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This article is dedicated to Fabrizio Catanese,
who showed the beauty of algebraic surfaces to us and many others.

Abstract. We classify normal stable surfaces with K2
X = 1, pg = 2 and q = 0

with a unique singular point which is a non-canonical T-singularity, thus exhibit-
ing two divisors in the main component and a new irreducible component of the
moduli space of stable surfaces M1,3.
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1. Introduction

The investigation of (minimal) surfaces of general type with low invariants and
their moduli spaces started with the work of Castelnuovo and Enriques (cf. [Enr49])
at the beginning of the 20th century and has remained an active topic ever since. It
is fair to say, that Fabrizio Catanese, to whom the present special issue is dedicated,
was one the most influential contributors to this topic over the last decades both
through his work, e.g., [Cat79, Cat88, CFHR99, BCG08, BCP11, Cat13, CK20],
and by passing on his enthusiasm to his students and collaborators. Nowadays
Gieseker’s moduli space of canonical models MK2,χ [Gie77] is known to admit a

modular compactification MK2,χ, the KSBA moduli space of stable surfaces, see
Section 2.A.

In this article, we continue the investigation of (the moduli space of) stable I-
surfaces1 begun in [FPR17]. These are stable surfaces with K2

X = 1, pg = 2, and

q = 0. The Gieseker moduli space M1,3 ⊂ M1,3 is an irreducible and rational
variety of dimension 28 parametrising double covers of the quadric cone Q2 ⊂ P3

branched over a quintic section and the vertex, a fact that was attributed to Kodaira

in [Hor76, §3] and extended to the moduli space M
(Gor)
1,3 of Gorenstein stable surface

in [FPR17].

1991 Mathematics Subject Classification. 14J10, 14J17, 14J29.
Key words and phrases. stable surface, T-singularity, I-surface, KSBA moduli space.
1The name was coined by Green, Griffiths, Laza, and Robles in their investigation of Hodge-

theoretic stratifications of the moduli space.

1



2 MARCO FRANCIOSI, RITA PARDINI, JULIE RANA, AND SÖNKE ROLLENSKE

Another important class of singularities on stable surfaces are T-singularities,
which are exactly the quotient singularities that can occur in stable surfaces in the
closure of the main component (see Section 2.B). Here we study what we call T-
singular I-surfaces, that is, stable I-surfaces with a unique singular point which is a
non-canonical T-singularity. Our main result is:

Theorem 1.1 — Let X be an I-surface with unique singular point a non-canonical
T-singularity. Then only the following cases can occur:

Cartier index T-singularity Construction

2 1
4d(1, 2d− 1) (d ≤ 32) Example 3.1

3 1
18(1, 5) Example 3.9

5 1
25(1, 14) Example 3.16

If all deformations are unobstructed, then the dimension of the Q-Gorenstein
deformation space of the T-singularity gives the codimension of the corresponding
stratum in the moduli space. This is especially interesting for Wahl singularities,
which are expected to give rise to divisors. This expectation is only partially met
(see Proposition 3.4) in our cases. For T-singular I-surfaces we obtain the following

Corollary 1.2 — The T-singular I-surfaces of type 1
4(1, 1) and 1

18(1, 5) form divi-

sors in the main component of M1,3, that is, the closure of the Gieseker moduli space.
The T-singular surfaces of type 1

25(1, 14) form an open subset of another irreducible

component of M1,3 of dimension 28.

Schematically one might depict the situation as follows, where we include a con-
jectural connection between the two components:

type 1
4(1, 1)

type 1
18(1, 5)

conjecturally:

type 1
25 (1, 14), cuspidal

M1,3 type 1
25(1, 14)

Acknowledgements. M.F., R.P. and S.R. would like to thank Fabrizio Catanese,
who shaped their view on mathematics in general and algebraic surfaces in particular.
We are indebted to Valery Alexeev for explaining Proposition 2.6 to us. The first
and second author are partially supported by the project PRIN 2017SSNZAW 004
“Moduli Theory and Birational Classification” of Italian MIUR. The first and second
author are members of GNSAGA of INDAM.

Notation and conventions: We work over the complex numbers. ∼ denotes linear
equivalence. For n a positive integer, a (−n)-curve C on a smooth surface Y is a
smooth rational curve with C2 = −n. For a Hirzebruch surface Fn, we denote by
σ∞ the infinity section and by Γ the class of a ruling, so that a section σ0 disjoint
from σ∞ is linearly equivalent to nΓ + σ∞; we denote by Qn the cone in Pn+1 over
the rational normal curve of degree n in Pn, which is the image of Fn via the map
given by |σ0|.
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2. Preliminaries

2.A. Normal stable surfaces. Stable surfaces were first defined to give a geomet-
ric compactification of the moduli space of surfaces of general type (see [KSB88,
Kol12, Kov18] and references therein). In the construction of the moduli space, one
of the main insights was that one cannot allow all flat families of stable surfaces, but
only so-called Q-Gorenstein deformations, that is, flat families π : X → B of stable

surfaces with fixed invariants such that for all m the reflexive powers ω
[m]
X are flat

over B and commute with base change.
Here we will consider normal stable surfaces only. Recall that a normal surface X

is called stable if it has log-canonical singularities, and KX is Q-Cartier and ample.
The smallest m > 0 such that mKX is Cartier is called the (Cartier) index of X.

For a normal stable surface X, we let f : Ỹ → X be the minimal desingularization

and η : Ỹ → Y be the morphism to a minimal model:

Ỹ

Y X

fη

Remark 2.1 — If X has only rational singularities (for instance cyclic quotient sin-

gularities), the Leray spectral sequence gives q(Y ) = q(Ỹ ) = q(X) and pg(Y ) =

pg(Ỹ ) = pg(X). The normal stable surfaces considered in this paper have rational

singularities and pg(X) = 2, so the Kodaira dimension of Ỹ is ≥ 1 and the minimal
model Y is unique.

Let X be a normal stable surface with log-terminal singularities. It is possible
to generalize the plurigenus formula for smooth minimal surfaces as follows. Let

Ỹ → X be the minimal desingularization and write

f∗KX = K
Ỹ

+ ∆ = K
Ỹ

+
∑
i

aiEi

where −ai is the log discrepancy of the exceptional curve Ei. Then by Prop. 5.2 and
Thm. 5.3 in [Bla95], one has:

(2.2) h0(mKX) = χ(OX) +
m(m− 1)

2
K2
X +

1

2
{m∆} ({m∆} − {∆}) ,

where {D}, as customary, denotes the fractional part of a Q-divisor D.

