
ON FINITE TIME BLOW-UP FOR A 3D
DAVEY-STEWARTSON SYSTEM

LUIGI FORCELLA

Abstract. We consider the elliptic-elliptic Davey-Stewartson system in the
three-dimensional Euclidean space, and we give sufficient conditions for the
existence of finite time blow-up solutions in non-isotropic spaces. The proof
is based on some general results on distributions defined via homogeneous
symbols, in conjunction with a convexity argument.

1. Introduction

In this short note, we consider the following initial value problem:

(1.1)
{
i∂tu+ ∆u+ c1|u|αu+ c2E1(|u|2)u = 0

u(0, x) = u0(x) ∈ H1(R3)
,

where (t, x) ∈ [0, T ) × R3, u : [0, T ) × R3 7→ C, c1 and c2 are two positive
parameters, α ∈ (0, 4), and the operator E1 is given in term of the Fourier
symbol σ1(ξ) = ξ2

1
|ξ|2 , with ξ = (ξ1, ξ2, ξ3) ∈ R3:

(1.2) E1f(x) = F−1
(
σ1(·)f̂(·)

)
(x),

where f̂ = Ff denotes the Fourier transform of f , and F−1 stands for the
inverse Fourier transform. The equation (1.1) is called 3D Davey-Stewartson
system. Though it is a single equation, one refers to it as a system for it can
be viewed as a three dimensional extension of the following Davey-Stewartson
system, see [7, 8]:

(1.3)
{
i∂tv + a1∂

2
xxv + ∂2

yyv = a2|v|αv + a3v∂xw

∂2
xxw + a4∂

2
yyw = ∂x(|v|2)

,

where v = v(t, x, y) and w = w(t, x, y), with (t, x, y) ∈ R× R× R, ai, with
i ∈ {1, 2, 3, 4}, are real parameters. According to the signs of the coefficients
a1 and a4, the system (1.3) is classified as: (+,+) elliptic-elliptic, (+,−)
elliptic-hyperbolic, (−,+) hyperbolic-elliptic, (−,−) hyperbolic-hyperbolic,
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respectively. This paper concerns the elliptic-elliptic case, namely a1 > 0 and
a4 > 0. See [7,8,12,19,24–26], and references therein for physical insights on
the model. From now on, we omit the space R3, as we work in the 3D case.

Existence of solutions to the Cauchy problem (1.1) in the energy space
H1 was established in [14]. A solution u ∈ C((−T−, T+);H1) conserves the
mass and the energy; specifically, with u(t) = u(t, x), the quantities

M(u(t)) :=
∫
|u(t)|2dx

and

E(u(t)) := 1
2

∫
|∇u(t)|2 − c1

α+ 2

∫
|u(t)|α+2dx− c2

4

∫
E1(|u(t)|2)|u(t)|2dx

do not depend on time, for any t ∈ (−T−, T+), where T−, T+ ∈ (0,∞] denote
the minimal and maximal time of existence, respectively. In this paper,
we are interested in establishing sufficient conditions leading to formation
of singularities in finite time for solutions to (1.1). In particular we prove
finite time blow-up for non-isotropic initial data. Let us observe that the
equation (1.1) does not enjoy a radial invariance; nonetheless, it satisfies
a cylindrical invariance – in the x1-direction – as the symbol defining E1
suggests. Hence, we consider the non-isotropic space of cylindrical functions
in H1 with a weight in L2. Specifically, by denoting a vector x ∈ R3 as
x = (x1, x2, x3) = (x1, x̄), with x̄ = (x2, x3), we introduce the space

Σ1 =
{
f ∈ H1 : f(x) = f(x1, |x̄|) and f ∈ L2(x2

1dx)
}

;

Σ1 is therefore the sub-space of H1 consisting of functions with radial
invariance with respect to the x̄ coordinate, and with finite variance in the
x1 direction. As the equation (1.1) is not radial-invariant, we cannot rely
on a radiality assumption to prove finite time blow-up. Indeed, to the best
of our knowledge, all the existing literature treating the problem of finite
time blow-up deals with solutions with finite variance, i.e. for initial data
u0 in H1 ∩ L2(|x|2; dx). Therefore, our main result is somehow “minimal”
with respect to the symmetry assumptions on the solutions. Besides the
symmetry hypothesis and the finiteness of the variance, sufficient condition
for blow-up are given by also imposing some bounds on the initial data. In
particular, such conditions are defined in terms of solutions of the elliptic
equation associated to (1.1):

(1.4) −∆Q+Q− c1|Q|αQ− c2E1(|Q|2)Q = 0.

