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Abstract. We investigate the long time dynamics of the nonlinear Schrödinger equation (NLS) with

combined powers on the waveguide manifold Rd ×T. Different from the previously studied NLS-models

with single power on the waveguide manifolds, where the non-scale-invariance is mainly due to the mixed
nature of the underlying domain, the non-scale-invariance of the present model is both geometrical and

structural. By considering different combinations of the nonlinearities, we establish both qualitative and

quantitative properties of the soliton, scattering and blow-up solutions. As one of the main novelties of
the paper compared to the previous results for the NLS with single power, we particularly construct two

different rescaled families of variational problems, which leads to an NLS with single power in different

limiting profiles respectively, to establish the periodic dependence results.
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1. Introduction

1.1. Background and motivation. In this paper, we consider the nonlinear Schrödinger equation
(NLS)

(i∂t + ∆x,y)u = µ|u|pu− |u|qu(1.1)

and its corresponding stationary equation

−∆x,yu+ ωu = −µ|u|pu+ |u|qu(1.2)

on the waveguide manifold Rdx × Ty with µ ∈ {−1, 1}, p, q ∈ ( 4
d ,

4
d−1 ) and p < q, where T = Ty is

the 2π-periodic torus. The NLS arises as a fundamental model in numerous physical scenarios such as
the Bose-Einstein condensates and nonlinear optics. For detailed physical background on (1.1), see e.g.
[38, 39, 25] and the references therein.

Because of its close connection to many mathematical areas, the NLS has also attracted much attention
from the mathematical community in recent years. Different from the classical references, where people
mainly focused on the NLS-models posed either on an infinite domain (such as the Euclidean space Rd)
or on a bounded domain with suitable boundary conditions (e.g. the periodic or Dirichlet boundary
conditions), we study in this paper the NLS occupying the mixed semi-periodic domain Rd × T, the
so-called waveguide manifold. The main interest in studying such models on domains of mixed type is
twofold: On the one hand, these models are of physical importance since they arise naturally in actual
physical applications, where one or more confinements are applied in order to guide the Schrödinger wave
to propagate in a designed way1. On the other hand, the domain Rd × T, or more generally Rd × Tm,
can be seen as an interpolation between the infinite Euclidean space and a compact torus, thus it is
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an interesting question whether properties of the Schrödinger wave on the sole domains could also be
inherited to the waveguide manifolds.

Recently, there has been a number of papers devoting to the study for NLS on waveguide manifolds,
see e.g. [43, 44, 42, 23, 22, 11, 12, 14, 48, 47, 46, 29, 31, 34, 21, 33, 32]. It is worth pointing out that only
models with single nonlinearity on waveguide were studied in the previously mentioned papers. In many
actual physical experiments, however, the NLS-models with combined powers were indeed used which
serve as a correction for the theoretically preset models. As one of the most famous examples, the cubic-
quintic NLS-model, which corrects the focusing cubic NLS where the predicted collapse phenomenon does
not happen in actual experiments, plays a fundamental role in the study of nonlinear optics. Generalizing
the cubic and quintic nonlinearities to nonlinearities of arbitrary order leads to the study of (1.1). For
the readers’ interest, we refer e.g. to [41, 13, 27, 10, 8, 37, 26, 7, 30, 35, 1] for some recent studies on the
NLS with combined powers.

Back to our study, we restrict ourselves in this paper to the so-called intercritical (in other word, strictly
larger than mass-critical and smaller than energy-critical) regime p, q ∈ ( 4

d ,
4
d−1 ), where the nonlinear

effects between the particles could either become weaker and weaker as time goes by and scattering of a
solution (i.e. a solution becomes asymptotically linear in the sense of (1.7)) might take place, or on the
contrary become stronger and stronger which dominate the linear dispersive effects and consequently lead
to a possible collapse of the particles. We consider the case where the nonlinearity of higher order q is
focusing, and the lower power of order p can be tuned to be either focusing or defocusing. For simplicity,
we consider the case where the prefactor of the q-power is −1 and the one of the p-power is chosen from
the set {±1}.

1.2. Main results. We now state the main results of this paper. As our first concern, we shall investigate
the existence of the soliton solutions which solve the stationary NLS (1.2), since they might be the only
observable quantities in actual physical experiments. From a mathematical point of view, the solitons
can also be seen as a balance point between the linear and nonlinear effects and thus can be used to
characterize a sharp threshold bifurcating the scattering and blow-up solutions, see Theorem 1.4 and
Theorem 1.9 below for corresponding rigourous statements.

Mathematically, it is nowadays a standard routine to solve the stationary NLS (1.2) by appealing to
suitable variational methods, namely, one formulates suitable variational problems and looks for optimiz-
ers of the corresponding energy functionals on either a Nehari mainifold or in a Sobolev space with given
normalized mass. Using the Lagrange multiplier theorem one then immediately infers that those mini-
mizers will also be solving (1.2). In the context of the waveguide setting, however, the standard methods
can not be directly applied in a straightforward way due to the non-scale-invariance of the torus. For
NLS-models with single focusing powers, this issue was solved by the second author in a series of papers
[29, 31, 34, 33] by introducing the so-called semivirial-vanishing geometry. Following the same lines in
the previous papers, we adapt the framework of the semivirial-vanishing geometry to the present setting,
in order to derive the existence and periodic dependence results of the solitons solutions of the NLS (1.2)
with combined powers.

Before introducing the main results concerning the soliton solutions, several variational quantities are
defined in order. Firstly, the mass and energy are defined in the standard way as follows:

M(u) = ‖u‖2L2(Rd×T), E(u) =
1

2
‖∇x,yu‖2L2(Rd×T) +

µ

p+ 2
‖u‖p+2

Lp+2(Rd×T)
− 1

q + 2
‖u‖q+2

Lq+2(Rd×T)
.

For ω > 0 define the action energy function Sω(u) by

Sω(u) = E(u) +
ω

2
M(u).

We will also make use of the so-called semivirial functional

Q(u) = ‖∇xu‖2L2(Rd×T) +
µpd

2(p+ 2)
‖u‖p+2

Lp+2(Rd×T)
− qd

2(q + 2)
‖u‖q+2

Lq+2(Rd×T)
.

Due to their different geometric nature, we shall define two different variational problems for µ = ∓1
respectively. More precisely, we define the variational problems mc and γω by

mc := inf{E(u) : M(u) = c,Q(u) = 0},
γω := inf{Sω(u) : Q(u) = 0}.

Our first main result is concerned with the existence of ground states for (1.2) and reads as follows:
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Theorem 1.1 (Existence of ground states). Let d ≥ 1 and 4
d < p < q < 4

d−1 . Then the following
statements hold true:

(i) Let µ = −1. Then for any c ∈ (0,∞) the variational problem mc possesses an optimizer uc which
also solves (1.2) with some ω = ωc > 0.

(ii) Let µ = 1. Then for any ω ∈ (0,∞) the variational problem γω possesses an optimizer uω which
also solves (1.2) with the given ω.

We shall follow the same lines in [29] to prove Theorem 1.1 (i), where we replace the Liouville’s theorem
applied in [29] by the one deduced in [28] that also works in the setting of combined powers. For Theorem
1.1 (ii), we point out that solving a variational problem involving the action energy functional is in general
much easier in comparison to looking for normalized ground states (which is the case in Theorem 1.1 (i))
due to the presence of the frequency parameter ω. However, in the setting of waveguide manifold, it is a
priori unclear whether the Lagrange multiplier equation is elliptic since the partial Laplacians −∆x and
−∂2

y might have different signs, and we note that the ellipticity of the total Laplacian is necessary for the
proof of the Pohozaev’s identity since certain elliptic regularity will be invoked in the proof. We then
appeal to the mountain pass geometry on a suitable Nehari manifold in order to solve this problem. For
details, we refer to Subsection 2.6 below.

Another interesting problem is the periodic dependence of the soliton solutions, which is formulated
as follows: notice that by the boundedness of a torus we may assume that (1.1) and (1.2) are constant
along the periodic direction. In this case the solitons, for example, will automatically reduce to the ones
on Rd. As a natural question, we may ask whether those solitons deduced in Theorem 1.1 coincide with
the ones on Rd or not. We refer this kind of questions to as the periodic dependence problems of the
solitons. Such problems were firstly studied by Terracini, Tzvetkov and Visciglia [42] where the NLS on
a generalized product space with a single mass-subcritical2 nonlinearity was studied. By combining the
rescaled variational problems introduced in [42] and the framework of the semivirial-vanishing geometry,
similar periodic dependence results for the focusing NLS with at least mass-critical nonlinearity have
been recently established by the second author, see [29, 31, 33].

We now state the periodic dependence of the ground state solutions deduced in Theorem 1.1. To

formulate the main result we shall still introduce some necessary notations. Let M̂(u), Ê(u), Q̂(u), Ŝω(u)
be the quantities defined by (1.18), (1.19) and (1.23). Define also the variational problems

m̂c := inf{Ê(u) : u ∈ H1(Rd × T), M̂(u) = c, Q̂(u) = 0},

γ̂ω := inf{Ŝω(u) : u ∈ H1(Rd × T), Q̂(u) = 0}.
The second main result about the periodic dependence of the ground state solutions given in Theorem
1.1 is stated as follows:

Theorem 1.2 (Periodic dependence of the ground states). Let d ≥ 1 and 4
d < p < q < 4

d−1 .

(i) Let additionally µ = −1. Then there exist 0 < c∗ ≤ c∗ <∞ such that
– For all c ∈ (0, c∗) we have mc < 2πm̂(2π)−1c and any minimizer uc of mc satisfies ∂yuc 6= 0.
– For all c ∈ (c∗,∞) we have mc = 2πm̂(2π)−1c and any minimizer uc of mc satisfies ∂yuc = 0.

(ii) Let additionally µ = 1. Then there exist 0 < ω∗ ≤ ω∗ <∞ such that
– For all ω ∈ (0, ω∗) we have γω = 2πγ̂ω and any minimizer uω of γω satisfies ∂yuω = 0.
– For all ω ∈ (ω∗,∞) we have γω < 2πγ̂ω and any minimizer uω of γω satisfies ∂yu

ω 6= 0.

In order to prove our results, we follow an approach similar to [42, 29, 31, 33], specifically we shall use
suitable rescaled variational problems to prove Theorem 1.2. New difficulties however arise due to the
presence of the combined powers. More precisely, unlike in [42] and [29, 31, 33], we are unable to establish
the periodic dependence results by using only one single parameterized family of rescaled variational
problems, since certain divergence happens when considering the limiting profile of the parameterized
problems. We will design well-tailored rescaled variational problems, according to the orders of the
nonlinearities, to overcome this problem.

Remark 1.3. We notice that due to the combined powers we are unable to compare the rescaled vari-
ational problem with the unparameterized constant variational problem as in [42, 29, 31, 33], thus it
remains an interesting and also challenging open problem whether the thresholds in Theorem 1.2 (e.g. c∗
and c∗) will coincide or not. 4

2We note that in [42] the exponent of the nonlinearity is mass-subcritical w.r.t. the whole space dimension, while in our

paper the mass-criticality condition is defined only in term of the Euclidean dimension, therefore the mass-critical threshold
exponent in our paper is strictly larger than the one in [42].
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Once the existence of ground states is proved, we have that u(t) = eitũ, where ũ solves (1.2), is a
global, non-scattering solution to the time-dependent equation (1.1). Similar to the single nonlinearity
case, it is worth wondering which conditions on the initial datum ensure existence of solution for all times,
or conversely lead to formation of singularity in finite time.