2.B. T-singularities and T-singular surfaces. A T-singularity is either a ratio-
nal double point or a quotient 2-dimensional singularity of type 1

dn2 (1, dna − 1),
where n > 1 and d, a > 0 are integers with a and n are coprime. These are precisely
the quotient singularities that admit a Q-Gorenstein smoothing, that is, that can
occur on smoothable stable surfaces (cf. [KSB88, § 3]).

The exceptional divisor of the minimal resolution of a T-singularity 1
dn2 (1, dna−1)

is a so-called T-string, a string of rational curves A1, A2, . . . , Ar with self-intersec-
tions −b1,−b2, . . . ,−br given by the Hirzebruch-Jung continued fraction expansion

[b1, b2, . . . , br] of dn2

dna−1 (see, e.g., [CLS12, Chapter 10]). Following popular conven-

tion, we will refer to the expansion [b1, b2, . . . , br] corresponding to a T-singularity
as a T-string.

The index 2 T-singularity with d = 1 has T-string [4]. Those of index 2 and d > 1
have T-string [3, 2, . . . , 2, 3], where 2 occurs d − 2 times. It is immediate to check
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that all the log discrepancies are equal to −1
2 . More generally, if [b1, . . . , br] is the T-

string of a T-singularity 1
dn2 (1, dna− 1) for some n > 2, then b1 = 2 (or br = 2) and

[b2, . . . , br − 1] (respectively, [b1− 1, . . . , br−1]) is also the T-string of a T-singularity
of type 1

dn′2 (1, dn′a − 1) for some n′ < n. In particular, we obtain all possible T-
strings of T-singularities of fixed d by beginning with the corresponding T-string of
index 2 listed above and iterating as described [KSB88, § 3]. The T-singularities of
index 3 are obtained by a single iteration.

A T-singular surface of type 1
dn2 (1, dna − 1) is a normal surface with a singular

point of type 1
dn2 (1, dna − 1) and smooth elsewhere. The index of X is equal to n.

Using the notation of §2.A we have ([Lee99, Prop. 20]):

(2.3) K2
Ỹ

= K2
X − (r − d+ 1).

If, in addition, Y is not a rational surface, then by [RU17, Prop. 2.3]:

(2.4) K2
Y < K2

X

Remark 2.5 — Let Ỹ be a smooth surface containing a T-string. Then by [KM98,

Prop. 4.10] there is a map f : Ỹ → X that contracts the T-string to a T-singularity;
the surface X is projective and Q-factorial, so it is a T-singular surface. If the class
of f∗KX is nef and big and the only curves with zero intersection with it are the
components of the T-string, then X is also stable.

2.C. I-surfaces. An I-surface X is a stable surface with K2
X = 1, pg(X) = 2 and

q(X) = 0. In [FPR17] it was shown that the classical description of smooth surfaces
of general type with K2

X = 1 and χ(X) = 3 extends to the Gorenstein case, i.e.:

• a Gorenstein I-surface X is canonically embedded as a hypersurface of de-
gree 10 in (the smooth locus of) P(1, 1, 2, 5);

• the moduli space M
(Gor)
1,3 of Gorenstein stable surfaces with K2 = 1 and

χ = 3 is irreducible and rational of dimension 28.
• for a Gorenstein I-surface X, the bicanonical map is a degree 2 morphism
ϕ2 : X → Q2 ⊂ P3, where Q2 is the quadric cone, branched on the vertex
O and on a quintic section D of Q2 not containing O
• conversely, if D is a quintic section of Q2 not containing O and (Q2,

1
2D) is

a log-canonical pair, then the double cover of Q2 branched on D and O is
a stable Gorenstein I-surface.

2.D. Extending automorphisms of stable surfaces. Let X be a stable surface
and let g : X → B be a 1-parameter Q-Gorenstein smoothing of X; denote by 0 ∈ B
the point such that g−1(0) = X, write B∗ := B \ {0} and X ∗ := X|B∗ .

Let Aut(X/B) be the relative automorphism scheme. The following result is
certainly well known to experts; we thank V. Alexeev for explaining it to us. Note
as a starting point, that the automorphim group of a stable surface is finite by [Iit82,
Thm. 11.12], or more generally by [HMX13].

Proposition 2.6 — Let σ be a section of Aut(X ∗/B∗). Then, up to a finite base
change, σ extends to a section of Aut(X/B).

Proof. The claim follows from the fact that the family X is the canonical model of
any extension of X ∗, and the canonical model is unique. Indeed, choose an extension
X ′ of X ∗ such that σ induces a morphism X ′ → X ; up to a base change we may
assume that both X and X ′ admit a semi-stable resolution. Now taking canonical
models of both X ′ and X one gets a regular map σ̄ : X → X that restricts to σ on
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X ∗. Since σm is the identity for some m, we have that σ̄m is also the identity, and
therefore σ̄ is an automorphism.

�

As a result, we obtain the following necessary condition for smoothability of I-
surfaces:

Corollary 2.7 — Let X be a stable I-surface. If X has a Q-Gorenstein smoothing
then it admits an involution.

Proof. Let X → B be a 1-parameter Q-Gorenstein smoothing of X. By [FPR17,
Prop. 3.6] (see §2.C) the bicanonical map of a Gorenstein I-surface is of degree 2,
hence the corresponding involution defines a section of Aut(X ∗/B∗), that, possibly
up to a base change, extends to a section σ of Aut(X/B) by Proposition 2.6.

The map Aut(X/B)→ B is quasi-finite and étale (cf. [Ale96, Thm. 3.29]), so the
restriction of σ to the central fibre X has indeed order 2. �

3. The examples

3.A. The case of index n = 2. We start by describing a construction of stable
T-singular I-surfaces of index 2.

Example 3.1: Let Q2 ⊂ P3 be the quadric cone and let ε : F2 → Q2 be the
minimal resolution; as usual, we denote by σ∞ the infinity section of F2, by Γ the
class of a ruling and write σ0 = σ∞+ 2Γ. Let D ⊂ F2 be an effective divisor linearly
equivalent to 4σ0 + 2Γ and assume that D does not contain σ∞ and is smooth away
from σ∞, so that D is either smooth or has a double point P on σ∞.