Note that u(t, x) = eitQ(x), where Q solves (1.4), is a solution to (1.1), and
it is called standing wave solution. Solutions Q to (1.4) allow us to introduce
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the concept of Ground State. To this aim, we denote the (conserved along
the flow) Lagrangian S(u) = E(u) + 1

2M(u), and we denote the set G of
Ground States as the set of non-trivial solutions to (1.4) minimizing the
Lagrangian functional:

G = {G 6= 0 solving (1.4) : S(G) ≤ S(Q) for any Q 6= 0 solving (1.4)}.

We refer to [5] for the existence theory of Ground States for (1.1). Let
us observe that a solution Q to (1.4) satisfies P (Q) = 0, where P is the
Pohozaev functional defined by

(1.5) P (f) =
∫
|∇f |2 − 3c1α

2(α+ 2)

∫
|f |α+2dx− 3c2

4

∫
E1(|f |2)|f |2dx.

With all the notions above, we are able to give our main result.

Theorem 1.1. Let α ∈ [4/3, 2] and let u0 ∈ Σ1. Assume that S(u0) < S(G)
where G is a Ground State for (1.4), and that P (u0) < 0. Then the solution
to (1.1) blows-up in finite time, i.e. T− and T+ are both finite.

In order to prove our main result, we rely on some decay properties for
an operator T defined by means of homogeneous symbols of order zero.
Specifically, when we pair, in L2, a function g with Tf , where the supports of
f and g are disjoint with a positive distance δ, then we get a decay of order
δ−3. This fact, jointly with a careful localization of the solutions, allows us
to employ a convexity argument.

For the localization argument, we are inspired by the work of Lu and
Wu, see [17]. In their paper, the authors prove scattering results for the
system (1.1) (via a concentration/compactness and rigidity scheme), and
they state a grow-up result: in particular, they show that provided the initial
datum u0 satisfies only S(u0) < S(G) and P (u0) < 0, if the solution to (1.1)
is global, then there exists a diverging sequence of times {tn}n such that
lim supn→∞ ‖u(tn)‖Ḣ1 = ∞. But they only prove finite time blow-up for
solution in H1 ∩ L2(|x|2dx). Moreover, their result is based on point-wise
type decay estimates for E1. We prove our result by employing much simpler
estimates coming from general properties of operators with homogeneous
symbols, see Proposition 2.1.

We give some remarks.

Remark 1.2. As already mentioned, the fact that E1 does not leave invariant
the set of radial functions prevents us to give a result for radial initial data.
Due to the structure of the symbol σ1 defining E1, see (1.2), we can instead
show the finite time blow-up result for cylindrical solutions. Therefore, our
hypothesis is not purely artificial, and as pointed-out in [5, Remark 3.8], it is
also linked to the possible existence of Ground States with such a symmetry.
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Remark 1.3. We cover the range of non-linearities α ∈ [4/3, 2]. The lower
bound corresponds to the mass-critical case. The upper bound instead plays
the same role of the limitation α ≤ 4 for radial solutions for the 2D NLS
equation, see Ogawa and Tsutsumi [20].

Remark 1.4. To the best of our knowledge, all the results on formation
of singularities in finite time concern solutions with finite variance, see
[11,12,15–17,27–29].

Remark 1.5. A large amount of works have been devoted to the existence
and dynamics of solutions for Davey-Stewartson systems, both in 2D and
3D: we refer the readers to [5, 6, 12,21–23] and references therein.

2. Preliminary tools

As mentioned in the Introduction, we will employ a convexity argument to
prove our main result. To this aim, we strongly rely on the following general
result, which will enable us treat to the non-local terms – coming from the
presence of non-local non-linearity in the equation – in the virial estimates.

We consider a pseudo-differential operator T defined by means of a symbol
σ(ξ), i.e. Tf = F−1(σf̂), where σ is homogenous of order zero, namely
σ(λξ) = σ(ξ) for any λ > 0, and it is smooth in R3

ξ \ {0}. Hereafter, 〈·, ·〉
will denote the L2 pairing. We have the following.

Proposition 2.1. Let T defined as above. Let f, g ∈ L1 have disjoint
supports, and suppose that γ := distance(supp (f), supp (g)) > 0. Then

(2.1) |〈Tf, g〉| . γ−3‖g‖L1‖f‖L1 .