In next theorem, we establish the existence of blowing-up solutions for (1.1) and the blow-up rate of
such solutions under suitable assumptions. In what follows, and in the rest of the paper, Tmax > 0 and
Tmin > 0 are the forward and backward maximal time of existence, respectively, namely the maximal
time of existence of the solution u(t) is Imax = (−Tmin, Tmax).

Theorem 1.4 (Existence of blow-up solutions). Let d ≥ 2, 4
d < p < q < 4

d−1 and u0 ∈ H1(Rd × T)
satisfy

E(u0) < mM(u0) and Q(u0) < 0

provided µ = −1, or

Sω(u0) < γω and Q(u0) < 0

provided µ = 1 and ω > 0. Assume moreover that the initial datum enjoys the following radiality
assumption on the non-compact direction: u0(x, y) = u0(|x|, y). Then the solution u to (1.1) with u(0) =
u0 blows-up in finite time, i.e., Imax is bounded.

Our strategy classically combines variational estimates and a localization argument in the virial esti-
mates. Nonetheless, due the anisotropy of the underlying domain, the proof is not straightforward as in
the classical Euclidean case, and we make use of a Fourier expansion in the compact direction to carefully
estimate the contribution of the localized potential energy terms jointly with the decay of radial Sobolev
functions.

Remark 1.5. To the best of our knowledge, this paper is the first one dealing with formation of singularity
in finite time without the assumption of finite variance in the context of waveguide manifolds. Indeed, as
in the classical case of a Euclidean domain, for any d ≥ 1, provided u0 ∈ H1(Rd×T)∩L2(Rd×T, |x|2dxdy),
we have from (4.8) the usual identity V ′′|x|2(t) = 8Q < 0, so the Glassey’s convexity argument gives a

finite time blow-up result directly, see [29]. 4

Remark 1.6. In the one-dimensional Euclidean component case (i.e. d = 1), we can not hope to remove
the assumption of finite variance, as otherwise we can not control the remainder in a localized virial
estimate. 4

In light of the results in Theorem 1.4 and previous remarks, it is worth mentioning that if we remove
both the symmetry assumption and the finiteness of the L2(R×T, |x|2dxdy)-norm of the initial datum, we
can prove the so-called grow-up phenomenon, namely we can prove that if the solution is global forward
in time. A rigorous and precise statement is given as follows.

Theorem 1.7 (Grow-up solutions). Under the hypothesis of Theorem 1.4, without any restriction on the
space dimension and without assuming any symmetry, we have the following dichotomy: either u(t) blows-
up in finite time, or the Tmax = +∞ (and similarly for Tmin) and satisfies lim sup

t→+∞
‖∇x,yu‖L2(Rd×T) = +∞.

In order to show Theorem 1.7, we can invoke the results by [19] on intercritical NLS equations posed
on Rd, which rely on the uniform in time control of Q(u(t)) as in Lemma 4.1, virial estimates, and an
almost finite speed of propagation. As the proof is very similar to the purely Euclidean setting, we sketch
the main steps in Appendix B.

A natural question arising after the proof of the existence of blowing-up solutions would be whether one
could describe the blowing-up solutions in a more quantitative way, or in other words whether the rate of
the blow-up could be quantified. The last result concerning solutions with finite time singularity formation
is the following theorem about an upper bound rate. The proof relies on the estimates established to
prove the blow-up results of Theorem 1.4 and a well-known scheme by Merle, Raphaël, and Szeftel [36].

Theorem 1.8 (An upper bound of the blow-up rate). Let the assumptions of Theorem 1.4 be retained.
Then for the blow-up solution u to (1.1) with u(0) = u0 given in Theorem 1.4, we have:

(i) if µ = 1 and ω > 0, then

(1.3)

∫ Tmax

t

(Tmax − τ)‖∇x,yu(τ)‖2L2(Rd×T)dτ ≤ C(Tmax − t)
2q(d−1)

(d−2)q+4 for t→ T−max.
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(ii) if µ = −1, then

(1.4)

∫ Tmax

t

(Tmax − τ)‖∇x,yu(τ)‖2L2(Rd×T)dτ ≤ C(Tmax − t)
2p(d−1)

(d−2)p+4 for t→ T−max.

As a consequence, there exists a time sequence tn → T−max such that

(1.5) ‖∇x,yu(tn)‖L2(Rd×T) ≤ C(Tmax − tn)−
4−p

(d−2)q+4

provided µ = −1, and

(1.6) ‖∇x,yu(tn)‖L2(Rd×T) ≤ C(Tmax − tn)−
4−q

(d−2)p+4

provided µ = 1 and ω > 0. A similar result holds for −Tmin.

At the end of the introductory section, we conclude the analysis concerning the dynamical properties
of solutions to (1.1) by considering global solutions, and in particular scattering solutions. As written
above, the standing wave u(t) = eitũ is a global non-scattering solution, in the sense that it is not decaying
in time. It is worth wondering under which conditions on the initial data, solutions to (1.1) are global,
i.e., they exist for every time t ∈ R, and moreover how they behave for large times. Specifically, we will
establish conditions leading to global well-posedness of the Cauchy problem associated to (1.1), and we
will also prove that a solution scatters, namely they behave as a linear Schrödinger wave for large time in
the energy topology, see (1.7) below. The global well-posedness and scattering for small data is classical
and is a consequence of perturbation arguments. The next theorem, by using the ground state solutions
deduced in Theorem 1.1, ensures scattering for large data.

Theorem 1.9 (Large data scattering). Let d ≥ 1, 4
d < p < q < 4

d−1 and u0 ∈ H1(Rd × T) satisfy

E(u0) < mM(u0) and Q(u0) > 0

provided µ = −1, or

Sω(u0) < γω and Q(u0) > 0

provided µ = 1 and ω > 0. Then the solution u to (1.1) with u(0) = u0 is global and scattering in the
sense that there exist φ± ∈ H1(Rd × T) such that

(1.7) lim
t→±∞

‖u(t)− eit∆x,yφ±‖H1(Rd×T) = 0.

In the case of the NLS with single power, the large data scattering result was proved in [29] and [34]
in the cases d < 5 and d ≥ 5, by using the concentration compactness and interaction Morawetz-Dodson-
Murphy methods, respectively. The main reason for such a difference is that the nonlinearity becomes
less regular, or more precisely its derivative is no longer Lipschitz, in higher dimensional spaces d ≥ 5.
We shall notice that one may still derive large data scattering results on higher dimensional Euclidean
spaces Rd by appealing to suitable fractional calculus, see e.g. [45], but so far we don’t know whether
such fractional calculus is also available on product spaces. Alternatively, such difficulties were overcome
by the second author [34] by appealing to the interaction Morawetz inequality recently developed by
Dodson and Murphy [45, 18] which avoids the use of any fractional calculus. At this point, we notice that
different from the variational analysis, the proof for Theorem 1.9 is essentially the same as in [29, 34].
For this reason, we shall present a sketch of the proof of Theorem 1.9 in the case d ≥ 5 based on the
interaction Morawetz inequality in Appendix A.

Remark 1.10. Notice that in the waveguide setting, even by using the interaction Morawetz inequality
we are able to avoid the use of the fractional calculus in the Euclidean space, the fractional derivatives
in the periodic direction is still needed. New ideas were then introduced in the recent paper [34] by the
second author to overcome the additional technical difficulties. 4

The rest of the paper is organized as follows: Sections 2 and 3 are devoted to the proofs of Theorem 1.1
and Theorem 1.2 respectively. In Section 4 we give the proofs for the blow-up results Theorem 1.4 and
Theorem 1.8. In Appendix A we give a sketch for the proof of the large data scattering result Theorem
1.9 in the case d ≥ 5 by using the modern method based on the interaction Morawetz inequality. Finally,
a proof for the grow-up result Theorem 1.7 will be given in Appendix B.

Acknowledgment. Y. Luo was supported by the NSF grant of China (No. 12301301) and the NSF grant of
Guangdong (No. 2024A1515010497). Z. Zhao was supported by the NSF grant of China (No. 12101046,
12271032) and the Beijing Institute of Technology Research Fund Program for Young Scholars.



NLS WITH COMBINED POWERS ON Rd × T 6

1.3. Notations and preliminaries. For simplicity, we ignore in most cases the dependence of the
function spaces on their underlying domains and hide this dependence in their indices. For example
L2
x = L2(Rd), H1

x,y = H1(Rd × T) and so on. However, when the space is involved with time, we still

display the underlying temporal interval such as LptL
q
x(I), L∞t L

2
x,y(R) etc. The norm ‖ · ‖p is defined by

‖ · ‖p := ‖ · ‖Lpx,y .
Next, we define the variational quantities, such as mass and energy etc. that will be frequently used

in the proof of the main results. For u ∈ H1
x,y, define

E(u) :=
1

2
‖∇x,yu‖22 +

µ

p+ 2
‖u‖p+2

p+2 −
1

q + 2
‖u‖q+2

q+2,(1.8)

M(u) := ‖u‖22, Sω(u) :=
ω

2
M(u) + E(u),(1.9)

Q(u) := ‖∇xu‖22 +
µpd

2(p+ 2)
‖u‖p+2

p+2 −
qd

2(q + 2)
‖u‖q+2

q+2,(1.10)

I(u) :=
1

2
‖∂yu‖22 +

(1

2
− 2

pd

)
‖∇xu‖22 +

1

q + 2

(q
p
− 1
)
‖u‖q+2

q+2 = E(u)− 2

pd
Q(u).(1.11)

For λ ∈ [0,∞] (as long as the quantities are well-defined), define

Eλ(u) :=
λ

2
‖∂yu‖22 +

1

2
‖∇xu‖22 +

µλ
p
q−1

p+ 2
‖u‖p+2

p+2 −
1

q + 2
‖u‖q+2

q+2,(1.12)

Eλ(u) :=
λ

2
‖∂yu‖22 +

1

2
‖∇xu‖22 +

µ

p+ 2
‖u‖p+2

p+2 −
λ
q
p−1

q + 2
‖u‖q+2

q+2,(1.13)

S1,λ(u) :=
1

2
M(u) + Eλ(u), Sλ1 (u) :=

1

2
M(u) + Eλ(u),(1.14)

Qλ(u) := ‖∇xu‖22 +
µλ

p
q−1pd

2(p+ 2)
‖u‖p+2

p+2 −
qd

2(q + 2)
‖u‖q+2

q+2,(1.15)

Qλ(u) := ‖∇xu‖22 +
µpd

2(p+ 2)
‖u‖p+2

p+2 −
λ
q
p−1qd

2(q + 2)
‖u‖q+2

q+2,(1.16)

Iλ(u) :=
λ

2
‖∂yu‖22 +

(1

2
− 2

pd

)
‖∇xu‖22 +

1

q + 2

(q
p
− 1
)
‖u‖q+2

q+2.(1.17)

For u ∈ H1
x, define

Ê(u) :=
1

2
‖∇xu‖2L2

x
+

µ

p+ 2
‖u‖p+2

Lp+2
x
− 1

q + 2
‖u‖q+2

Lq+2
x

(1.18)

M̂(u) := ‖u‖2L2
x
, Ŝω(u) := Ê(u) +

ω

2
M̂(u),(1.19)

Î(u) :=
(1

2
− 2

pd

)
‖∇xu‖2L2

x
+

1

q + 2

(q
p
− 1
)
‖u‖q+2

Lq+2
x
,(1.20)

Êλ(u) :=
1

2
‖∇xu‖2L2

x
+
µλ

p
q−1

p+ 2
‖u‖p+2

Lp+2
x
− 1

q + 2
‖u‖q+2

Lq+2
x
,(1.21)

Êλ(u) :=
1

2
‖∇xu‖2L2

x
+

µ

p+ 2
‖u‖p+2

Lp+2
x
− λ

q
p−1

q + 2
‖u‖q+2

Lq+2
x
,(1.22)