We let π : Y → F2 be the double cover branched on D. The surface Y is smooth
when D is, and has a singular point Q of type Ak lying over P ∈ σ∞ otherwise.
The linear system π∗|Γ| is a pencil of elliptic curves and coincides with the canonical

system of Y . We denote by Ỹ → Y the minimal desingularization; since the singular-

ities of Y are canonical, Ỹ is minimal elliptic with pg(Ỹ ) = 2 and again the canonical
system coincides with the elliptic pencil. There are the following possibilities for the

preimage C of σ∞ in Ỹ :

(1) if D meets σ∞ at two distinct points, then Ỹ = Y and C is a (−4)-curve;

(2) if D is smooth but meets σ∞ at only one point, then Ỹ = Y and C is a
string of type [3, 3];

(3) if D has a double point P ∈ σ∞ then the point Q ∈ Y lying over P is an
Ak point for some k > 0. The preimage of σ∞ in Y splits as C1 +C2, with
C1 and C2 smooth rational curves meeting at Q, and C is a string of type
[3, 2, . . . , 2, 3] with 2 occurring k times.

Let ν : Ỹ → X be the first step in the Stein factorization of the map Ỹ → Y → Q2:
ν contracts C to a point R lying over the vertex of Q2 and is an isomorphism
elsewhere. So R is a singularity of type 1

4d(1, 2d − 1) (see §2.B): in case (1) above
one has d = 1, in case (2) one has d = 2, and in case (3) one has d = k + 2 > 2.
So we have C2 = −4, K

Ỹ
C = 2 and ν∗KX = K

Ỹ
+ 1

2C (see §2.B) and therefore

K2
X = (K

Ỹ
+ 1

2C)2 = 1. Finally, it is easy to check that ν∗KX is nef and that the
only irreducible curves A with ν∗KXA = 0 are the components of C, and therefore

KX is ample. Finally, pg(X) = pg(Ỹ ) = 2 by Remark 2.1, since T-singularities are
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rational. Summing up, X is a T-singular I-surface of type 1
4d(2d − 1), where d = 1

in case (1), d = 2 in case (2), and d = k + 2 > 2 in case (3).

Remark 3.2 — Let X be an I-surface as in Example 3.1. Then the induced map
ε : X → Q2 is a finite double cover, flat away from the vertex of Q2, with branch
locus D̄ = ε(D) cut out on Q2 by a quintic hypersurface passing through the vertex
of Q2. By the Hurwitz formula we have 2KX = ε∗H, where H is the class of a
hyperplane section of Q2 ⊂ P3. Since the canonical system |2KX | is 3-dimensional
by (2.2), it coincides with ε∗|H|. So the map ε : X → Q2 is the bicanonical map of
X. In particular, the branch divisor D is determined by X up to automorphisms of
Q2.

In fact, our conditions on D guarantee that (Q2,
1
2D̄) is a log-terminal pair and

thus X is an I-surface by [FPR17, Prop. 4.1]. Deforming D̄ to a general quintic
section ofQ2 gives a smoothing of X as a hypersurface of degree 10 inside P(1, 1, 2, 5).

We record this fact for later reference.

Corollary 3.3 — The I-surfaces constructed in Example 3.1 are smoothable.

To construct surfaces as in Example 3.1 one needs to find a branch divisor D with
the required singularity at a point P ∈ σ∞ and smooth everywhere else. This is a
non trivial question, as shown by the following partial answer to it.

Proposition 3.4 — Consider T-singular I-surfaces of type 1
4d(1, 2d − 1) as con-

structed in Example 3.1. Then

(i) we have d ≤ 32;
(ii) for d = 1, 2, 3 the T-singular I-surfaces of type 1

4d(1, 2d − 1) obtained as
in Example 3.1 give an irreducible subvariety of codimension d inside the
main component of the moduli space of stable I-surfaces. In particular, for
d = 1 one has a divisor.

(iii) There are irreducible families of T-singular I-surfaces of type 1
4d(1, 2d− 1)

depending on µ moduli for the following values of (d, µ):

(9, 19), (21, 7), (25, 4).

Proof. We use freely the notation of Example 3.1.

(i) Let X be as in Example 3.1 with a singularity of type 1
4d(1, 2d − 1), with

d > 2. Then the branch locus D ⊂ F2 of the corresponding double cover has exactly
a double point P ∈ σ∞ of type Ad−2 and is smooth elsewhere.

Assume first that D is irreducible and let D̃ → D be the normalization. Since
D ∼ 4σ0 + 2Γ, we have pa(D) = 15 and pa(D̃) = pa(D) − bd−1

2 c, and therefore
d ≤ 32.

Assume now that D = D1 + D2 is reducible. If D1 does not intersect σ∞, then
D1 and D2 have to intersect away from σ∞, contradicting our assumption that D is
smooth away from the section at infinity. Thus D1 and D2 are smooth divisors not
containing σ∞ meeting only at the point P ∈ σ∞. Write m = D1D2: the singular
point P is of type A2m−1, so we have d = 2m + 1. Up to exchanging D1 and D2,
there are exactly the following possibilities:

(R1) D1 ∼ Γ, D2 ∼ 4σ0 + Γ, m = 4, d = 9;
(R2) D1 ∼ σ0 + Γ, D2 ∼ 3σ0 + Γ, m = 10, d = 21;
(R3) D1 ∼ 2σ0 + Γ, D2 ∼ 2σ0 + Γ, m = 12, d = 25.

(ii) The surface X is determined by the choice of D ∈ |4σ0 + 2Γ| up to the
action of the automorphism group of F2 (equivalently, of Q2), which has dimension
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7. The case d = 1 corresponds to a general choice of D, so the number of moduli is
dim |4σ0 + 2Γ|− 7 = 27. The case d = 2 correspond to D smooth but tangent to σ∞
at a point and the case d = 3 corresponds to D with an ordinary double point on
σ∞. In both cases simple arguments based on Bertini’s theorem show that D can be
chosen in an irreducible and locally closed subset of codimension d− 1 of |4σ0 + 2Γ|.

