constant, we obtain that
�0�0 � �1�1; moreover clearly �0�1 � 0.
Therefore P(W ) is a line meeting � in a single point.

Case (II): Let xi be a point of Bi � D, and let �i be a section of L
vanishing at xi: since OBi

(L �D) is a trivial sheaf, pa(Bi) being =0,
�i vanishes identically on Bi +D, but not on Bj.
Similarly, OBi

(KC) �= OBi
, and we can �nd �i 2 H0(KC ), with

�i � 0 on Bi, �i 6� 0 on Bj.
We can multiply the above sections by non zero constants so that

if Æ is a section de�ning the divisor D, �i = Æ � �i. We clearly have
�1�2 � 0, �2�1 � 0 (moreover (�1�1) � (�2�2) � 0, cf. the fact that C
maps to the union of 2 distinct planes), so P(W ) meets � in 2 distinct
points.

Lemma 7.9. Let L be nef, and assume moreover that there are bases
f�0; �1g of H0(KC), f�0; �1g of H0(L) such that �0�1 � �1�0.
Then there is an e�ective Cartier divisor � on C which is the base

locus of jLj, and de�nes a smooth point of C; moreover jLj = �+jKC j.
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Proof.Remember that if L is nef,then the base locus of jLj has dimen-
sion 0.
Since jKC j has no base points, at each x in C either �0 or �1 does

not vanish, thus by the relation �0�1 � �1�0 the ideal sheaf (�1; �0)
is invertible and de�nes an e�ective Cartier divisor � on C with 0-
dimensional support. Clearly jLj = �+ jKC j, and since � has degree
1, � de�nes a smooth point of C.

Corollary 7.10. 'H(C) is contained in a smooth quadric , W =
0, jLj is a free linear system.

Proof. IfW = 0, then a basis of H0(H) is given by the 4 sections �i�j :
since (�0�0) � (�1�1) = (�0�1) � (�1�0), 'H(C) is contained in a smooth
quadric.
It is clear that under the last assumption jLj is free.
It suÆces thus to verify that if jLj is free, thenW = 0: but otherwise

L being nef, we would have either the assumption of lemma 7.6 or the
one of lemma 7.9, whence jLjwould not be free.

Lemma 7.11. Let C be as in lemma 7.9 (�0�1 � �1�0 and jLj has base
locus a smooth point x).
Then dim(W ) = 1 and jHj yields an embedding 'H of C as a sub-

scheme of a quadric cone Q in such a way that 'H(x) is the vertex v
of Q.
The morphism 'H lifts to a morphism  : C ! F2 (F2 being as usual

the Segre-Hirzebruch surface) which is an isomorphism with a divisor
in the linear system j2H + F j; F being a �bre of the projection with
centre v to P1:

Proof. Since �0�1 � �1�0; we have a section � whose divisor is x and
such that �i � ��i ; whence we see easily that we have 3 indepen-
dent sections of H0(H) which vanish at x; namely, �0�0; �1�0; �1�1; and
'H(C) is contained in a quadric cone Q .
Moreover, 'H lifts to  : C ! F2 � P3 � P1; the map  being

given by the pair ('H ; '0); '0 being the morphism associated to jKC j:
Denote by � the divisor which is the schematic image of C: If E is

the exceptional divisor of F2,  �(E) is the smooth point x, whence �
is linearly equivalent to F + bH.
But 5 = �:H implies b = 2.
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Remark 7.12. Conversely, if � 2 j2H + F j, pa(�) = 2, and if E is
not a component of �, H is very ample on �.

Remark 7.13. By 7.11, if L is nef and jLj is not free, dim(W ) = 1.
In fact if dimW = 2, then there exists a relation of type �1�0 � �1�0
and lemmas 7.9, 7.11 imply dim(W ) = 1, a contradiction.
Finally, if C is as in 7.6, since � � 0 de�nes B0, the base locus of jLj

is contained in B0, and it restricts to a smooth point of B0(L:B0 = 1):

We can �nally conclude the classi�cation of the embedded curves
with pa = 2 and degree 5.

Theorem 7.14. Let (C;H) be as in thm.3.1 with pa(C) = 2 and
H:C = 5. Then jHj embeds C in P3, and 'H(C) is contained in a
unique quadric surface Q = fq = 0g.
Moreover, 'H(C) is projectively Cohen-Macaulay, and we have a

length 2 resolution of its homogenous ideal IC (whereA �= C[x0; x1; x2; x3]):

0! 2A(�4)
�
! A(�2)� 2A(�3)! IC ! 0

There are 5 di�erent cases, according to the following table (q1; q2 are
quadratic forms).