Ŝ1,λ(u) :=
1

2
M̂(u) + Êλ(u), Ŝλ1 (u) :=

1

2
M̂(u) + Êλ(u),(1.23)

Q̂λ(u) := ‖∇xu‖2L2
x

+
µλ

p
q−1pd

2(p+ 2)
‖u‖p+2

Lp+2
x
− qd

2(q + 2)
‖u‖q+2

Lq+2
x
,(1.24)

Q̂λ(u) := ‖∇xu‖2L2
x

+
µpd

2(p+ 2)
‖u‖p+2

Lp+2
x
− λ

q
p−1qd

2(q + 2)
‖u‖q+2

Lq+2
x
,(1.25)

Îλ(u) :=
(1

2
− 2

pd

)
‖∇xu‖2L2

x
+
λ
q
p−1

q + 2

(q
p
− 1
)
‖u‖q+2

Lq+2
x
.(1.26)

As convention, the number ∞
p
q−1 is defined as zero. We also define the sets

V (c) := {u ∈ S(c) : Q(u) = 0},(1.27)
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S(c) := {u ∈ H1
x,y : M(u) = c}, Ŝ(c) := {u ∈ H1

x : M̂(u) = c}(1.28)

Vλ(c) := {u ∈ S(c) : Qλ(u) = 0}, V λ(c) := {u ∈ S(c) : Qλ(u) = 0},(1.29)

V̂λ(c) := {u ∈ Ŝ(c) : Q̂λ(u) = 0}, V̂ λ(c) := {u ∈ Ŝ(c) : Q̂λ(u) = 0}.(1.30)

and the variational problems

mc,λ := inf{Eλ(u) : u ∈ Vλ(c)}, mλ
c := inf{Eλ(u) : u ∈ V λ(c)},(1.31)

γ1,λ := inf{S1,λ(u) : u ∈ H1
x,y, Qλ(u) = 0}, γλ1 := inf{Sλ1 (u) : u ∈ H1

x,y, Q
λ(u) = 0},(1.32)

m̂c,λ := inf{Êλ(u) : u ∈ V̂λ(c)}, m̂λ
c := inf{Êλ(u) : u ∈ V̂ λ(c)},(1.33)

γ̂1,λ := inf{Ŝ1,λ(u) : u ∈ H1
x, Q̂λ(u) = 0}, γ̂λ1 := inf{Ŝλ1 (u) : u ∈ H1

x, Q̂
λ(u) = 0}.(1.34)

Finally, for a function u ∈ H1
x,y, the scaling operator u 7→ ut for t ∈ (0,∞) is defined by

ut(x, y) := t
d
2 u(tx, y).(1.35)

The following useful results for the variational problem m̂c,0 are stated in order. For a proof, see e.g.
[9, 24, 3, 2].

Lemma 1.11. The following statements hold true:

(i) For any c > 0 the variational problem m̂c,∞ has an optimizer Pc ∈ Ŝ(c). Moreover, Pc satisfies
the standing wave equation

−∆xPc + ωcPc = |Pc|qPc(1.36)

with some ωc > 0.
(ii) Any solution Pc ∈ H1

x of (1.36) with ωc > 0 is of class W 3,p(Rd) for all p ∈ [2,∞).

(iii) Any solution Pc ∈ H1
x of (1.36) with ωc ≥ 0 satisfies Q̂∞(Pc) = 0.

(iv) The mapping c 7→ m̂c,0 is strictly monotone decreasing and continuous on (0,∞).

2. Existence of normalized ground states: Proof of Theorem 1.1

2.1. Some useful auxiliary lemmas. Before proving Theorem 1.1, we collect firstly some useful aux-
iliary lemmas which will be used throughout the paper.

Lemma 2.1 (Concentration compactness, [42]). Let (un)n be a bounded sequence in H1
x,y. Assume also

that there exists some α ∈ (0, 4
d−1 ) such that

lim inf
n→∞

‖un‖α+2 > 0.(2.1)

Then there exist (xn)n ⊂ Rd and some u ∈ H1
x,y \ {0} such that up to a subsequence

un(x+ xn, y) ⇀ u(x, y) weakly in H1
x,y.(2.2)

Lemma 2.2 (Scale-invariant Gagliardo-Nirenberg inequality on Rd × T, [29]). For α ∈ ( 4
d ,

4
d−1 ) the

following inequality holds for all u ∈ H1
x,y:

‖u‖α+2
α+2 . ‖∇xu‖

αd
2

2 ‖u‖
4−α(d−1)

2
2 (‖u‖

α
2
2 + ‖∂yu‖

α
2
2 )(2.3)

As an immediate consequence of Lemma 2.2, we deduce the following useful properties of a minimizing
sequence of the variational problem mc.

Corollary 2.3. For any c ∈ (0,∞) we have mc ∈ (0,∞). Moreover, there exists a bounded se-
quence (un)n ⊂ V (c) (recall the definition of V (c) in (1.27)) such that mc = E(un) + on(1) and
lim infn→∞ ‖un‖q+2 > 0.

Proof. That mc <∞ follows from V (c) 6= ∅, the latter being deduced from the scaling properties of the
mapping t 7→ Q(ut) given in Lemma 2.4 below. Next, let (un)n ⊂ V (c) be a minimizing sequence such
that E(un) = mc + on(1). Then

∞ > mc + on(1) = E(un) = E(un)− 2

pd
Q(un)

=
1

2
‖∂yun‖22 +

(1

2
− 2

pd

)
‖∇xun‖22 +

(q
p
− 1
) 1

q + 2
‖un‖q+2

q+2.
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Combining q > p > 4/d, which in turn implies min{ 1
2 −

2
pd ,

q
p − 1} > 0, we infer that (un)n is a bounded

sequence in H1
x,y. Now by Lemma 2.2 and the fact that p < q < 4/(d− 1) we deduce

‖∇xun‖22 =
pd

2(p+ 2)
‖un‖p+2

p+2 +
qd

2(q + 2)
‖un‖q+2

q+2

. ‖∇xun‖
pd
2

2 ‖un‖
4−p(d−1)

2
2 (‖un‖

p
2
2 + ‖∂yun‖

p
2
2 )

+ ‖∇xun‖
qd
2

2 ‖un‖
4−q(d−1)

2
2 (‖un‖

q
2
2 + ‖∂yun‖

q
2
2 )

. ‖∇xun‖
pd
2

2 + ‖∇xun‖
qd
2

2 ,

which combining q > p > 4/d implies

lim inf
n→∞

(‖un‖p+2
p+2 + ‖un‖q+2

q+2) ∼ lim inf
n→∞

‖∇xun‖22 > 0.

Using also interpolation we know that there exists some θ ∈ (0, 1) such that

1 . ‖un‖p+2
p+2 + ‖un‖q+2

q+2 . ‖un‖
q+2
q+2 + ‖un‖(p+2)(1−θ)

2 ‖un‖(p+2)θ
q+2

. ‖un‖(p+2)θ
q+2 (1 + ‖un‖(q+2)−(p+2)θ

q+2 ) . ‖un‖(p+2)θ
q+2 .

Thus

lim inf
n→∞

‖un‖q+2 > 0.(2.4)

Summing up, we obtain

mc = lim
n→∞

(1

2
‖∂yun‖22 +

(1

2
− 2

pd

)
‖∇xun‖22 +

(q
p
− 1
) 1

q + 2
‖un‖q+2

q+2

)
& lim inf

n→∞
‖∇xun‖q+2

q+2 & 1,

which completes the proof. �

2.2. Dynamical properties of the mappings t 7→ Q(ut) and c 7→ mc. We state in this subsection
the dynamical properties of the mappings t 7→ Q(ut) and c 7→ mc, which will play a crucial role in the
upcoming proofs.

Lemma 2.4 (Property of the mapping t 7→ Q(ut) ). Let c > 0 and u ∈ S(c). Then the following
statements hold true:

(i) ∂
∂tE(ut) = t−1Q(ut) for all t > 0.

(ii) There exists some t∗ = t∗(u) > 0 such that ut
∗ ∈ V (c).

(iii) We have t∗ < 1 if and only if Q(u) < 0. Moreover, t∗ = 1 if and only if Q(u) = 0.
(iv) Following inequalities hold:

Q(ut)

{
> 0, t ∈ (0, t∗),
< 0, t ∈ (t∗,∞).

(v) E(ut) < E(ut
∗
) for all t > 0 with t 6= t∗.

Proof. (i) follows from direct calculation. Now define y(t) := ∂
∂tE(ut). Then

y(t) = t‖∇xu‖22 −
pd

2(p+ 2)
t
pd
2 −1‖u‖p+2

p+2 −
qd

2(q + 2)
t
qd
2 −1‖u‖q+2

q+2,

y′(t) = ‖∇xu‖22 −
2pd(pd− 2)

4(p+ 2)
t
pd
2 −2‖u‖p+2

p+2 −
2qd(qd− 2)

4(q + 2)
t
qd
2 −2‖u‖q+2

q+2.

Using q > p > 4/d we infer that y′(0) = ‖∇xu‖22 > 0, y′(t) → −∞ as t → ∞ and y′(t) is strictly
monotone decreasing on (0,∞). Thus there exists some t0 > 0 such that y′(t) is positive on (0, t0) and
negative on (t0,∞). Consequently, we conclude that y(t) has a zero at t∗ > t0, y(t) is positive on (0, t∗)
and negative on (t∗,∞). (ii) and (iv) now follow from the fact

y(t) =
∂E(ut)

∂t
=
Q(ut)

t
.

For (iii), assume first Q(u) < 0. Then

0 > Q(u) =
Q(u1)

1
= y(1),
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which is only possible as long as t∗ < 1. Conversely, let t∗ < 1. Then using the fact that y(t) is monotone
decreasing on (t∗,∞) we obtain

Q(u) = y(1) < y(t∗) < 0.

This completes the proof of (iii). To see (v), integration by parts yields

E(ut
∗
) = E(ut) +

∫ t∗

t

y(s) ds.

Then (v) follows from the fact that y(t) is positive on (0, t∗) and y(t) is negative on (t∗,∞). �

Lemma 2.5 (Property of the mapping c 7→ mc). The mapping c 7→ mc is lower semicontinuous and
monotone decreasing on (0,∞).

Proof. Define the functions f and g by

f(a, b, c) := max
t>0
{at2 − bt

pd
2 − ct

qd
2 } =: max

t>0
g(t, a, b, c).

We first infer the continuity of the function f on (0,∞)3. By direct calculation it is easy to verify that
for given a, b, c > 0 there exists a unique t0 ∈ (0,∞) such that ∂tg(t0, a, b, c) = 0 and ∂2

t g(t0, a, b, c) < 0,
hence f(a, b, c) = g(t0, a, b, c). Thus for given (a0, b0, c0) ∈ (0,∞)3, using the implicit function theorem
we may interpret the function f as

f(a, b, c) = g(h(a, b, c), a, b, c)

with some continuous function h for points (a, b, c) lying in a neighborhood of (a0, b0, c0). This in turn
proves the continuity of the function f .

We now show the monotonicity of c 7→ mc. It suffices to show that for any 0 < c1 < c2 <∞ and ε > 0
we have

mc2 ≤ mc1 + ε.

By the definition of mc1 there exists some u1 ∈ V (c1) such that

E(u1) ≤ mc1 +
ε

2
.(2.5)

Let η ∈ C∞c (Rd; [0, 1]) be a cut-off function such that η = 1 for |x| ≤ 1 and η = 0 for |x| ≥ 2. For δ > 0,
define

ũ1,δ(x, y) := η(δx) · u1(x, y).