(iii) The three families correspond to the cases (R1), (R2) and (R3) above.
We discuss case (R3) first. Let D1 ∈ |2σ0 + Γ| a smooth curve such that the point

P := D ∩ σ∞ is a Weierstrass point of D1. By Lemma 3.7 there is a 3-dimensional
family of such curves, up to the action of the automorphisms of F2.

Consider the following exact sequence:

0→ OF2 → OF2(D1)→ OD1(12P )→ 0.

Passing to cohomology, we have a surjection H0(OF2(D1)) � H0(OD1(12P )); so
there is a curve D′1 ∈ |2σ0 + Γ| that meets D1 only at P . If we take a general
element D2 of the pencil spanned by D1 and D′1 we obtain an example of case (R3).
The curve D1 depends on three moduli up to automorphisms of F2 and for each
choice of D1 we have a 1-dimensional family of possible D2, so case (R3) gives an
irreducible subvariety of dimension 4 of the main component of the moduli space of
I-surfaces.

Consider now case (R2). Because h1(F2, 2σ0) = 0, we have a short exact sequence:

0→ H0(2σ0)→ H0(3σ0 + Γ)→ H0(OD1(10P ))→ 0.

So the curves in |3σ0 + Γ| that cut out the divisor 10P on D1 are a linear subsystem
|M | of dimension 9 = h0(2σ0); P is the only base point of |M | and for general
R ∈ |2σ0| the curve D1 + R is smooth at P . So by Bertini’s Theorem, we can pick
D2 in a non empty open subset of |M |, and we in total have h0(σ0 + Γ)− 1 + 9 = 14
parameters for the construction. Taking into account the action of the automorphism
group of F2, which is 7-dimensional, we see that we have 7 moduli.

Case (R1) can be analysed in the same way: one gets 25 + 1 = 26 parameters for
the construction and therefore 19 moduli. �

Remark 3.5 — As explained in the introduction of [RU17], the log Bomolov-Miyaoka-
Yau inequality gives d ≤ 34 for a stable I-surface with a T-singularity of type
1
4d(1, 2d− 1), a weaker bound than Proposition 3.4 (i).

Remark 3.6 — Proposition 3.4 shows that the expectation that T-singular surfaces
of type 1

4d(1, 2d − 1) give a codimension d subset in the moduli space (see §2.B) is
true for d = 1, 2, 3 but not for all possible d. In fact, for d = 25 one has a family
depending on 4 moduli while the expected number is 28− 25 = 3.

Lemma 3.7 — Let C be a smooth genus 2 curve and let P ∈ C be a Weierstrass
point. Then there is an embedding j : C → F2 such that j(C) ∼ 2σ0 + Γ and j(C)
intersects σ∞ at j(P ).

Proof. The canonical double cover C → P1 gives a natural embedding of C in
the total space V of the line bundle OP1(−3). In turn, there is an open immersion
V ↪→ F3 that identifies V with the complement of the infinity section σ∞. Composing
these two inclusions one gets an inclusion of C in F3 as a bisection disjoint from σ∞.
Blowing up F3 at the Weierstrass point P and contracting the strict transform of
the ruling of F3 containing P , one obtains the desired inclusion j : C → F2. �
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3.B. The case of index n = 3. Here we construct T-singular I-surfaces of type
1
18(1, 5). We start by proving an auxiliary result on elliptic surfaces.

Lemma 3.8 — Let Y be a minimal elliptic surface with pg(Y ) = 2 and q(Y ) = 0.
If Y contains a (−3)-curve B then:

(i) Y is the minimal resolution of a double cover π : Ȳ → F6 branched on a
divisor D ∈ |σ∞ + 3σ0| with at most negligible singularities and σ∞ pulls
back to 2B on Y ;

(ii) Y has no multiple fibers; the reducible fibers of the elliptic fibration Y → P1

are the preimages of the rulings of F6 containing a singular point of D.

Conversely, the minimal resolution Y of a double cover Ȳ → F6 as in (i) is a minimal
elliptic surface with pg(Y ) = 2, q(Y ) = 0 and the pull-back of σ∞ to Y is equal to
2B for a (−3)-curve B.

Proof. (i)+(ii) Denote by F a general fiber of the elliptic fibration Y → P1. By the
canonical bundle formula for elliptic surfaces we have |KY | = |aF | +

∑
(mi − 1)Fi,

where m1F1, . . .mkFk are the multiple fibers. Since pg(Y ) = 2 we have a = 1;
since KYB = 1, we conclude that B is a section of the elliptic fibration and that
there are no multiple fibers. Set L := 2B + 7F ; one has LB = 1 and L2 = 16,
KY L = 2. We write L = KY + (6F + 2B); since 6F + 2B is nef and big, Kawamata-
Viehweg vanishing applies and h0(L) = χ(L) = 10. A similar argument shows that
H1(7F+B) = 0 and therefore the restriction map H0(L)→ H0(OB(1)) is surjective
and the linear system |L| is base point free. Let ϕ : Y → P9 be the morphism defined
by L and let Σ be the image of ϕ. The morphism ϕ maps a general F 2-to-1 onto
a line and it maps B to a line r that meets the images of the elliptic fibers of Y at
distinct points. So the degree m of ϕ is equal to 2 and deg Σ = L2/2 = 8. By the
classification of surfaces of minimal degree in PN the surface is either a cone over the
rational normal curve of degree 8 or a smooth linear scroll over P1. Since Σ contains
the line r that meets each ruling at a distinct point, we conclude that Σ ∼= F6 and
the line r corresponds to the infinity section σ∞ of F6. In addition, it is not hard to
see that B is contained in the ramification locus of ϕ.

Let Y → Ȳ
π→ F6 be the Stein factorization of f : the map Y → Ȳ contracts

precisely the (−2)-curves of Y that do not meet B, so Ȳ has canonical singularities.
The map π is a flat double cover; we write D := σ∞ +D1. Since the preimage of a
general ruling Γ of F6 is an elliptic curve and D is divisible by 2 in Pic(F6), we may
write D1 = 3σ∞ + 2aΓ. The usual formulae for double covers give

KȲ = π∗(KF6 + 2σ∞ + aΓ) = π∗((a− 8)Γ).

Since pg(Ȳ ) = pg(Y ) = 2, we obtain a = 9 and D1 ∈ |3σ0|. The singularities of
Y occur above the singularities of D, which are therefore negligible because Y has
canonical singularities.