Observe that the symbol σ1 defining E1 fulfils the hypothesis of Proposition
2.1. Moreover, the operator E2

1 defined by means of the symbol σ2
1(ξ) = ξ4

1
|ξ|4

fall down into the same scenario. Therefore we have the following corollary
for functions supported on disjoint cylinders.

Corollary 2.2. Let f, g ∈ L1 such that supp (f) ⊂ {|x̄| ≥ γ2R} and
supp (g) ⊂ {|x̄| ≤ γ1R}, where γ1 and γ2 are positive parameters satisfying
γ2 − γ1 > 0. Then, for k = 1, 2,

(2.2) |〈Ek1f, g〉| . R−3‖g‖L1‖f‖L1 .

The proof of the above result was given by Bellazzini and the author in
[3], where we studied another NLS-type equation with non-local nonlinearity.
As we would like to keep this note self-contained, we report the proof for
sake of completeness.
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Proof. Under the structural hypothesis for T , we have by [13, Proposition
2.4.7] that there exist a smooth function Ω on the two-dimensional sphere
{z ∈ R3 : |z| = 1}, and a complex number c such that

(F−1σ)(x) = 1
|x|3

Ω
(
x

|x|

)
+ cδ(x),

where δ is the Dirac delta. Hence,

〈Tf, g〉 =
∫ ( 1
| · |3

Ω
( ·
| · |

)
∗ f
)

(x)ḡ(x)dx+ c

∫
(δ ∗ f) (x)ḡ(x)dx

=
∫∫ 1
|x− y|3

Ω
(
x− y
|x− y|

)
f(y)ḡ(x)dydx,

where the term with the Dirac delta disappears due to the disjointness of
the supports. Therefore, as |x− y| ≥ |x̄| − |ȳ| ≥ (γ2 − γ1)R, we have

|〈Tf, g〉| . R−3‖Ω‖L∞‖f‖L1‖g‖L1 . R−3‖f‖L1‖g‖L1 .

�

Remark 2.3. The general result above allows to avoid point-wise estimates
as in [2, 3, 10,17], hence simplifying the proofs in the latter papers.

The next two Propositions are contained in [17], in particular see [17,
Corollary 2.7] and [17, Corollary 2.9], respectively. They are consequences of
the variational characterization of the Ground States.
Proposition 2.4. Let u0 be an initial datum satisfying S(u0) < S(G) and
P (u0) < 0. Then the corresponding solution u(t) to (1.1) satisfies the same
bounds, namely S(u(t)) < S(G) and P (u(t)) < 0 for any t ∈ (−T−, T+).
Proposition 2.5. Let u0 be an initial datum satisfying S(u0) < S(G) and
P (u0) < 0. Then there exist ε > 0 and ε̄ > 0 such that the corresponding so-
lution u(t) to (1.1) satisfies S(u(t)) < (1−ε)S(G) and P (u(t)) < −ε̄‖u(t)‖2

Ḣ1

for any t ∈ (−T−, T+).
In particular, the latter Proposition will be crucial when employing a con-
vexity argument to show the blow-up.

We conclude this section by reporting the following embedding. For any
cylindrical function f ∈ H1 we have

(2.3) ‖f‖4L4(|x̄|&R) . R
−1‖f‖2

Ḣ1 .

A proof can be found in [3], and it is based on the Strauss embedding for
radial functions.
Remark 2.6. It is worth mentioning that Ek1 , k = 1, 2, are L2 7→ L2

continuous operators. The latter property will be often used during the rest
of the paper, and it easily follows by the boundedness of their symbols. More
in general, they are Lp 7→ Lp continuous for any p ∈ (1,∞), see [5].
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3. Proof of main result

In this Section, we give a proof of Theorem 1.1. It will be done by using
the technical tools introduced in the previous Section, and it relies on a virial
argument, together with appropriate localizations of the solution, which
enable us to use Proposition 2.1 to control various non-local terms.

Given a smooth, non-negative, real function ρ = ρ(x) defined on R3, we
define, for a solution u = u(t, x) to (1.1) (we omit the space-time dependence),
the time depending function

Vρ(t) =
∫
ρ|u|2dx.