Using dominated convergence theorem it is easy to verify that ũ1,δ → u1 in H1
x,y as δ → 0. Therefore,

‖∇x,yũ1,δ‖2 → ‖∇x,yu1‖2,
‖ũ1,δ‖p → ‖u1‖p

for all p ∈ [2, 2 + 4
d−1 ) as δ → 0. Combining the continuity of f we conclude that

(2.6)

max
t>0

E(ũt1,δ) = max
t>0

{ t2
2
‖∇xũ1,δ‖22 −

t
pd
2

p+ 2
‖ũ1,δ‖p+2

p+2 −
t
qd
2

q + 2
‖ũ1,δ‖q+2

q+2

}
+

1

2
‖∂yũ1,δ‖22

≤ max
t>0

{ t2
2
‖∇xu1‖22 −

t
pd
2

p+ 2
‖u1‖p+2

p+2 −
t
qd
2

q + 2
‖u1‖q+2

q+2

}
+

1

2
‖∂yu1‖22 +

ε

4

= max
t>0

E(ut1) +
ε

4

for sufficiently small δ > 0. Now let v ∈ C∞c (Rd) with supp v ⊂ B(0, 4δ−1 + 1)\B(0, 4δ−1) and define

v0 :=
(c2 −M(ũ1,δ))

1
2

M(v)
1
2

v.

Notice that v0 and ũ1,δ have compact supports, which also implies M(v0) = c2 −M(ũ1,δ). Define

wλ := ũ1,δ + vλ0

with some to be determined λ > 0. Then

‖wλ‖pp = ‖ũ1,δ‖pp + ‖vλ0 ‖pp
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for all p ∈ [2, 2 + 4
d−1 ). Particularly, M(wλ) = c2. Since v0 is independent of y ∈ T, we also infer that

‖∇xwλ‖2 → ‖∇xũ1,δ‖2,
‖∂ywλ‖2 = ‖∂yũ1,δ‖2,
‖wλ‖p → ‖ũ1,δ‖p

for all p ∈ (2, 2 + 4
d−1 ) as λ→ 0. Using the continuity of f once again we obtain

max
t>0

E(wtλ) ≤ max
t>0

E(ũt1,δ) +
ε

4

for sufficiently small λ > 0. Finally, combing (2.5) and (2.6) we infer that

mc2 ≤ max
t>0

E(wtλ) ≤ max
t>0

E(ũt1,δ) +
ε

4
≤ max

t>0
E(ut1) +

ε

2
= E(u1) +

ε

2
≤ mc1 + ε,

which implies the monotonicity of c 7→ mc on (0,∞).
Next, we show the lower semicontinuity of the curve c 7→ mc. Since c 7→ mc is non-increasing, it

suffices to show that for any c ∈ (0,∞) and any sequence cn ↓ c we have

mc ≤ lim
n→∞

mcn .

Let ε > 0 be an arbitrary positive number. By the definition of mcn we can find some un ∈ V (cn) such
that

E(un) ≤ mcn +
ε

2
≤ mc +

ε

2
.(2.7)

We define ũn = (c−1
n c)

1
2 · un := ρnun. Then M(ũn) = c and ρn ↑ 1. Since un ∈ V (cn), we obtain

mc +
ε

2
≥ mcn +

ε

2
≥ E(un) = E(un)− 2

pd
Q(un)

=
1

2
‖∂yun‖22 +

(1

2
− 2

pd

)
‖∇xun‖22 +

(q
p
− 1
) 1

q + 2
‖un‖q+2

q+2.

Thus (un)n is bounded in H1
x,y and up to a subsequence we infer that there exist A,B,C ≥ 0 such that

‖∇xun‖22 = A+ on(1), ‖∂yun‖22 = B + on(1), ‖un‖α+2
α+2 = Cα + on(1)

with α ∈ {p, q}. Arguing as in the proof of Corollary 2.3, we may use the fact Q(un) = 0 and Lemma 2.2
to deduce A,Cα > 0 and by previous arguments we know that f is continuous at the point (A,Cp, Cq).
Using also the fact that ρn ↑ 1 we conclude that

mc ≤ max
t>0

E(ũtn) = max
t>0

{ t2ρ2
n

2
‖∇xun‖22 −

∑
α∈{p,q}

t
αd
2 ρα+2

n

α+ 2
‖un‖α+2

α+2

}
+
ρ2
n

2
‖∂yun‖22

≤ max
t>0

{ t2A
2
−

∑
α∈{p,q}

t
αd
2 Cα
α+ 2

}
+

1

2
‖∂yun‖22 +

ε

4

≤ max
t>0

{ t2
2
‖∇xun‖22 −

∑
α∈{p,q}

t
αd
2

α+ 2
‖un‖α+2

α+2

}
+

1

2
‖∂yun‖22 +

ε

2

= max
t>0

E(utn) +
ε

2
= E(un) +

ε

2
≤ mcn + ε

by choosing n sufficiently large. The continuity claim follows from the arbitrariness of ε. �

2.3. Mountain pass geometry of E(u) on S(c). As already mentioned in the introductory section,
in the waveguide setting, it is a priori unclear whether the critical points of the variational problem
mc correspond to an elliptic problem, leading to possible failure of applying the Pohozaev’s identity to
infer that a critical point of mc is also a solution of the stationary equation (1.2). We shall invoke a
deformation argument in [3] to solve this issue.

We begin with defining the mountain pass geometry of E(u) on S(c)

Definiton 2.6 (Mountain pass geometry of E(u) on S(c)). We say that E(u) has a mountain pass
geometry on S(c) at the level γc if there exists some k > 0 and ε ∈ (0,mc) such that

γc := inf
g∈Γ(c)

max
t∈[0,1]

E(g(t)) > max{ sup
g∈Γ(c)

E(g(0)), sup
g∈Γ(c)

E(g(1))},(2.8)
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where

Γ(c) := {g ∈ C([0, 1];S(c)) : g(0) ∈ Ak,ε, E(g(1)) ≤ 0}

and

Ak,ε := {u ∈ S(c) : ‖∇xu‖22 ≤ k, ‖∂yu‖22 ≤ 2(mc − ε)}.

The following lemma establishes the fact that mc characterizes the mountain pass level of E(u) on
S(c).

Lemma 2.7. There exist k > 0 and ε ∈ (0,mc) such that

(i) mc = γc holds.
(ii) E(u) has a mountain pass geometry on S(c) at the level mc in the sense of Definition 2.6.

Proof. We firstly prove that by choosing k sufficiently small we have Q(u) > 0 for all u ∈ Ak,ε, where k is
independent of the choice of ε ∈ (0,mc). Indeed, by Lemma 2.2, the fact that M(u) = c, ‖∂yu‖22 < 2mc

for u ∈ Ak,ε and q > p > 4/d we obtain

Q(u) =
1

2
‖∇xu‖22 −

pd

2(p+ 2)
‖u‖p+2

p+2 −
qd

2(q + 2)
‖u‖q+2

q+2

≥ 1

2
‖∇xu‖22 − C(‖∇xu‖

pd
2

2 + ‖∇xu‖
qd
2

2 ) > 0

as long as ‖∇xu‖22 ∈ (0, k) for some sufficiently small k. Next we construct the number ε. Arguing as in
(2.4) we know that there exists some β = β(c) > 0 such that if (un)n ⊂ V (c) is a minimizing sequence
for mc, then

lim inf
n→∞

((1

2
− 2

pd

)
‖∇xun‖22

)
≥ β.(2.9)

We may shrink β further such that β < 4mc. Hence for any minimizing sequence (un)n we must have

(2.10)
mc +

β

4
≥ 1

2
‖∂yun‖22 +

(1

2
− 2

pd

)
‖∇xun‖22 +

(q
p
− 1
) 1

q + 2
‖un‖q+2

q+2

>
1

2
‖∂yun‖22 +

β

2

for all sufficiently large n. Now set ε = β
4 . For u ∈ Ak,ε, using also Lemma 2.2 we infer that

E(u) ≤ 1

2
‖∂yu‖22 +

1

2
‖∇xu‖22 + C(‖∇xu‖

pd
2

2 + ‖∇xu‖
qd
2

2 )

≤ mc − ε+
(1

2
k + Ck

pd
4 + Ck

qd
4

)
.

We now choose k = k(ε) sufficiently small (without changing the fact that Q(u) > 0 for u ∈ Ak,ε) such

that 1
2k + Ck

αd
4 < ε

2 . For this choice of k and ε we have E(u) < mc − ε/2 < mc for all u ∈ Ak,ε and by
definition, (ii) follows immediately from (i).

It is left to show (i). Let (un)n be the given minimizing sequence satisfying (2.9). Let u = un for some
(to be determined) sufficiently large n ∈ N. For any κ ∈ (0, β/4) we can choose n sufficiently large such
that E(u) ≤ mc+κ and ( 1

2 −
2
pd )‖∇xu‖22 ≥ β/2. Then by (2.10) we know that ‖∂yu‖22 ≤ 2(mc− ε) for all

κ ∈ (0, β/4). It is easy to check that ‖∂y(ut)‖22 = ‖∂yu‖22 for all t ∈ (0,∞) and ‖∇x(ut)‖22 = t2‖∇xu‖22 → 0
as t → 0. We then fix some t0 > 0 sufficiently small such that ‖∇x(ut0)‖22 < k, which in turn implies
that (ut0) ∈ Ak,ε. On the other hand,

E(ut) =
1

2
‖∂yu‖22 +

t2

2
‖u‖22 −

t
pd
2

p+ 2
‖u‖p+2

p+2 −
t
qd
2

q + 2
‖u‖q+2

q+2 → −∞

as t→∞. We then fix some t1 sufficiently large such that E(ut1) < 0. Now define g ∈ C([0, 1];S(c)) by

g(t) := ut0+(t1−t0)t.(2.11)

Then g ∈ Γ(c). By definition of γc and Lemma 2.4 we have

γc ≤ max
t∈[0,1]

E(g(t)) = E(u) ≤ mc + κ.
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Since κ can be chosen arbitrarily small, we conclude that γc ≤ mc. On the other hand, by our choice
of k we already know that for any g ∈ Γ(c) we have Q(g(0)) > 0. We now prove Q(g(1)) < 0 for any
g ∈ Γ(c). Assume the contrary that there exists some g ∈ Γ(c) such that Q(g(1)) ≥ 0. Then

0 > E(g(1)) ≥ 1

2
‖∇xg(1)‖22 −

1

p+ 2
‖g(1)‖p+2

p+2 −
1

q + 2
‖g(1)‖q+2

q+2

≥
(1

2
− 2

pd

)
‖∇xg(1)‖22 +

(q
p
− 1
) 1

q + 2
‖g(1)‖p+2

p+2 ≥ 0,

a contradiction. Next, by continuity of g there exists some t ∈ (0, 1) such that Q(g(t)) = 0. Therefore

max
t∈[0,1]

E(g(t)) ≥ mc.

Taking infimum over g ∈ Γ(c) we deduce γc ≥ mc, which completes the desired proof. �

Remark 2.8. By technical reason we will also shrink ε in the Definition 2.6 if necessary such that
ε ≤ 1− 1

2cp,q
, where

cp,q :=
1

2
+

1

2

(
d− 4

p

)(2q

p
+

4

p
− d
)−1

.

The purpose of this choice of ε will become clear in the upcoming proof of Lemma 2.10. Notice also that
1 − 1

2cp,q
∈ (0, 1) is equivalent to cp,q >

1
2 , which by using p > 4/d is also equivalent to 2q/p > d − 4/p.

However, this is always satisfied since p < q < 4(d− 1)−1. 4

2.4. Characterization of an optimizer as a standing wave equation. We now prove that a mini-
mizer of mc is also a solution of the stationary equation (1.2). First we prove a different characterization
of mc that will be more useful in later analysis.