Conversely, given a cover as in (i), Ȳ has canonical singularities and is smooth
above σ∞. If we write π∗σ∞ = 2B we get −12 = 2σ2

∞ = 4B2, namely B2 = −3 and
B is a (−3)-curve. As noted above, the ruling of F6 pulls back to a pencil |F | of
elliptic curves and the curve B is a section of |F |, therefore |F | has no multiple fibers.
Denote by Ȳ → Y the minimal desingularization. Then the same computations as
before give pg(Y ) = pg(Ȳ ) = 2. Since σ∞ and D1 are disjoint, the restriction of D
to a ruling of Γ cannot be divisible by 2. So the strict transform in Y of a ruling of
F6 is always irreducible and the components of a reducible fiber that do not meet B
are precisely the exceptional curves of Ȳ → Y . �
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Ỹ

fcontract A+B + C

X

B

C ′C
A

−4

E
η

blow up

Y

−3

−2

double cover + resolution
ϑ

F6

σ∞

D1

p1 p2

Figure 1. Construction of an I-surface of type 1
18(1, 5), using a nodal fibre.

Example 3.9: Let Y be an elliptic surface with pg(Y ) = 2, q(Y ) = 0 such that:

• Y has a (−3)-section B
• Y has an I2 fiber F2, and all the remaining fibers are irreducible.

By Lemma 3.8, the surface Y is the minimal resolution of a surface Ȳ which is a
double cover π : Ȳ → F6 branched on a divisor D ∈ |σ∞ + 3σ0| with an ordinary
double point P and no other singularity. The I2 fiber arises as the pull-back of the
ruling of F6 through P and B is the preimage of σ∞.

Consider an irreducible singular fiber F1, of type either I1 or II, and let Q ∈ F1

be the singular point. Let Ỹ → Y be the blow-up at the singular point Q, denote
by A the strict transform of F1 and by C (the strict transform of) the component
of F2 that meets B (see Figure 1). Then A,B,C is a string of type [4, 3, 2] that can
be blown down to obtain a surface X with a singularity of type 1

18(1, 5), K2
X = 1,

pg(X) = 2 and q(X) = 0 (see Remarks 2.5 and 2.1). The pull-back of KX to Ỹ is
equal to K

Ỹ
+ 2

3A + 2
3B + 1

3C. It is not hard to check that it is a nef divisor and
that A,B and C are the only curves that have zero intersection with it. So KX is
ample and X is a stable T-singular surface of type 1

18(1, 5).

Remark 3.10 — The construction of Example 3.9 depends on 27 moduli. Indeed,
the pair (Y,B) determines X up to a finite number of possibilities, so it is enough to
count parameters for the pairs (Y,B) with an I2 fiber. These are determined by the
branch locus D of π : Ȳ → F6, that has a double point. The linear system |3σ0| has
dimension 39, and the curves with a double point give a codimension 1 subvariety.
Since the automorphism group of F6 has dimension 11, we are left with 38−11 = 27
parameters.

In order to show that the surfaces constructed in Example 3.9 are smoothable, we
give an alternative description by computing their canonical ring:
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Proposition 3.11 — Let X be as in Example 3.9. Then there exist sections x1, x2 ∈
H0(X,KX), y ∈ H0(X, 2KX), u ∈ H0(X, 3KX) and z ∈ H0(X, 5KX) such that the
canonical ring of X is

R(X,KX) = C[x1, x2, y, u, z]/(x
3
1 − x2y, z

2 − f10(x1, x2, y, u))

for a weighted homogeneous polynomial f10 of degree 10.
In particular, X is embedded into P(1, 1, 2, 3, 5) as a complete intersection of

degree (3, 10).

Proof. Recall that pg(X) = 2; in addition, one can check that the correction term
1
2{m∆} ({m∆} − {∆}) vanishes for all values of m ≥ 2, so that (2.2) gives:

(3.12) h0(X,mKX) = 3 +
m(m− 1)

2
(m ≥ 2).

We want to compute the canonical ring using the identification H0(X,mKX) =

H0(Ỹ , bπ∗mKXc). We want to relate these to linear systems on F6 as in the diagram,
where we already added some information on the 3-canonical map explained below:

(3.13)

Ỹ Y Ȳ F6 Q6 P7

X Q4 P5

η

f

ϑ

resolution

π |σ0|

projection from line

|3KX |

.

For later reference we compute the relevant divisors on Ỹ . As above we denote by
Γ a ruling on F6 and by C ′ the −2-curve such that C + C ′ is a fiber of the elliptic

fibration of Ỹ . The configuration is depicted in Figure 1.

f∗KX = ϑ∗Γ + E +
1

3
(2A+ 2B + C) ,

f∗2KX = ϑ∗3Γ +B +
1

3
(A+B + 2C) ,

f∗3KX = ϑ∗(6Γ + σ∞)− E − C ′

= ϑ∗σ0 − E − C ′,

f∗4KX = ϑ∗(7Γ + σ∞)− C ′ + 1

3
(2A+ 2B + C) ,

f∗5KX = ϑ∗(9Γ + σ∞)− E − C ′ +B +
1

3
(A+B + 2C) .

Note that by construction the branch divisor D of ϑ is equal to σ∞ + D1, with
D1 ∈ |3σ0| ⊂ |4σ∞ + 18Γ|, so that

H0(Ỹ , ϑ∗(aΓ + bσ∞)) ∼= H0(F6, aΓ + bσ∞)⊕H0(F6, (a− 9)Γ + (b− 2)σ∞),

which is the decomposition into the invariant and anti-invariant part. We are ready
to compute the relevant pluricanonical systems on Y , but for the ring structure we

also need the multiplication maps. Considering these on Ỹ we need to account for
correction terms, for example,

H0(bf∗KXc)×H0(bf∗KXc) H0(2bf∗KXc) H0(b2f∗KXc)
+A+B

.