rk(q) P(W ) Base locus L Equation of C
of jLj

4 ; ; nef rk

�
x0 x1 q1
x2 x3 q2

�
= 1

a point a smooth

3 =2 � point nef rk

�
x0 x1 q1
x1 x2 q2

�
= 1

a point

2 of � a point nef rk

�
x0 x1 q1
0 x2 q2

�
= 1

a line trans- D with not

2 versal to � D:L = �1 nef rk

�
x0 0 q1
0 x1 q2

�
= 1

a line tan- D with not

1 gent to � D:L = �1 nef rk

�
x0 x1 q1
0 x0 q2

�
= 1

Each of the above cases occurs and can specialize to each of the cases
appearing below it.
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Proof.We identify C with 'H(C) and, similarly, its subcurves with
their images, which are pure subschemes of P3 of dimension 1.
That C is contained in a unique quadric Q follows from the previous

lemmas, as well as everything appearing in the table, with the exception
of the equations de�ning C.
Notice that, since h0(OC(3)) = 14, IC has dimension at least 6 in

degree 3, and a minimal set of generators for IC must include q and at
least two cubics g; g0.
To show that C is projectively Cohen-Macaulay, it would suÆces to

remark that C is projectively normal and, as the referee points out,
this could be proved by Castelnuovo theory.
But we shall follow the strategy of producing a matrix � whose

minors q; g; g0 vanish on C and de�ne a locus � of dimension 1. Then
we conclude that the two curves C;� coincide since � has degree 5:
in particular it follows that C is projectively Cohen-Macaulay, by the
Hilbert-Burch theorem, and the homogeneous ideal IC has a resolution
as above.
Finally, rk(�) = 1 in the points of C, because if P would be a

point where �(P ) vanishes, then P would be a point of C with tangent
dimension =3.

rk(q)=4: then C is a divisor on P1 � P1 of bidegree (3,2), C =
ff3;2(�; � ) = 0g. Then f3;2�0 and f3;2�1 are induced by two respective
cubic forms g(x); g0(x) such that q; g; g0 de�ne C.
Clearly if f3;2 = �0~q2 � �1~q1, and qi induces ~qi = ~qi(�; � ) on Q, then

g = x0q2 � x2q1, g
0 = x1q2 � x3q1.

rk(q)=3: let Q be the quadric fx0x2�x21 = 0g. Adding to the divisor
corresponding to C on F2 the respective divisors E+F , E+F 0, where
F is the proper trasform of the line fx0 = x1 = 0g (F 0 respectively
of the line fx1 = x2 = 0g) we obtain cubic forms g(x); g0(x) such that
q; g; g0 de�ne C.
Moreover, g 2 (x0; x1), g0 2 (x1; x2), and since g; g0 have the same

zero locus in Q outside of the two lines, we �nd that if g = x0q2�x1q1;
g0 � x1q2 � x2q1 (mod q).

rk(q)=2 and L nef: we assume Q = fx0x2 = 0g, B0 to be the scheme
of zeroes of x0, and B to be the curve part of fx2 = 0g (the induced
divisor on B0 being B plus the base point, cf. lemma 7.6).
Let q2(x0; x1; x3) be the equation of B in the plane fx2 = 0g: thus

g = x0q2 is a cubic surface containing C, and there is another g0 (not
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divisible by x2, therefore) intersecting the plane fx2 = 0g in the plane
cubic f(x0; x1; x3) = 0g image of B 0.
Whence g0 = +x0% for an appropriate quadratic form %, and q; g; g0

de�ne C.
But, modulo x2, g0 is in the ideal (q2),whence g0 = l(x0; x1; x3)q2(x0; x1; x3)

�x2q1 for a suitable linear form l and a quadratic form q1.

Consider the matrix

�
x0 l q1
0 x2 q2

�
whose top minors give q; g; g0.

By a column operation and a change of basis leaving x0; x2 �xed, we
can assume either l = x1 or l = 0.
But if l = 0, B0 would contain the line fx0 = x2 = 0g, therefore this

line would yields a component D with D:B = 2 (whence D:L = �1
and L not nef, a contradiction) unless x0jq2, in which case it would
be the common component of B;B0. But then fq1 = 0g would cut E0

on the plane fx0 = 0g, whence 2D would be contained in the plane
fx2 = 0g, contradicting D2 = �1.

Remark 7.15. In the case where B;B0 have a common component D
we can assume q2 = x0 � l(x1; x3). We see that in this case g is divisible
by x2, whence this case occurs i� x0jq2. The base point of jLj is the
point fx0 = x1 = x2 = 0g, since on B0 this is the third collinear point
with B \ B0.

rq(q)=2 and L not nef: let Q = fx0x1 = 0g. Then we �nd imme-
diately two cubic forms g; g0 vanishing on C, namely x0 � q2(x0; x2; x3)
and x0 � q1(x1; x2; x3), since B1; B2 maps to conics.
We then proceed as before.

rk(q)=1: let Q = fx20 = 0g: then, if q2(x1; x2; x3) is the conic M (cf.
lemma 7.5, case (I)), x0 � q2 vanishes on M .
A cubic form g0 not in the ideal (x20; x0q2) but vanishing on C must

belong to the ideal (x0; x1) of the line D and to the ideal (x0; q2):
therefore there exists a quadratic form q1 such that g0 = q2 �x1�x0 � q1.
Clearly the zero scheme of (x20; x0q2; q2x1�x0q1) has the same support

as C and contains C: whence it equals C since they are both pure
subscheme of degree 5.
The proof of the last assertion is straightforward.

Q.E.D. for thm.7.14
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