Lemma 2.9. For c > 0, define

m̃c := inf{I(u) : u ∈ S(c), Q(u) ≤ 0},(2.12)

where I(u) is defined by (1.11). Then mc = m̃c.

Proof. Let (un)n ⊂ S(c) be a minimizing sequence for the variational problem m̃c, i.e.

I(un) = m̃c + on(1), Q(un) ≤ 0 ∀n ∈ N.(2.13)

By Lemma 2.4 we know that there exists some tn ∈ (0, 1] such that Q(utnn ) is equal to zero. Thus

mc ≤ E(utnn ) = I(utnn ) ≤ I(un) = m̃c + on(1).

Sending n→∞ we infer that mc ≤ m̃c. On the other hand,

m̃c ≤ inf{I(u) : u ∈ V (c)} = inf{E(u) : u ∈ V (c)} = mc,

which completes the proof. �

We shall still need to introduce the following preliminary concepts given in [5]. First recall that S(c)
is a submanifold of H1

x,y with codimension 1. Moreover, the tangent space TuS(c) for a point u ∈ S(c) is
given by

TuS(c) = {v ∈ H1
x,y : 〈u, v〉L2

x,y
= 0}.

Denote the tangent bundle of S(c) by TS(c). Next, the energy functional E|S(c) restricted to S(c) is a

C1-functional on S(c) and for any u ∈ S(c) and v ∈ TuS(c) we have

〈E′|S(c)(u), v〉 = 〈E′(u), v〉.
We use ‖E′|S(c)(u)‖∗ to denote the dual norm of E′|S(c)(u) in the cotangent space (TuS(c))∗, i.e.

‖E′|S(c)(u)‖∗ := sup
v∈TuS(c), ‖v‖H1

x,y
≤1

|〈E′|S(c)(u), v〉|.

Let now
S̃(c) := {u ∈ S(c) : E′|S(c)(u) 6= 0}.

According to [5, Lem. 4] there exists a locally Lipschitz pseudo gradient vector field Y : S̃(c) → TS(c)
such that Y (u) ∈ TuS(c) and

‖Y (u)‖H1
x,y
≤ 2‖E′|S(c)(u)‖∗ and 〈E′|S(c)(u), Y (u)〉 ≥ ‖E′|S(c)(u)‖2∗(2.14)

for u ∈ S̃(c).
Having all the preliminaries we are ready to prove the claimed statement.
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Lemma 2.10. For any c > 0 an optimizer uc of mc is a solution of (1.2) for some ω ∈ R.

Proof. We borrow an idea from the proof of [3, Lem. 6.1] to show the claim. By Lagrange multiplier
theorem we know that uc solves (1.2) is equivalent to E′|S(c)(u) = 0. We hence assume the contrary
‖E′|S(c)(u)‖∗ 6= 0, which implies that there exists some δ > 0 and µ > 0 such that

v ∈ Buc(3δ)⇒ ‖E′|S(c)(v)‖∗ ≥ µ,(2.15)

where Buc(δ) := {v ∈ S(c) : ‖u−v‖H1
x,y
≤ δ}. Let k and ε be given according to Lemma 2.7 and Remark

2.8. Define

ε1 :=
1

4

(
mc −max{ sup

g∈Γ(c)

E(g(0)), sup
g∈Γ(c)

E(g(1))}
)
,

ε2 := min{ε1,mc/4, µδ/4}.

We now define the deformation mapping η as follows: Let the sets A,B and function h : S(c)→ [0, δ] be
given by

A := S(c) ∩ E−1([mc − 2ε2,mc + 2ε2]),

B := Buc(2δ) ∩ E−1([mc − ε2,mc + ε2]),

h(u) :=
δ dist(u, S(c) \A)

dist(u, S(c) \A) + dist(u,B)
.

Next, we define the pseudo gradient flow W : S(c)→ H1
x,y by

W (u) :=

{
−h(u)‖Y (u)‖−1

H1
x,y
Y (u), if u ∈ S̃(c),

0, if u ∈ S(c) \ S̃(c).

One easily verifies that W is a locally Lipschitz function from S(c) to H1
x,y. Then by standard arguments

(see for instance [5, Lem. 6]) there exists a mapping η : R×S(c)→ S(c) such that η(1, ·) ∈ C(S(c);S(c))
and η solves the differential equation

d

dt
η(t, u) = W (η(t, u)), η(0, u) = u

for any u ∈ S(c). We now claim that η satisfies the following properties:

(i) η(1, v) = v if v ∈ S(c) \ E−1([mc − 2ε2,mc + 2ε2]).
(ii) η(1, Emc+ε2 ∩Buc(δ)) ⊂ Emc−ε.
(iii) E(η(1, v)) ≤ E(v) for all v ∈ S(c).

Here, the symbol Eκ denotes the set Eκ := {v ∈ S(c) : E(v) ≤ κ}. For (i), by definition we see that
h(v) = 0, thus d

dtη(t, v)|t=0 = W (v) = 0 and η(t, v) ≡ η(0, v) = v. For (iii), using (2.14) and the
non-negativity of h we obtain

E(η(1, v)) = E(v) +

∫ 1

0

d

ds
E(η(s, v)) ds

= E(v)−
∫
s∈[0,1],η(s,v)∈S̃(c)

〈E′(η(s, v)), h(η(s, v))‖Y (η(s, v))‖−1
H1
x,y
Y (η(s, v))〉 ds

≤ E(v)− 1

2

∫
s∈[0,1],η(s,v)∈S̃(c)

h(η(s, v))‖E′|S(c)(η(s, v))‖∗ ds ≤ E(v).

It is left to prove (ii). We first show that for v ∈ Emc+ε2 ∩ Buc(δ) one has η(t, v) ∈ Buc(2δ) for all
t ∈ [0, 1]. This follows from

‖η(t, v)− v‖H1
x,y

= ‖
∫ t

0

h(v)‖Y (v)‖−1
H1
x,y
Y (v) ds‖H1

x,y
≤ th(v) ≤ δ.

By (2.15) this implies particularly that ‖E′|S(c)(η(t, v))‖∗ ≥ µ. Consequently, using (2.14), 0 ≤ h ≤ δ
and ε2 ≤ µδ/4 we obtain

E(η(1, v)) ≤ E(v)− 1

2

∫
s∈[0,1],η(s,v)∈S̃(c)

h(η(s, v))‖E′|S(c)(η(s, v))‖∗ ds

≤ mc + ε2 −
µδ

2
≤ mc − ε2.



NLS WITH COMBINED POWERS ON Rd × T 14

Next, we recall the function g defined by (2.11) by setting u = uc therein. We claim that there exist
t0 � 1 and t1 � 1 such that g ∈ Γ(c). Indeed, from the proof of Lemma 2.7 it suffices to show
‖∂yuc‖22 ≤ 2(mc − ε). Define the scaling operator Tλ by

Tλu(x, y) := λ
2
pu(λx, y).(2.16)

Then

‖Tλ(∇xu)‖22 = λ2+ 4
p−d‖∇xu‖22,

‖Tλu‖p+2
p+2 = λ2+ 4

p−d‖u‖p+2
p+2, ‖Tλu‖q+2

q+2 = λ
2q
p + 4

q−d‖u‖q+2
q+2,

‖Tλ(∂yu)‖22 = λ
4
p−d‖∂yu‖22, ‖Tλu‖22 = λ

4
p−d‖u‖22,

Q(Tλu) = λ2+ 4
p−dQ(u)− λ2+ 4

p−d‖u‖q+2
q+2(λ2(q/p−1) − 1).

It thus follows that if Q(u) = 0 and λ ≥ 1, then Q(Tλu) ≤ 0, where we also invoked the condition
p < q. Combining Lemma 2.5, Lemma 2.9 and the fact that uc is an optimizer of mc we infer that
d
dλI(Tλuc)|λ=1 ≥ 0, or equivalently

(2.17)

‖∂yuc‖22 ≤ 2
(
d− 4

p

)−1((
2 +

4

p
− d
)(1

2
− 2

pd

)
‖∇xuc‖22

+
(2q

p
+

4

p
− d
)

(q + 2)−1
(q
p
− 1
)
‖uc‖q+2

q+2

)
.

Using p < q, (2.17) also implies

‖∂yuc‖22 ≤ 2
(
d− 4

p

)−1(2q

p
+

4

p
− d
)((1

2
− 2

pd

)
‖∇xuc‖22 + (q + 2)−1

(q
p
− 1
)
‖uc‖q+2

q+2

)
.(2.18)

Hence

mc = E(uc) = I(uc)

=
1

2
‖∂yuc‖22 +

(1

2
− 2

pd

)
‖∇xuc‖22 + (q + 2)−1

(q
p
− 1
)
‖uc‖q+2

q+2

≥ cp,q‖∂yuc‖22,

where the number cp,q is given by Remark 2.8. Using the condition ε ≤ 1 − 1
2cp,q

from Remark 2.8 we

obtain

‖∂yuc‖22 ≤ 2mc

(
1−

(
1− 1

2cp,q

))
≤ 2mc(1− ε),

as desired. By (i) and Lemma 2.7 we know that η(1, g(t)) ∈ Γ(c). We shall finally prove

max
t∈[0,1]

E(η(1, g(t))) < mc,

which contradicts the characterization mc = γc deduced from Lemma 2.7 and closes the desired proof.
Notice by definition of g and Lemma 2.4 we have E(g(t)) ≤ E(uc) = mc for all t ∈ [0, 1]. Thus only the
following scenarios can happen:

(a) g(t) ∈ S(c) \Buc(δ). By (iii) and Lemma 2.4 (v) we have

E(η(1, g(t))) ≤ E(g(t)) < E(uc) = mc.

(b) g(t) ∈ Emc−ε2 . By (iii) we have

E(η(1, g(t))) ≤ E(g(t)) ≤ mc − ε2 < mc.

(c) g(t) ∈ E−1([mc − ε2,mc + ε2]) ∩Buc(δ). By (ii) we have

E(η(1, g(t))) ≤ mc − ε2 < mc.

This completes the desired proof. �

2.5. Proof of Theorem 1.1 (i). Having all the preliminaries we are in a position to prove Theorem 1.1
(i).

Proof of Theorem 1.1 (i). We split our proof into three steps.
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Step 1: Existence of a non-negative optimizer of mc. By Lemma 2.9 we consider equivalently the varia-
tional problem m̃c. Let (un)n ⊂ S(c) be a minimizing sequence of m̃c satisfying (2.13). By diamagnetic
inequality we know that the variational problem m̃c is stable under the mapping u 7→ |u|, thus we may
w.l.o.g. assume that un ≥ 0. By Corollary 2.3 and Lemma 2.9 we know that m̃c <∞, hence

∞ > m̃c & I(un) =
(1

2
− 2

pd

)
‖∇xun‖22 +

1

2
‖∂yun‖22 +

1

q + 2

(q
p
− 1
)
‖un‖q+2

q+2.

Combining Q(un) ≤ 0 and (un) ⊂ S(c) we conclude that (un)n is a bounded sequence in H1
x,y. Now

using (2.4) and Lemma 2.1 we may find some H1
x,y \ {0} 3 u ≥ 0 such that un ⇀ u weakly in H1

x,y. By
weakly lower semicontinuity of norms we deduce

M(u) =: c1 ∈ (0, c], I(u) ≤ m̃c.(2.19)

We next show Q(u) ≤ 0. Assume the contrary Q(u) > 0. By Brezis-Lieb lemma, Q(un) ≤ 0 and the fact
that L2

x,y is a Hilbert space we infer that

M(un − u) = c− c1 + on(1),

Q(un − u) ≤ −Q(u) + on(1).