We now compute the pullback of the canonical ring to Ỹ . Let us denote the
section of a line bundle associated to a curve by the corresponding lower case letter.
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Then H0(X,KX) = H0(Ỹ , ϑ∗Γ +E) = e ·H0(Ỹ , ϑ∗Γ), where the second equality is
most easily confirmed by dimension reasons. Thus the canonical pencil is spanned
by

x1 = cc′e and x2 = (ae2)e

Taking the correction into account, the image of the multiplication map is spanned
by 〈x2

1 = (cc′)2ae2b, x1x2 = cc′(ae2)2b, x2
2 = (ae2)3b〉, which together with

y = (cc′)3b

forms a basis of H0(Ỹ , b2f∗KXc) = H0(Ỹ , ϑ∗3Γ + B) = b · ϑ∗H0(F6, 3Γ). Looking
at the next multiplication map

H0(bf∗KXc)×H0(b2f∗KXc) H0(bf∗KXc+ b2f∗KXc)

H0(3f∗KX)

+A+B+C .

we find the claimed relation x3
1 = x2y. Because of this relation, the image of the mul-

tiplication map is of dimension 5 and we need a further generator u ∈ H0(X, 3KX),
not contained in the image.

Remark 3.14 — It is now instructive to look at the 3-canonical map, as alluded to

in Diagram 3.13. On Ỹ we have

H0(Ỹ , 3f∗KX) = H0(Ỹ , ϑ∗σ0 − E − C ′) ⊂ ϑ∗H0(F6, σ0).

Note that ϑ maps E and C ′ to points p1, p2 ∈ F6 such that D1 is tangent to a
ruling in p1 and D1 has a node at p2, necessarily on a different ruling, see Figure 1.
Thus the 3-canonical system is precisely ϑ∗H0(F6, I{p1,p2}(σ0)). Since |σ0| maps F6

to the cone Q6 over the rational normal curve of degree 6 in P7, the image of the
3-canonical map of X is the projection of Q6 from a line through two general points
of Q6, which is the cone Q4 ⊂ P5 over the rational normal curve of degree 4.

In this description, u is the preimage of any hyperplane section of Q6 containing
p1, p2 and not containing the vertex.

We have thus found the subring S generated by elements of degree at most 3 in
the canonical ring:

R := R(X,KX) ⊃ C
[
H0(mKX) : m ≤ 3

]
= C[x1, x2, y, u]/(x3

1 − x2y) =: S

To ease computations later, recall that the Hilbert series of a weighted polynomial

ring C[w1, . . . , wr] with weights d1, . . . , dr is given by
∏r
i=1

(
1− tdi

)−1
and by the

additivity of Hilbert series we get the Hilbert functions for complete intersections.
In particular,

hS(t) =
1

(1− t)2(1− t2)
=

(1− t3)

(1− t)2(1− t2)(1− t3)
,

hR(t) =
(1− t10)

(1− t)2(1− t2)(1− t5)
=

(1− t3)(1− t10)

(1− t)2(1− t2)(1− t3)(1− t5)
,

because by (3.12) the Hilbert function of R coincides with the Hilbert function of
the canonical ring of a smooth I-surface, which in turn is a complete intersection of
degree 10 in P(1, 1, 2, 5) (cf. 2.C).
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Note that the surface X carries an involution ι, which acts on the canonical ring
and that birationally ι is the covering involution from the double cover of π : Ȳ → F6.
Thus the whole subring S is invariant under the involution.

A dimension computation gives S4 = R4, so we now want to analyse the 5-
canonical system, which is of dimension 13, while S5 is of dimension 12. Since
all sections in S2 are divisible by b, we see that

S5 = S2 · S3 ⊂ H0(Ỹ , b5f∗KXc −B) ∼= H0(F6, I{p1,p2}(9Γ + σ∞)),

and in fact equality holds as both sides are of dimension 12. We claim that this
is indeed the ι-invariant part of the linear system |b5KXc|, in which it is clearly
contained.

For this consider the singular double cover π : Ȳ → F6 branched over D1 + σ∞
occuring in the Stein factorisation of ϑ and write π∗(D1 + σ∞) = 2R1 + 2B. Then

π∗(9Γ + 2σ∞)−B =
1

2
π∗(D1 + σ∞)−B ∼ (R1 +B)−B.

If ρ is the section defining the divisor R1 +B we have

H0(Ȳ , π∗(9Γ + 2σ∞)) = π∗H0(F6, 9Γ + 2σ∞)⊕ 〈ρ〉

as a decomposition into ι-eigenspaces. Since the pull back of ρ to Ỹ vanishes along
B, E and C ′ it defines an anti-invariant element of b5KXc, which we call z. By the
restriction sequence, z restricts to a non-zero constant section on B.

We claim that R10 = S10 ⊕ z · S5. Computing the dimensions, e.g., using the
Hilbert functions, we see that the dimensions match on both sides. The intersection
of the two subspaces is zero, since by our choice of z, one is invariant and one is
anti-invariant under the action of the involution.

So since z2 is now an invariant section there is a relation of the form z2 −
f10(x1, x2, y, u) in R10. We conclude that we have an injection

S[z]/(z2 − f10) ↪→ R

which has to be an isomorphism because both rings have the same Hilbert function.
In total, the canonical ring of X has the claimed format. �

Corollary 3.15 — A surface X as in Example 3.9 is smoothable.

Proof. Write the canonical ring of X as in Proposition 3.11. Now consider the family
X ⊂ P(1, 1, 2, 3, 5)× A1

t → A1 = B cut out by the equations.

tu− x3
1 + x2y, z

2 − f10(x1, x2, y, u) + tg10

where g is a general homogenous polynomial of degree 10.
Note that the general fibre is a smooth I-surface, as if t 6= 0 we can eliminate the

variable u to get a hypersurface of degree 10 in P(1, 1, 2, 5). When we set t = 0 we
find the equations of our surface X = X0.

Clearly the family is flat over the curve B, because every fibre is a surface, i.e.,
every component of X dominates B. It is also a Q-Gorenstein smoothing because
Kollár’s condition

OX (m)|X0 = ω
[m]
X/B|X0

∼=→ ω
[m]
X0

= OX0(m)

is met; this is equivalent to OX (m) being flat over B by [Kol13]. �
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Ỹ

−1
E−2

C

−5

B

−3

A

η

two blow ups

f contract A+B + C

X

Y

−3

min. elliptic

P1

Figure 2. Construction of an RU surface ( 1
24(1, 4) singularity),

nodal case

Ỹ

−1

E−2

C

−5

B

−3

A

η

two blow ups

f contract A+B + C

X

Y

−3

min. elliptic

P1

Figure 3. Construction of an RU surface ( 1
24(1, 4) singularity), cus-

pidal case

3.C. The case of index n = 5. An example of a T-singular I-surface of type
1
25(1, 14) can be found in [RU17] right after the proof of Thm. 3.2. For the reader’s
convenience we recall here its description, visualized in Figures 2 and 3.