Usual computations, which may be justified by a regularization argument,
yield

(3.1) d

dt
Vρ(t) = 2 Im

{∫
∇ρ · ∇uūdx

}
,

where we used the equation satisfied by u. By using (3.1) and again the
equation solved by u, we have

d2

dt2
Vρ(t) = 4 Re

∫ (
∇2ρ · ∇u

)
· ∇ūdx−

∫
∆2ρ|u|2dx

− 2c1α

α+ 2

∫
∆ρ|u|α+2dx+ 2c2

∫
∇ρ · ∇

(
E1(|u|2)

)
|u|2dx.

We precisely chose a function ρ to fit with our symmetry assumptions on the
solution. We consider ψ : R2 → R a smooth radial function, and by setting
ρ(x) = x2

1 + ψR(x̄), with the resclaling ψR = R2ψ(|x̄|2/R2), since u(t) ∈ Σ1
for all t ∈ (−T−, T+), we have

d2

dt2
Vx2

1+ψR(x̄)(t) = −
∫

∆2
x̄ψR(x̄)|u|2dx+ 4

∫
ψ′′R(r)|∇x̄u|2dx

+ 8‖∂x1u‖2L2 −
2c1α

α+ 2

∫
(2 + ∆x̄ψR)|u|α+2dx

+ 2c2

∫
∇x̄ψR · ∇x̄

(
E1(|u|2)

)
|u|2dx

+ 4c2

∫
x1∂x1

(
E1(|u|2)

)
|u|2dx.

The subscript x̄ above and in what follows means that the differential operator
is taken only with respect the x̄ variables. By straightforward computations,
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we get
d2

dt2
Vx2

1+ψR(x̄)(t) = 8
(∫
|∇u|2 − 3c1α

2(α+ 2)

∫
|u|α+2dx

)
(3.2)

−
∫

∆2
x̄ψR|u|2dx− 4

∫
(2− ψ′′R(r))|∇x̄u|2dx(3.3)

+ 2c1α

α+ 2

∫
(4−∆x̄ψR)|u|α+2dx(3.4)

+ 2c2

∫
∇x̄ψR · ∇x̄

(
E1(|u|2)

)
|u|2dx(3.5)

+ 4c2

∫
x1∂x1

(
E1(|u|2)

)
|u|2dx.(3.6)

By following Martel [18], we define

ψ(r) = r −
∫ r

0
(r − s)η(s)ds,

where the real regular function η : R 7→ R+ ∪ {0} satisfies: supp η ⊂ (1, 2)
and is normalized to one, namely

∫
R η(s)ds = 1. Observe that we have

(3.3) ≤ R−2‖∆2
x̄ψ‖L∞x̄ M = oR(1), while the local term (3.4) can be estimated

as in Martel’s paper [18] (see also [1, 4, 9] for similar results on different
dispersive models). Precisely,

(3.4) ≤ oR(1) + oR(1)‖∇u‖αL2 ,

hence, by using the Young’s inequality we have
(3.7) (3.3) + (3.4) ≤ oR(1) + oR(1)‖∇u‖αL2 . oR(1) + oR(1)‖∇u‖2L2 .

Hereafter, we use the small o notation to refer to negative powers of R.
Our main task is to show that we can handle in a suitable way also the
non-local contribution (3.5)+(3.6). By its definition, we get that the function
ψR fulfils

∇x̄ψR(x) =
{

2x̄ for |x̄|2 ≤ R2

0 for |x̄|2 > 2R2 ,

hence supp ∇x̄ψR is contained in the cylinder of radius
√

2R. We split the
function u by cutting-off it in the interior and in the exterior of a cylinder of
radius 4R, namely we write u = u≤4R + u≥4R where

u≥4R = 1{|x̄|≤4R}u and u≥4R = 1{|x̄|≥4R}u.

Since supp ∇ψR ∩ supp u≥4R = ∅ we get∫
∇x̄ψR · ∇x̄

(
E1(|u|2)

)
|u|2dx

=
∫
∇x̄ψR · ∇x̄

(
E1(|u≥4R|2)

)
|u≤4R|2dx(3.8)

+
∫
∇x̄ψR · ∇x̄

(
E1(|u≤4R|2)

)
|u≤4R|2dx.(3.9)
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By integration by parts,

(3.8) = −
∫

∆x̄ψRE1(|u≥4R|2)|u≤4R|2dx(3.10)

−
∫
∇x̄ψR · ∇x̄

(
|u≤4R|2

)
E1(|u≥4R|2)dx;(3.11)

by noting that ‖∆x̄ψR‖L∞ . 1 and by using (2.2), we obtain

(3.12) (3.10) . R−3‖u≥4R‖2L2‖u≤4R‖2L2 . R−3M2 . R−3.