Therefore, for all sufficiently large n we know that M(un − u) ∈ (0, c) and Q(un − u) < 0. By Lemma
2.4 we know that there exists some tn ∈ (0, 1) such that Q((un − u)tn) = 0. Consequently, Lemma 2.5,
Brezis-Lieb lemma and Lemma 2.9 yield

m̃c ≤ I((un − u)tn) < I(un − u) = I(un)− I(u) + on(1) = m̃c − I(u) + on(1).

Sending n → ∞ and using the non-negativity of I(u) we obtain I(u) = 0. This in turn implies u = 0,
which is a contradiction and thus Q(u) ≤ 0. If Q(u) < 0, then again by Lemma 2.4 we find some s ∈ (0, 1)
such that Q(us) = 0. But then using Lemma 2.5, Lemma 2.9 and the fact c1 ≤ c

m̃c1 ≤ I(us) < I(u) ≤ m̃c ≤ m̃c1 ,

a contradiction. We conclude therefore Q(u) = 0
Thus u is a minimizer of mc1 . From Lemma 2.10 we know that u is a solution of (1.2) and it remains

to show that the corresponding ω in (1.2) is positive and M(u) = c.

Step 2: Positivity of ω. First we prove that ω is non-negative. Testing (1.2) with u and followed by
eliminating ‖∇xu‖22 using Q(u) = 0 we obtain

(2.20)

‖∂yu‖22 + ωM(u) = 2
(
d− 4

p

)−1((
2 +

4

p
− d
)(1

2
− 2

pd

)
‖∇xuc‖22

+
(2q

p
+

4

p
− d
)

(q + 2)−1
(q
p
− 1
)
‖uc‖q+2

q+2

)
.

Combining (2.17) we infer that ωM(u) ≥ 0. Since u 6= 0 we conclude ω ≥ 0. We next show that ω = 0
leads to a contradiction, which completes the proof of Step 2. Assume therefore that u satisfies the
equation

−∆x,yu = up+1 + uq+1.(2.21)

First consider the case d ≥ 2. By the Brezis-Kato estimate [6] (see also [40, Lem. B.3]) and the local

Lp-elliptic regularity (see for instance [40, Lem. B.2]) we know that u ∈ W 2,p
loc (Rd+1) for all p ∈ [1,∞).

Hence by Sobolev embedding we also know that u and ∇u are of class L∞loc(Rd+1). Taking ∂j to (2.21)
with j ∈ {1, . . . , d+ 1} we obtain

−∆x,y∂ju = (p+ 1)up∂ju+ (q + 1)uq∂ju ∈ L∞loc(Rd+1).

Hence by applying the local Lp-elliptic regularity again we deduce u ∈ W 3,p
loc (Rd+1) for all p ∈ [1,∞).

Consequently, by Sobolev embedding we infer that u ∈ C2(Rd+1). But then by [28, Thm. 1.3] we know
that any nonnegative C2-solution of (2.21) must be zero, a contradiction.

Next we consider the case d = 1. For n ∈ N let φn ∈ C∞c (R; [0, 1]) be a radially symmetric decreasing
function such that φn(t) ≡ 1 on |t| ≤ n, φn(t) ≡ 0 for |t| ≥ n+ 1 and supn∈N ‖φn‖L∞t . 1. Define also

Dn := {x ∈ R : |x| ∈ (n, n+ 1)}.
Since u 6= 0 is non-negative, by monotone convergence theorem we know that∫

R×T
(up+1 + uq+1)φn dxdy > 0
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for all n� 1. On the other hand, using the fact that supp∇xφn ⊂ Dn and Hölder we see that

(2.22)

∫
R×T
∇xu · ∇xφn dxdy ≤ ‖∇xu‖L2(Dn×T)‖∇xφn‖L2(Dn×T)

. ‖∇xu‖L2(Dn×T)((n+ 1)− n)
1
2 . ‖∇xu‖L2(Dn×T).

But then ∞ > ‖∇xu‖22 ≥
∑
n≥1 ‖∇xu‖2L2(Dn×T) yields ‖∇xu‖L2(Dn×T) = on(1). By the fact that φn

is independent of y we also know
∫
R×T(−∂2

yu)φn dxdy = 0. Summing up, by testing (1.2) with φn and
rearranging terms we obtain

0 =

∫
R×T

(up+1 + uq+1)φn dxdy + on(1) > 0

for n sufficiently large, a contradiction. This completes the proof of Step 2.

Step 3: M(u) = c and conclusion. Finally, we prove M(u) = c. Assume therefore c1 < c. By Lemma
2.5 and (2.19) we know that mc1 is a local minimizer of the mapping c 7→ mc, which in turn implies that
the inequality in (2.17) is in fact an equality. Now using (2.17) (as an equality) and (2.20) we infer that
ωM(u) = 0, which is a contradiction since ω > 0 and u 6= 0. We thus conclude M(u) = c. That u is
positive follows immediately from the strong maximum principle. This completes the desired proof. �

2.6. Proof of Theorem 1.1 (ii). In this subsection we give the proof of Theorem 1.1 (ii). Again, due
to the waveguide setting we are unable to appeal to the Pohozaev’s identity to infer that an optimizer of
γω is also solving (1.2). As in the case of Theorem 1.1 (i), we shall use the mountain pass geometry of
Sω(u) on H1

x,y to solve this problem.

Definiton 2.11 (Mountain pass geometry of Sω(u) on H1
x,y). We say that Sω(u) has a mountain pass

geometry on H1
x,y at the level ζω if there exists some k > 0 and ε ∈ 2γω such that

ζω := inf
g∈Λ(ω)

max
t∈[0,1]

Sω(g(t)) > max{ sup
g∈Λ(ω)

Sω(g(0)), sup
g∈Λ(ω)

Sω(g(1))},(2.23)

where

Λ(ω) := {g ∈ C([0, 1];H1
x,y) : g(0) ∈ Bk,ε, Sω(g(1)) ≤ −1}

and

Bk,ε := {u ∈ H1
x,y : k/2 ≤ ‖∇xu‖22 ≤ k, ‖∂yu‖22 + ωM(u) ≤ 2(γω − ε)}.

Lemma 2.12. The following statements hold:

(i) There exists some 0 < k0 � 1 such that for any ε ≤ γω/2 and 0 < k ≤ k0 we have Q(u) > 0 for
all u ∈ Bk,ε.

(ii) If Sω(u) ≤ −1, then Q(u) < 0.

Proof. Using Lemma 2.2 we have for u ∈ Bk,ε

Q(u) ≥ ‖∇xu‖22 −
qd

2(q + 2)
‖u‖q+2

q+2 ≥ ‖∇xu‖22 − Cω‖∇xu‖
qd
2

2 .

Since q > 4/d, we can find some k0 � 1 such that for any k ∈ (0, k0] the function z 7→ z2 − Cωz
qd
4 is

positive on [k2 , k], and the proof of (i) is complete. For (ii), by direct computation one infers that

Sω(u)− 2

pd
Q(u) =

(1

2
− 2

pd

)
‖∇xu‖22 +

1

2
(‖∂yu‖22 + ωM(u)) +

(q
p
− 1
) 1

q + 2
‖u‖q+2

q+2 ≥ 0,

from which we conclude that Q(u) . Sω ≤ −1 and the proof of (ii) is complete. �

Lemma 2.13. There exist k > 0 and ε ∈ (0, γω) such that

(i) γω = ζω holds.
(ii) Sω(u) has a mountain pass geometry on H1

x,y at the level γω in the sense of Definition 2.11

Proof. The proof is similar to the one of Lemma 2.7 and we omit the details here. �

Notice that from Lemma 2.7 we know that by choosing k � 1, every curve g from Λ(ω) must go
through the sphere {Q(u) = 0}. Thus using the mountain pass geometry in the context of [20, Thm. 4.1]
(setting F = {Q(u) = 0} therein) we obtain the existence of a Palais-Smale sequence for the variational
problem γω, stated as follows.
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Lemma 2.14 (Existence of a Palais-Smale sequence). There exists a sequence (un)n ⊂ H1
x,y such that

Sω(u) = γω + on(1), distH1
x,y

(un, {Q = 0}) = on(1), ‖S′ω(un)‖H−1
x,y

= on(1).

Mimicking the proof of Corollary 2.3 we are able to show the following useful properties of the con-
structed Palais-Smale sequence.

Lemma 2.15. Let (un)n be the Palais-Smale sequence constructed in Lemma 2.14. Then (un)n is bounded
in H1

x,y and satisfies lim infn→∞ ‖un‖q+2 > 0.

We are now ready to give the complete proof of Theorem 1.1 (ii).

Proof of Theorem 1.1 (ii). Let (un)n be the Palais-Smale sequence given by Lemma 2.14. Using also
Lemma 2.15 and Lemma 2.1 we know that un converges to some u 6= 0 weakly in H1

x,y. Using
‖S′ω(un)‖H1

x,y
= on(1) from Lemma 2.14 we know that u solves (1.2). It remains to show that u is

an optimizer of γω.
Define

γ̃ω := inf{Ĩ(u) : u ∈ H1
x,y \ {0}, Q(u) ≤ 0},

where Ĩ(u) is given by Ĩ(u) := Sω(u)− 2
pdQ(u). Following the same arguments in Lemma 2.9 one easily

verifies γω = γ̃ω. Using distH1
x,y

(un, {Q = 0}) = on(1) given in Lemma 2.14 we deduce that

Ĩ(un) = γω + on(1), Q(un) = on(1).

By the weakly lower semicontinuity of norms we infer that Ĩ(u) ≤ γω. We still need to show Q(u) = 0.
Assume first that Q(u) < 0. By Lemma 2.4 there exists some t ∈ (0, 1) such that Q(ut) = 0. Then

γω ≤ Ĩ(ut) < Ĩ(u) ≤ γω,

a contradiction. Suppose now Q(u) > 0. Then using the Brezis-Lieb inequality similarly as in the proof
of Theorem 1.1 (i) we know that Q(un − u) < 0 for all n� 1. But then

γω ≤ Ĩ(un − u) = Ĩ(un)− Ĩ(u) + on(1) = γω − Ĩ(u) + on(1),

from which we conclude that Ĩ(u) = 0 and consequently u = 0, a contradiction. This completes the
proof. �

3. Periodic dependence of the ground states: Proof of Theorem 1.2

In this section, we give the proof for Theorem 1.2. The following lemma will be playing a crucial role
throughout the whole section.

Lemma 3.1. Let m1,λ,m
λ
1 , m̂1,λ, m̂

λ
1 be the quantities defined through (1.31) and (1.33). Then there

exist some 0 < λ∗, λ
∗ <∞ such that

• For all λ ∈ (0, λ∗) we have mλ
1 < 2πm̂λ

(2π)−1 and any minimizer uλ of mλ
1 satisfies ∂yu

λ 6= 0.

• For all λ ∈ (λ∗,∞) we have m1,λ = 2πm̂(2π)−1,λ and any minimizer uλ of m1,λ satisfies ∂yuλ = 0.

Moreover, we shall mostly concentrate on the proof of Theorem 1.2 in the variational context where
the mass is normalized. The proof for the variational problem, where the frequency ω is fixed, is quite
similar to the former and thus will be sketched out at the end of the proof of Theorem 1.2 by taking
suitable modification into account.