Example 3.16: Let Y be an elliptic surface with pg(Y ) = 2, q(Y ) = 0 such that:

• Y has a (−3)-section A
• all the elliptic fibers are irreducible.

By Lemma 3.8, the surface Y is a double cover π : Y → F6 branched on a smooth
divisor D ∈ |σ∞ + 3σ0|.

Let F1 be a singular fiber and let Q be its singular point: blow up F1 at Q and
then at a point Q1 infinitely near to Q and lying on the strict transform of F1 to

get a surface Ỹ . The strict transform of F1 is a (−5) curve B, the strict transform
of A (that we still denote by A) is a (−3)-curve, the strict transform of the curve
of the first blow up is a (−2)-curve, which we call C, so that A,B,C is a string of
type [3, 5, 2] (note that this is true both for F1 nodal and for F1 cuspidal). Then
the string A,B,C can be blown down to obtain a T-singular surface X of type
1
25(1, 14) with K2

X = 1, pg(X) = 2, q(X) = 0. The pull-back of KX to Ỹ is equal to
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K
Ỹ

+ 3
5A+ 4

5B + 2
5C. It is not hard to check that it is a nef divisor and that A,B

and C are the only curves that have zero intersection with it. So KX is ample and
X is a T-singular surface of type 1

25(1, 14).

Remark 3.17 — Counting parameters as in Remark 3.10, we obtain 28 moduli for
the construction in Example 3.9. Since the closure of the locus of smooth I-surfaces
is irreducible of dimension 28, we conclude that the general surface obtained via
this construction is not smoothable. This confirms the infinitesimal computations of
[RU17], where it is shown that the obstruction space for Q-Gorenstein deformations
is non-zero for these surfaces.

The above remark can be made more precise as follows:

Proposition 3.18 — Let X be a T-singular surface obtained as in Example 3.16
taking as F1 an irreducible fiber of type I1. Then X is not smoothable and such
surfaces give a dense open subset of an irreducible component of M1,3 of dimension
28.

Proof. Assume by contradiction that X is smoothable. Then by Corollary 2.7, X

has an involution that lifts to an involution τ of Ỹ preserving the exceptional curves
A, B and C. In addition, τ maps to itself the exceptional curve E of the second

blow up of Y , since E is the only irreducible (−1)-curve of Ỹ . So τ maps B to itself
and fixes the three distinct points B ∩ A, B ∩ C and B ∩ E. Since B is a smooth
rational curve, τ restricts to the identity on B and therefore the induced involution
τ̄ of Y fixes the singular fiber F1 pointwise. This is impossible since the divisorial
part of the fixed locus of an involution on a smooth surface is a smooth curve.

To show that these surfaces give an open subset of an irreducible component
of the moduli space it is enough to show that every small deformation of such
a surface is equisingular, that is, also contains a T-singularity of the same type.
Assume for contradiction that we have a non locally trivial deformation of such
an X. Then, since every non-trivial deformation of the singularity 1

25(1, 14) has
canonical singularities [HP10, Prop. 2.3], X would deform to a canonical surface
and hence be smoothable — a contradiction. �

Remark 3.19 — Clearly, the construction from Example 3.16 using a nodal fibre
degenerates to the one constructed with a cuspidal fibre. Preliminary computations
suggest that the latter surfaces might be smoothable.

4. The classification: proof of Theorem 1.1 and Corollary 1.2

Throughout this section X is a T-singular I-surface with a singularity of type
1
dn2 (1, dna− 1); we use freely the notation of §2.A.

Lemma 4.1 — The surface Y is properly elliptic with pg(Y ) = 2, q(Y ) = 0 and
there are the following cases to consider:

r − d n K2
Ỹ

T-singularity T-string

0 2 0 1
4d(1, 2d− 1) [4] or [3, 3] or [3, 2 . . . , 3]

1 3 −1 1
18(1, 5) [4, 3, 2]

2 5 −2 1
25(1, 14) [2, 5, 3]
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Proof. Since T-singularities are rational, pg(Y ) = pg(Ỹ ) = pg(X) = 2 and q(Y ) =

q(Ỹ ) = q(X) = 0 (Remark 2.1) and K2
Ỹ

= d − r by (2.3). In addition we have

K2
Y < K2

X = 1 by (2.4), hence K2
Y = 0 and Y is properly elliptic.

By [RU17, Theorem 1.1] we have r − d ≤ 2 and if r − d = 2, then by [RU17,
Theorem 3.2], the singularity must be of type 1

25(1, 14), giving the third row of the
table.

If r − d = 1, then n = 3, K2
Ỹ

= −1 and the T-string is either [5, 2] (the 1
9(1, 2)

singularity) or [4, 2, . . . , 2, 3, 2], where there are d− 2 curves of self-intersection (−2)
between the (−3)-curve and (−4)-curve (the 1

9d(1, 3d − 1) singularities). We show
that the former cannot occur, and the latter is possible only if d = 2, i.e. the chain
is [4, 3, 2] and the singularity is 1

18(1, 5).

Notice that because K2
Ỹ

= −1 and Y is a minimal elliptic surface, the surface Ỹ

contains exactly one (−1)-curve E that we contract to obtain Y . By ampleness of
X, the curve E must intersect the T-string at least twice, and by nefness of KY the
curve E cannot intersect a (−2)-curve.

Let us suppose that the T-string is [5, 2]. Denote by A the (−5)-curve, and by
abuse of notation its image in Y . Then as we have just argued, we have EA ≥ 2.
On the other hand, EA ≤ 3, because otherwise we would have AKY < 0. If AE = 3,
then the curve A in Y has a triple point. On the other hand, we have by adjunction
that AKY = 0, so A must also be contained in a fiber of the elliptic fibration, a
contradiction. If instead AE = 2, then A has a double point and by adjunction
AKY = 1. This means A is a section of the fibration with a double point, which is
impossible.