Similarly, this time by using that |∇x̄ψR| . R on its support, (2.2) and the
Cauchy-Schwarz’s inequality give

(3.13) (3.11) . R−2‖u≥4R‖2L2‖u≤4R‖L2‖u≤4R‖Ḣ1 . R−2‖u(t)‖Ḣ1 .

By (3.10), (3.11), (3.12), (3.13) we get, with the Young’s inequality,

(3.14) (3.8) . R−2‖u‖Ḣ1 +R−3 . oR(1) + oR(1)‖u(t)‖2
Ḣ1 .

We move to the estimate for (3.9). By setting ψ̃R = ψR − |x̄|2 we rewrite

(3.9) =
∫
∇x̄ψ̃R · ∇x̄

(
E1(|u≤4R|2)

)
|u≤4R|2dx(3.15)

+ 2
∫
x̄ · ∇x̄

(
E1(|u≤4R|2)

)
|u≤4R|2dx.(3.16)

We further localize the function u≤4R by splitting u≤4R = u≤R/10 +uR/10<4R,
where

u≤R/10 = 1{|x̄|≤R/10}u and uR/10<4R = 1{R/10≤|x̄|≤4R}u.

Note that supp ∇x̄ψ̃R ⊂ {|x̄| ≥ R}, hence supp ∇x̄ψ̃R ∩ {|x̄| ≤ R/10} = ∅.
Therefore we can write

R.H.S.(3.15) =
∫
∇x̄ψ̃R · ∇x̄

(
E1(|u≤R/10|2)

)
|uR/10<4R|2dx(3.17)

+
∫
∇x̄ψ̃R · ∇x̄

(
E1(|uR/10<4R|2)

)
|uR/10<4R|2dx.(3.18)

After an integration by parts, the R.H.S. of (3.17) is controlled as (3.8) (see
(3.14)):

R.H.S.(3.17) . oR(1) + oR(1)‖u(t)‖2
Ḣ1 .

It remains to prove a suitable estimate for the term (3.18). By setting
g = |uR/10<4R|2 and by making use of the Plancherel identity we get, with
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ξ̄ = (ξ2, ξ3),

(3.18) =
∫∫

ĝ(η)∇̂x̄ρ̃R(ξ − η) ·
(
ξj ξ̄

|ξ|
+ ηj η̄

|η|
− ηj η̄

|η|

)
ξj
|ξ|
ĝ(ξ) dη dξ

= −1
2

∫
∆x̄ψ̃R|E1g(x)|2dx(3.19)

+
∫∫

ĝ(η)∇̂x̄ψ̃R(ξ − η) ·
(
ξ1ξ̄

|ξ|
− η1η̄

|η|

)
ξ1
|ξ|
ĝ(ξ)dηdξ.(3.20)

As ‖∆x̄ψ̃R‖L∞ . 1, the L2 7→ L2 continuity of E1 gives:

(3.21) (3.19) . ‖u‖4L4(|x̄|≥R/10) . R
−1‖u‖2

Ḣ1 ,

where we used (2.3) in the final step. As for the term (3.20), we explicitly
compute

(3.20) =
∫
ξ1
|ξ|
ĝ(ξ)

∫
ĝ(ξ1, η̄) ̂̃ψR(ξ̄ − η̄)(ξ̄ − η̄) ·

ξ1ξ̄

|ξ|
− η1η̄√

ξ2
1 + |η̄|2

 dη̄dξ.
Note that by the mean value theorem,

∣∣∣∣ ξ1ξ̄|ξ| − η1η̄√
ξ2
1+|η̄|2

∣∣∣∣ . |ξ̄ − η̄|, hence
(3.20) .

∫
|ĝ(ξ)|

∫
|ĝ(ξ1, η̄)|

∣∣∣∣ ̂̃ψR(ξ̄ − η̄)
∣∣∣∣ |ξ̄ − η̄|2dη̄dξ

≤
∫
|ĝ(ξ)|

∫
|ĝ(ξ1, η̄)|

∣∣∣∆̂x̄ψR(ξ̄ − η̄)
∣∣∣ dη̄dξ

+
∫
|ĝ(ξ)|

∫
|ĝ(ξ1, η̄)|

∣∣∣∆̂x̄|x̄|2(ξ̄ − η̄)
∣∣∣ dη̄dξ

=
∫
|ĝ(ξ)|

(
|ĝ(ξ1, ·)| ∗

∣∣∣∆̂x̄ψR
∣∣∣) (ξ̄)dξ(3.22)

+ 4
∫
|ĝ(ξ)|2dξ.(3.23)

By the definition of the functions g and uR/10<4R, and by the isometry
property of the Fourier transform, we easily bound, again by using (2.3),

(3.24) (3.23) . ‖u‖4L4(|x̄|≥R/10) . R
−1‖u‖2

Ḣ1 .