3.1. Proof of Lemma 3.1. We firstly characterize m1,λ in the limit λ→∞.

Lemma 3.2. We have

lim
λ→∞

m1,λ = 2πm̂(2π)−1,∞.(3.1)

Additionally, let uλ ∈ Vλ(1) be a positive optimizer of m1,λ which also satisfies

−∆xuλ − λ∂2
yuλ + βλuλ = λ

p
q−1|uλ|puλ + |uλ|quλ on Rd × T(3.2)

for some βλ > 0 (whose existence is guaranteed by Theorem 1.1). Then

lim
λ→∞

λ‖∂yuλ‖22 = 0.(3.3)
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Proof. It suffices to restrict ourselves to the case λ > 1. By assuming that a candidate in Vλ(1) is
independent of y we already conclude

m1,λ ≤ 2πm̂(2π)−1,λ ≤ 2πm̂(2π)−1,∞ <∞.(3.4)

To see the second inequality in (3.4), we may simply take (vn)n ⊂ Q̂∞((2π)−1) that approaches m̂(2π)−1,∞.

This particularly yields Q̂λ(vn) < 0 for all n ∈ N. By a similar argument as the one given in the proof of
Lemma 2.9 it follows

m̂(2π)−1,λ ≤ Î(vn) = m̂(2π)−1,∞ + on(1)

The claim follows by sending n→∞.
Next we prove

lim
λ→∞

‖∂yuλ‖22 = 0.(3.5)

Suppose that (3.5) does not hold. Then we must have

lim
λ→∞

λ‖∂yuλ‖22 =∞.

Since Qλ(uλ) = 0 and q > p > 4/d,

(3.6)

m1,λ = Eλ(uλ)− 2

pd
Qλ(uλ) = Iλ(uλ)

=
λ

2
‖∂yuλ‖22 +

(1

2
− 2

pd

)
‖∇xuλ‖22 +

1

q + 2

(q
p
− 1
)
‖uλ‖q+2

q+2

≥ λ

2
‖∂yuλ‖22 →∞

as λ→∞, which contradicts (3.4) and in turn proves (3.5). Using (3.4) and (3.6) we infer that

‖∇xuλ‖22 ≤ Cm1,λ ≤ 2πCm̂(2π)−1,∞ <∞,(3.7)

where C is some positive constant independent of λ. Therefore (uλ)λ is a bounded sequence in H1
x,y,

whose weak limit is denoted by u. Arguing similarly as in the proof of Corollary 2.3 and using the fact

that λ
p
q−1 → 0 as λ→∞ we infer that

lim inf
λ→∞

‖uλ‖q+2
q+2 = lim inf

λ→∞
(λ

p
q−1‖uλ‖p+2

p+2 + ‖uλ‖q+2
q+2) ∼ lim inf

λ→∞
‖∇xuλ‖22 > 0.

Hence by Lemma 2.1 we may also assume that u 6= 0. Using (3.5) we know that u is independent
of y and thus u ∈ H1

x. Moreover, applying the weakly lower semicontinuity of norms we know that

M̂(u) ∈ (0, (2π)−1]. On the other hand, using Q(uλ) = 0, M(uλ) = 1, λ
p
q−1 < 1 for λ > 1 and Hölder

we obtain from (3.2) that

βλ . 1 + ‖uλ‖q+2
q+2.

Thus (βλ)λ is a bounded sequence in (0,∞), whose limit is denoted by β. We now test (3.2) with
φ ∈ C∞c (Rd) and integrate both sides over Rd×T. Notice particularly that the term

∫
Rd×T ∂

2
yuλφdxdy =

0 for any λ > 0 since φ is independent of y. Using the weak convergence of uλ to u in H1
x,y and

limλ→∞ λ
p
q−1 = 0, by sending λ→∞ we obtain

−∆xu+ βu = |u|qu in Rd.(3.8)

In particular, by Lemma 1.11 we know that Q̂∞(u) = 0. Combining the weakly lower semicontinuity of
norms and (3.4) we deduce

2πÊ∞(u) = 2πÎ(u) ≤ lim inf
λ→∞

Iλ(uλ) = lim inf
λ→∞

Eλ(uλ) = lim inf
λ→∞

m1,λ ≤ 2πm̂(2π)−1,∞.

However, by Lemma 1.11 the mapping c 7→ m̂c,∞ is strictly monotone decreasing on (0,∞), from which

we conclude that M̂(u) = (2π)−1 and u is an optimizer of m̂(2π)−1,∞. Finally, using the weakly lower
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semicontinuity of norms we conclude

(3.9)

m1,λ = Iλ =
λ

2
‖∂yuλ‖22 +

(1

2
− 2

pd

)
‖∇xuλ‖22 +

1

q + 2

(q
p
− 1
)
‖uλ‖q+2

q+2

≥
(1

2
− 2

pd

)
‖∇xuλ‖22 +

1

q + 2

(q
p
− 1
)
‖uλ‖q+2

q+2

≥ 2π
((1

2
− 2

pd

)
‖∇xu‖2L2

x
+

1

q + 2

(q
p
− 1
)
‖u‖q+2

Lq+2
x

)
+ oλ(1)

= 2πÊ∞(u) + oλ(1) ≥ 2πm̂(2π)−1,∞ + oλ(1).

Letting λ → ∞ and taking (3.4) into account we conclude (3.1). Finally, (3.3) follows directly from the
computation in (3.9) without neglecting λ‖uλ‖22 therein. This completes the desired proof. �

Lemma 3.3. Let uλ and u be the functions given in the proof of Lemma 3.2. Then uλ → u strongly in
H1
x,y.

Proof. This simply follows from the observation that in the proof of Lemma 3.2, all the inequalities
involving the weakly lower semicontinuity of norms are in fact equalities. Hence ‖uλ‖H1

x,y
→ ‖u‖H1

x,y
=

2π‖u‖H1
x

as λ→∞, which in turn implies the strong convergence of uλ to u in H1
x,y. �

The following lemma shares the same proof of [42, Lem. 3.5]. The only difference is that in our setting

we have an additional nonlinear term λ
p
q−1|uλ|puλ. This is however harmless since we are pushing λ to

infinity and consequently limλ→∞ λ
p
q−1 = 0. We thus omit the proof of the following lemma and refer

the details to [42, Lem. 3.5].

Lemma 3.4 ([42]). There exists some λ0 such that ∂yuλ = 0 for all λ > λ0.

After having all the preliminaries, we are now able to give the proof of Lemma 3.1.

Proof of Lemma 3.1. Define

λ∗ := inf{λ̃ ∈ (0,∞) : m1,λ = 2πm̂(2π)−1,λ ∀λ ≥ λ̃}.

From Lemma 3.4 we already know that λ∗ ∈ (0,∞) and the second part of Lemma 3.1 holds for the
defined number λ∗. It is left to construct the positive number λ∗ ∈ (0,∞) as required in Lemma 3.1.

We first show for any c ∈ (0,∞) it holds limλ→0 m̂
λ
c = m̂0

c . Denote by Uλ a minimizer of m̂λ
c

whose existence can be deduced by using a similar proof as the one of Theorem 1.1. In particular,

Q̂λ(U0) ≤ Q̂0(U0) = 0, which combining Lemma 2.9 implies

0 ≤ sup
λ∈(0,1]

m̂λ
c ≤ sup

λ∈(0,1]

Îλ(U0) ∈ (0,∞).

Hence (m̂λ
c )λ∈(0,1) is a bounded sequence. Using the arguments given in the proof of Corollary 2.3 it

follows that (Uλ)λ∈(0,1) is a bounded sequence in H1
x with lim infλ→0 ‖Uλ‖Lp+2

x
> 0. We may now use

the completely same arguments given in the proof of Theorem 1.1 to show that (up to a subsequence) Uλ

converges to some Ũ0 strongly in H1
x with Ũ0 being a minimizer of m̂0

c . This in turn implies the desired
claim.

To proceed, we next construct an auxiliary function ρ as follows: Let a ∈ (0, π) such that a >

π − 3π
(

3
p+3

) 2
p

. This is always possible for a sufficiently close to π. Then we define ρ by

ρ(y) =


0, y ∈ [0, a] ∪ [2π − a, 2π],

(π − a)−1
(
p+3

3

) 1
p

(y − a), y ∈ [a, π],

(π − a)−1
(
p+3

3

) 1
p

(2π − a− y), y ∈ [π, 2π − a].

By direct computation and q > p one easily verifies that ρ ∈ H1
y and

‖ρ‖2L2
y

= ‖ρ‖p+2

Lp+2
y

< min{2π, ‖ρ‖q+2

Lq+2
y
}.(3.10)

Now let Pλ ∈ H1
x be an optimizer of m̂λ

‖ρ‖−2

L2
y

. Using arguments as in the proof of Corollary 2.3 one

easily verifies that (Pλ)λ∈[0,1) is a bounded sequence in H1
x. By Lemma 1.11, the mapping c 7→ m̂0

c is

strictly decreasing on (0,∞). Hence ‖ρ‖−2
L2
y
> (2π)−1 implies δ := m̂0

(2π)−1 − m̂0
‖ρ‖−2

L2
y

> 0. Next, define
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ψλ(x, y) := ρ(y)Pλ(x). Then (ψλ)λ∈(0,1] is a bounded sequence in H1
x,y with M(ψλ) = ‖ρ‖2L2

y
M̂(Pλ) = 1.

For given λ let tλ ∈ (0,∞) be given such that Qλ((ψλ)t
λ

) = 0, where (ψλ)t
λ

is defined by (1.35). Using
(3.10) it follows Q0(ψ0) = 0. This, in conjunction with standard continuity arguments, implies tλ → 1
as λ→ 0. Using also limλ→0 m̂

λ
c = m̂0

c for any c ∈ (0,∞) we conclude that

mλ
1 ≤ Eλ((ψλ)t

λ

) ≤ ‖ρ‖2L2
y
Êλ((Pλ)t

λ

) + oλ(1)

= ‖ρ‖2L2
y
m̂λ
‖ρ‖−2

L2
y

+ oλ(1) = ‖ρ‖2L2
y
m̂0
‖ρ‖−2

L2
y

+ oλ(1)

≤ 2π(m̂0
(2π)−1 − δ) + oλ(1) = 2πm̂λ

(2π)−1 − 2πδ + oλ(1)

as λ→ 0. This implies mλ
1 < 2πm̂λ

(2π)−1 for all sufficiently small λ.

Finally, we borrow an idea from [16] to show that any minimizer of m1,λ for λ > λ∗ must be y-
independent. Assume the contrary that an optimizer uλ of m1,λ satisfies ‖∂yuλ‖22 6= 0. Since λ > λ∗,
there exists some κ strictly lying between λ∗ and λ. Then

2πm̂(2π)−1,κ = m1,κ ≤ Eκ(uλ) = Eλ(uλ) +
κ− λ

2
‖∂yuλ‖22 < Eλ(uλ) = m1,λ = 2πm̂(2π)−1,λ.

Nevertheless, using the characterization (2.12) for m̂c,λ one easily deduces that m̂(2π)−1,κ ≥ m̂(2π)−1,λ

and we hence obtain a contradiction. This completes the desired proof. �

3.2. Proof of Theorem 1.2. We are in a final position to prove Theorem 1.2.

Proof of Theorem 1.2. For c > 0 and α ∈ {p, q} let κc,α := c
1

d− 4
α . Define also

Tλ,αu(x, y) := λ
2
αu(λx, y).

Then u 7→ Tκc,α,αu defines a bijection between V (c) and Vκ2
c,q

(1) and V κ
2
c,p(1) respectively. By using

simple scaling arguments one also infers that

mc = c
d−4/q−2
d−4/q m1,κ2

c,q
= c

d−4/p−2
d−4/p m

κ2
c,p

1 .

By same arguments we also deduce that m̂(2π)−1c = c
d−4/q−2
d−4/q m̂(2π)−1,κ2

c,q
= c

d−4/p−2
d−4/p m̂

κ2
c,p

(2π)−1 for c > 0.