Now suppose that the T-string is [4, 2, . . . , 2, 3, 2]. Then E cannot intersect the
T-string more than three times, since otherwise one of the curves in the T-string
would become KY -negative. Denote by A and B the curves in the T-string of self-
intersections (−4) and (−3), respectively, and by abuse of notation, their images
in Y . Notice that EA ≤ 2 and EB ≤ 1 because otherwise A or B becomes KY -
negative.

Then we have three possibilities:

1) EA = EB = 1, or
2) EA = 2, EB = 1, or
3) EA = 2, EB = 0.

In case 1), upon contracting E, we see that A becomes a (−3)-curve on Y , so by
adjunction we have KYA = 1. On the other hand, the (−2)-curves in the T-chain
and the curve B become parts of a fiber on Y , so A also intersects an Ik fiber twice
for some k ≥ 1. This forces A to be a multisection. But the canonical bundle
formula together with pg = 2 implies that this is impossible.

In cases 2) and 3), contracting E gives us A2 = 0, so that A is a fiber of type
I1 or II. In case 2), B is a (−2)-curve passing through the singularity of A, which
is impossible. In case 3) if r ≥ 4 the curve A intersects a (−2) curve, which is not
possible.

Finally, for r − d = 0 one has n = 2 and we have listed all the possibilities. �

Remark 4.2 — Note that we have shown in the course of the proof that in the case
n = 3 the minimal elliptic surface Y contains a (−3)-curve.

Lemma 4.3 — If X has index n = 2, then:

(i) the surface Ỹ = Y is minimal;
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(ii) the canonical system |KY | is equal to the pencil |F |, where F is an elliptic
fibre.

Proof. (i) This was part of Lemma 4.1.

(ii) Since pg(Y ) = 2, the canonical bundle formula for elliptic surfaces gives |KY | =
|F | +

∑
(mi − 1)Fi, where m1F1, . . .mkFk are the multiple fibers. The exceptional

divisor of the desingularization map Y → X contains a (−n)-curve B for n = 3 or
4. So we have 1 ≤ KYB = B(F +

∑
(mi − 1)Fi) ≤ n− 2 ≤ 2, and we conclude that

there are no multiple fibers and |KY | = |F |. �

Proposition 4.4 — If X has index n = 2, then it is obtained as in Example 3.1.

Proof. Denote by ∆ the exceptional divisor of Y → X; recall that ∆ is a string
of type [4], [3, 3], or [3, 2 . . . , 3] (with 2 occurring k times), according to whether
d = 1, 2 or d = k + 2 > 2. Since (KY + 1

2∆)∆ = 0 and KY = F (cf. Lemma 4.3),
we have F∆ = 2.

Set L := 3F + ∆; one has L2 = 8, LKY = 2 and so χ(L) = 6. We can write
L = KY + (2F + ∆), and 2F + ∆ is nef and big since it is the pull-back of 2KX , so
by Kawamata-Viehweg vanishing h0(L) = χ(L) = 6. Restricting to ∆ and taking
cohomology we see that the image of the map H0(3F + ∆) → H0(O∆(2)) has
dimension 2. We are going to use this fact to show that |L| has no fixed components.
Note that any fixed component of L must be a component of ∆, since |3F | is free. If
∆ is irreducible, then it is not a fixed component since the map H0(L)→ H0(L|∆) is
non-zero. If ∆ is reducible, denote by A1 and A2 the (−3)-curves of ∆ and suppose
that A1 is in the base locus of |L|: then all the (−2)-curves of ∆ are also in the base
locus of |L|, since LΓ = 0 for a (−2)-curve Γ of ∆, and |L| has a base point on A2, so
|L|∆ has dimension ≤ 0, a contradiction. Assume now that d > 2 and a (−2)-curve
of ∆ is a fixed component of |L|: then, as above, all the (−2)-curves of ∆ are fixed
components of |L| and h0(3F +A1 +A2) = h0(L) = 6. Set M = 3F +A1 +A2: we
have χ(M) = 5, so h1(M) = 1. On the other hand, M = KY +2F +A1 +A2 and we
can write 2F +A1 +A2 = (2F + 2

3A1 + 2
3A2) + 1

3A1 + 1
3A2. Since 2F + 2

3A1 + 2
3A2 is

nef and big, we have h1(M) = 0 by Kawamata-Viehweg’s vanishing, a contradiction.
We conclude that |L| has no fixed component.
Now one can argue precisely as in the proof of Lemma 3.8 and prove the following:

• |L| is base point free and defines a 2-to-1 map ϕ : Y → P5, so the image Σ
of ϕ is either a smooth rational scroll of degree 4 or a cone over the rational
normal curve of degree 4;
• ϕ maps the elliptic fibers 2-to-1 to rulings of Σ and maps ∆ to a line meeting

all the rulings, so Σ is isomorphic to F2;
• the curves contracted by ϕ are exactly the (−2)-curves contained in ∆ (if

any).

So X is obtained as in Example 3.1. �

Proof of Theorem 1.1. We have restricted the number of possible singularities in
Lemma 4.1. The fact that the cases of index n = 2 are constructed as in Example
3.1 is proved in Proposition 4.4 which gives the bound d ≤ 32 from Proposition 3.4.

It remains to show that if X has a singularity of type 1
18(1, 5), then X is con-

structed as in Example 3.9, and if X has a singularity of type 1
25(1, 14), then X

is constructed as in Example 3.16. As explained in Lemma 4.1 the corresponding
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T-strings in Ỹ contain a (−3)-curve and we claim that this maps indeed to a (−3)-
curve B in Y . In the former case, this follows from Remark 4.2, while in the latter
case this is [RU17, Theorem 3.2 (A1)]. We know explicitly the possible such pairs
(Y,B) by Lemma 3.8 and thus the T-singularities arise as in the Examples 3.9 and
3.16. �

Proof of Corollary 1.2. Recall that the main component of the moduli space of I-
surfaces is irreducible of dimension 28. We have shown in Remark 3.2 that every
T-singular surface of index 2 is smoothable and in Proposition 3.4 that those of type
1
4(1, 1) depend on 27 parameters, hence give a divisor in the main component. For

type 1
18(1, 5) we argue similarly using Corollary 3.15 and Remark 3.10. The case of

type 1
25(1, 14) was treated in Proposition 3.18. �
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