As for the remaining term (3.22), we have:

(3.25)

(3.22) ≤
∫
R
‖ĝ(ξ1, ·)‖L2(R2

ξ̄
)

∥∥∥|ĝ(ξ1, ·)| ∗
∣∣∣∆̂x̄ψR

∣∣∣∥∥∥
L2(R2

ξ̄
)
dξ1

≤ ‖∆̂x̄ψR‖L1(R2
ξ̄
)

∫
R
‖ĝ(ξ1, ·)‖2L2(R2

ξ̄
)dξ1 = ‖∆̂x̄ψR‖L1(R2

ξ̄
)‖ĝ‖2L2

= ‖∆̂x̄ψR‖L1(R2
ξ̄
)‖g‖2L2 . ‖u‖4L4(|x̄|≥R/10) . R

−1‖u‖2
Ḣ1 .
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where in order we used: the Cauchy-Schwarz’s inequality and the Young’s
inequality for convolutions with respect to ξ̄, the Cauchy-Schwarz’s inequality
with respect to ξ1, the Fourier L2 isometry property, and the fact that ∆̂x̄ψR
is integrable (with bound independent of R), as it is the Fourier transform
of a compactly supported regular function. Again, the norm of u outside a
cylinder is estimated by (2.3). By glueing the estimates above, we see that
the non-local term (3.5) + (3.6) is estimated by

(3.5) + (3.6) ≤ oR(1) + oR(1)‖u‖2
Ḣ1

+ 4c2

(∫
x̄ · ∇x̄

(
E1(|u≤4R|2)

)
|u≤4R|2dx+

∫
x1∂x1

(
E1(|u|2)

)
|u|2dx

)
.

A straightforward computation gives∫
x̄ · ∇x̄

(
E1(|u≤4R|2)

)
|u≤4R|2dx+

∫
x1∂x1

(
E1(|u|2)

)
|u|2dx

=
∫
x · ∇

(
E1(|u≤4R|2)

)
|u≤4R|2dx+

∫
x1∂x1

(
E1(|u≤4R|2)

)
|u≥4R|2dx

+
∫
x1∂x1

(
E1(|u≥4R|2)

)
|u≤4R|2dx+

∫
x1∂x1

(
E1(|u≥4R|2)

)
|u≥4R|2dx

= −3
2

∫ (
E1(|u≤4R|2)

)
|u≤4R|2dx+

∫
x1∂x1

(
E1(|u≤4R|2)

)
|u≥4R|2dx

+
∫
x1∂x1

(
E1(|u≥4R|2)

)
|u≤4R|2dx+

∫
x1∂x1

(
E1(|u≥4R|2)

)
|u≥4R|2dx,

where we used the identity 2
∫
x·∇ (E1(f)) fdx = −3

∫
E1(f)fdx, see [5]. We

estimate now the four terms above. By using twice the Plancherel theorem,
we can compute∫

x1∂x1

(
E1(|u≥4R|2)

)
|u≥4R|2dx

= −1
2

∫
E1(|u≥4R|2)|u≥4R|2dx(3.26)

− 1
2

∫
ξ1∂ξ1

(
ξ2

1
|ξ|2

)
̂|u≥4R|2 ̂|u≥4R|2dξ,(3.27)

while, by similar computations, once passed in the frequency space, we get∫
x1∂x1

(
E1(|u≤4R|2)

)
|u≥4R|2dx+

∫
x1∂x1

(
E1(|u≥4R|2)

)
|u≤4R|2dx

= −
∫ (

E1(|u≤4R|2)
)
|u≥4R|2dx(3.28)

−
∫
ξ1

(
∂ξ1

ξ2
1
|ξ|2

)
̂|u≤4R|2 ̂|u≥4R|2dξ.(3.29)
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We explicitly write ξ1∂ξ1

(
ξ2
1
|ξ|2
)
and we observe that it is bounded:

(3.30) ξ1∂ξ1

(
ξ2

1
|ξ|2

)
= 2ξ2

1(ξ2
2 + ξ2

3)
|ξ|4

= 2ξ2
1
|ξ|2
− 2ξ4

1
|ξ|4
≤ 4.

By Remark 2.6, the boundedness of the above Fourier symbol implies an
L2 7→ L2 continuity, hence (3.26) + (3.27) is simply estimated, jointly with
(2.3), by

(3.26) + (3.27) . ‖u≥4R‖4L4 . R−1‖u‖2
Ḣ1 .

We are left with (3.28) + (3.29). First of all we note by (3.30) that, up to
constants, ξ1∂ξ1

(
ξ2
1
|ξ|2
)
is the sum of symbols defining the pseudo-differential

operators E1 and E2
1 . This in turn implies that (3.28) + (3.29) can be

rewritten as

−3
∫ (

E1(|u≤4R|2)
)
|u≥4R|2dx+ 2

∫ (
E2

1(|u≤4R|2)
)
|u≥4R|2dx.

Again by splitting u≤4R = u≤R/10 + uR/10<4R we decompose∫ (
E1(|u≤4R|2)

)
|u≥4R|2dx =

∫ (
E1(|uR/10<4R|2)

)
|u≥4R|2dx

+
∫ (

E1(|u≤R/10|2)
)
|u≥4R|2dx,

and by using the Cauchy-Schwarz’s inequality, the L2 7→ L2 continuity of E1,
and (2.3), we obtain

(3.31)
∫
E1(|uR/10<4R|2)|u≥4R|2dx . ‖u‖4L4(|x̄|≥R/10) . R

−1‖u‖2
Ḣ1 .

By using (2.2) we instead give the bound∫
E1(|u≤R/10|2)|u≥4R|2dx . R−3‖u≤R/10‖2L2‖u≥4R‖2L2 . R−3.

With the same decomposition of the function u≤4R, we separate the term
defined by E2

1 as∫
E2

1(|u≤4R|2)|u≥4R|2dx =
∫
E2

1(|u≤R/10|2)|u≥4R|2dx

+
∫
E2

1(|uR/10<4R|2)|u≥4R|2dx;

then, similarly to (3.31), we have∫ (
E2

1(|uR/10<4R|2)
)
|u≥4R|2dx . R−1‖u‖2

Ḣ1 ,
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while, by using (2.2), we can control∫
E2

1(|u≤R/10|2)|u≥4R|2dx . R−3‖u≤R/10‖2L2‖u≥4R‖2L2 . R−3.

The final term to deal with is −3
∫ (
E1(|u≤4R|2)

)
|u≤4R|2dx. By adding and

subtracting |u|2 to |u≤4R|2, we can fall back into the same localized objects
as in the above discussions, hence we get

(3.32)
−3

2

∫ (
E1(|u≤4R|2)

)
|u≤4R|2dx = −3

2

∫
E1(|u|2)|u|2dx

+ oR(1) + oR(1)‖u‖2
Ḣ1 .

At this point, by collecting the above estimates, we end-up with

(3.33) (3.5) + (3.6) ≤ oR(1) + oR(1)‖u‖2
Ḣ1 − 6c2

∫
E1(|u|2)|u|2dx.

We can now summarize all the previous contributions towards the conclusion
of the proof. From (3.2),(3.3),(3.4),(3.5), and (3.6), coupled with (3.7) and
(3.33), and by recalling the definition of P , see (1.5), we have

d2

dt2
Vx2

1+ψR(x̄)(t) ≤ 8
(∫
|∇u(t)|2dx− 3c1α

2(α+ 2)

∫
|u(t)|α+2dx

)
− 6c2

∫
E1(|u(t)|2)|u(t)|2dx+ oR(1) + oR(1)‖u(t)‖2

Ḣ1

= 8P (u(t)) + oR(1) + oR(1)‖u(t)‖2
Ḣ1 .

Note that from Proposition 2.4 and the Sobolev embedding, it can be claimed
that inf(−T−,T+) ‖u(t)‖Ḣ1 ≥ β > 0: otherwise, by contradiction, along a
sequence of times {tn} ⊂ (−T−, T+) we would have that P (u(tn))→ 0. Thus,
provided we chose R� 1, from the estimates above and Proposition 2.5, we
get that d2

dt2Vx2
1+ψR(x̄)(t) . −1. A convexity argument concludes the proof.
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