Notice also that the mapping c 7→ κc,α is strictly monotone increasing on (0,∞). Thus by Lemma 3.1
there exists some c∗, c

∗ ∈ (0,∞) such that

• For all c ∈ (0, c∗) we have

mc = c
d−4/p−2
d−4/p m

κ2
c,p

1 < c
d−4/p−2
d−4/p 2πm̂

κ2
c,p

(2π)−1 = 2πm̂(2π)−1c.

• For all c ∈ (c∗,∞) we have

mc = c
d−4/q−2
d−4/q m1,κ2

c,q
= c

d−4/q−2
d−4/q 2πm̂(2π)−1,κ2

c,q
= 2πm̂(2π)−1c.

By the definitions of c∗ and c∗ it is also clear that c∗ ≤ c∗. This completes the proof of the first part of
Theorem 1.2.

It remains to prove the second part of Theorem 1.2. In fact, the proof is very similar to the one of the
first part, we hence only give the key steps of the proof without establishing the full details.

Mimicking the proof of Lemma 3.1, we aim to prove the following claim: Let γ1,λ, γ
λ
1 , γ̂1,λ, γ̂

λ
1 be the

quantities defined through (1.32) and (1.34). Then there exist some 0 < λ∗, λ
∗ <∞ such that

(i) For all λ ∈ (0, λ∗) we have γλ1 < 2πγ̂λ1 and any minimizer uλ of γλ1 satisfies ∂yu
λ 6= 0.

(ii) For all λ ∈ (λ∗,∞) we have γ1,λ = 2πγ̂1,λ and any minimizer uλ of γ1,λ satisfies ∂yuλ = 0.

The proof of (i) follows from a straightforward modification of the proof of Theorem 1.2. However, the
proof of (ii) is completely different. The main reason here is that the variational problem γ̂0

1 corresponds
to a defocusing problem which admits no minimizers, hence we are unable to use a profile P 0 in the
limiting case as in the proof of Lemma 3.1.

We use a different argument to overcome this issue: Let ρ be the function defined in the proof of
Lemma 3.1. For λ > 0 also let Pλ be an optimizer of γ̂λ1 . In this case, we also define ψλ := ρPλ. Using
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(3.10) it follows Qλ(Pλ) < 2πQ̂(Pλ) = 0. Hence arguing as in the proof of Lemma 2.9 (by also noticing
that µ = 1) and using (3.10) we obtain

γλ1 ≤ Sλ1 (ψλ)− 2

qd
Qλ(ψλ) =

λ

2
‖∂yρ‖2L2

y
‖Pλ‖2L2

x
+ ‖ρ‖2L2

y
(Ŝλ1 (Pλ)− 2

qd
Q̂λ(Pλ))

≤ λ‖∂yρ‖2L2
y
γ̂λ1 + (2π − δ̃)γ̂λ1 = 2πγ̂λ1 − (δ̃ − λ‖∂yρ‖2L2

y
)γ̂λ1 < 2πγ̂λ1

for λ < δ̃‖∂yρ‖−2
L2
y
, where δ̃ := 2π − ‖∂yρ‖2L2

y
∈ (0, 2π). This completes the proof of the claim.

Next, one easily verifies that u 7→ T√ω−1,αu defines a bijection between the sets {u ∈ H1
x,y : Q(u) = 0}

and {u ∈ H1
x,y : Qω−1(u) = 0} (α = q) respectively {u ∈ H1

x,y : Qω
−1

(u) = 0} (α = p). Moreover, we
have

γω = ω−
d−4/q−2

2 γ1,ω−1 = ω−
d−4/p−2

2 γω
−1

1 ,

γ̂ω = ω−
d−4/q−2

2 γ̂1,ω−1 = ω−
d−4/p−2

2 γ̂ω
−1

1 .

The desired claim then follows by using the same scaling arguments given previously and by noticing that
the mapping ω 7→ ω−

1
2 is strictly monotone decreasing on (0,∞). This completes the desired proof. �

4. Qualitative and quantitative blow-up results: Proof of Theorem 1.4 and 1.8

This section is devoted to proving the blow-up results Theorem 1.4 and 1.8. We start with the proof
of the qualitative one.

4.1. Existence of blow-up solutions: Proof of Theorem 1.4. We start with some a preliminary
lemma.

Lemma 4.1. Suppose that the initial datum u0 satisfies

E(u0) < m‖u0‖22 and Q(u0) < 0

when µ = −1, or

Sω(u0) < γω and Q(u0) < 0

when µ = 1. Then there exists a strictly positive δ such that Q(u(t)) ≤ −δ for any t ∈ (−Tmin, Tmax).
More precisely, there exists a constant δ′ > 0, independent of t, such that

(4.1) Q(u(t)) ≤ −δ′‖∇x,yu(t)‖22

for any t ∈ (−Tmin, Tmax).

Proof. Let us consider the case µ = −1. Firstly, we suppose by the absurd that Q(u(t)) > 0 for some
time t ∈ (−Tmin, Tmax). Then by the continuity in time of the function Q(u(t)), there exists t̃ such that
Q(u(t̃)) = 0. By definition of the functional mc and the conservation of the mass, we have therefore that
m‖u0‖22 ≤ E(u(t̃)) = E(u0), which is a contradiction with respect to the hypothesis.

For the control away from zero, by means of Lemma 2.4 we infer the existence of λ̃ ∈ (0, 1) such that

Q(uλ̃0 ) = 0 and

d

dλ
(E(uλ0 ))(λ) ≥ d

dλ
(E(uλ0 ))(1) = Q(u0)

for λ ∈ (λ̃, 1). Hence,

(4.2)
E(u0) = E(uλ̃0 ) +

∫ 1

λ̃

d

dλ
(E(uλ0 ))(λ)dλ ≥ E(uλ̃0 ) + (1− λ̃)

d

dλ
(E(uλ0 ))(1)

= E(uλ̃0 ) + (1− λ̃)Q(u0) > m‖u0‖22 +Q(u0),

which in turn implies the bound of the Lemma with δ = E(u0) −m‖u0‖22 . By the energy conservation,
for any other t belonging to the maximal time of existence, it suffices to repeat the argument above.

Similarly, in the focusing-defocusing case µ = 1, if by the absurd we have the existence of t̃ such that
Q(u(t̃)) = 0, then we conclude, by conservation of mass and energy, that Sω(u0) = Sω(u(t̃)) ≥ γω, which
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contradicts the hypothesis. Moreover, recalling that the scaling uλ (see (1.35)) leaves invariant the mass,
we have an estimate analogous to (4.2). Specifically,

(4.3)

Sω(u0) = E(u0) +
ω

2
M(u0) = E(uλ̃0 ) +

∫ 1

λ̃

d

dλ
(E(uλ0 ))(λ)dλ+

ω

2
M(u0)

≥ E(uλ̃0 ) + (1− λ̃)
d

dλ
(E(uλ0 ))(1) +

ω

2
M(u0) = E(uλ̃0 ) +

ω

2
M(uλ̃0 ) + (1− λ̃)Q(u0)

= Sω(uλ̃0 ) + (1− λ̃)Q(u0) > γω +Q(u0),

then the claim follows by (4.3) and δ = Sω(u0)−γω. By the energy conservation, for any other t belonging
to the maximal time of existence, it suffices to repeat the argument above.

In order to prove the refined control (4.1), recall the following identities for µ = 1 and µ = −1,
respectively,

(4.4)

Q(u) = ‖∇xu‖22 +
dp

2(p+ 2)
‖u‖p+2

p+2 −
dq

2(q + 2)
‖u‖q+2

q+2

=
dq

2
E(u) +

(
1− dq

4

)
‖∇x,yu‖22 − ‖∂yu‖22 +

d

2

p− q
p+ 2

‖u‖p+2
p+2

and

(4.5)

Q(u) = ‖∇xu‖22 −
dp

2(p+ 2)
‖u‖p+2

p+2 −
dq

2(q + 2)
‖u‖q+2

q+2

=
dp

2
E(u) +

(
1− dp

4

)
‖∇x,yu‖22 − ‖∂yu‖22 +

d

2

p− q
q + 2

‖u‖q+2
q+2.

Consider first the case µ = −1. By (4.5) and the fact q > p > 4
d , it is straightforward to see that(

dp

4
− 1

)
‖∇x,yu‖22 ≤

dp

2
E(u)−Q(u),

hence, by means of Lemma 4.1, for any ε > 0

Q(u) + ε

(
dp

4
− 1

)
‖∇x,yu‖22 ≤ ε

dp

2
E(u) + (1− ε)Q(u) ≤ εdp

2
E(u) + (1− ε)δ.

The conclusion follows by taking ε small enough, recalling the conservation of the energy.

As for the defocusing-focusing case, namely µ = 1, we repeat the same argument, by using (4.4),
Lemma 4.1, and again q > p > 4

d . �

We are now ready to give the proof of the blow-up results in Theorem 1.4.

Proof of Theorem 1.4. Given a smooth function φ : Rd → R, we introduce the virial function

(4.6) Vφ(t) :=

∫
Rd×T

φ(x)|u(t, x, y)|2dxdy.

The following identities are nowadays classical (see e.g., [9]), and when no confusion may arise, we
omit the domain Rd × T along with the space variables (x, y) to lighten the notation:

(4.7) V ′φ(t) = 2 Im

∫
∇xφ · ∇xu(t)u(t)dxdy

and

(4.8)

V ′′φ (t) = −
∫

∆2
xφ|u(t)|2dxdy + 4

∑
j,k

Re

∫
∂2
xjxk

φ∂xju(t)∂xku(t)dxdy

+
2µp

p+ 2

∫
∆xφ|u(t)|p+2dxdy − 2q

q + 2

∫
∆xφ|u(t)|q+2dxdy.

Suppose now that the initial datum u0 is radial with respect to the Euclidean variable, i.e., u0 =
u0(x, y) = u0(|x|, y). Then the radial symmetry of the solution remains for any time in the maximal
lifespan. Let θ : [0,∞)→ [0, 2] a smooth function satisfying

θ(r) =

{
2 if 0 ≤ r ≤ 1,
0 if r ≥ 2.

(4.9)
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We define the function Θ : [0,∞)→ [0,∞) by

Θ(r) :=

∫ r

0

∫ s

0

θ(τ)dτds.

For % > 0, we define the radial function φ% : Rd → R by

φ%(x) = φ%(r) := %2Θ(r/%), r = |x|.(4.10)

Straightforward calculations yield to

(4.11) V ′′φ%(t) ≤ 8Q(u(t))− 2µp

p+ 2

∫
|k(x)||u(t)|p+2dxdy +

2q

q + 2

∫
|k(x)||u(t)|q+2dxdy + C%−2

where k = k(x) = k(|x|) is a non-positive radial function supported outside a ball of radius %, centered
at the origin of Rd.

At this point we observe that if µ = 1 (defocusing-focusing case), the lower order term can be simply
estimated by zero, hence we may focus on the higher order term. Let us denote by

m(u)(x) =
1

2π

∫
T
u(x, y)dy

the mean of u with respect to the variable on T, the compact component of the product manifold.
By the estimate |a + b|c . |a|c + |b|c for c ≥ 1, and the triangular inequality we estimate the two terms

‖|k|1/(q+2)m(u)‖q+2
q+2 and ‖|k|1/(q+2)(u−m(u))‖q+2

q+2. As m(u) is independent of y, by the Strauss embedding

(see e.g. [15]), the Minkowski’s inequality and the Jensen’s inequality, we get∫
|k(x)||mu|q+2dxdy .

∫
|k(x)||m(u)(x)|q+2dx

. %−
(d−1)q

2 ‖∇xm(u)‖q/2L2
x
‖m(u)‖q/2L2

x
‖m(u)‖2L2

x

. %−
(d−1)q

2 ‖∇x,yu‖q/22 ‖u‖
q/2+2
2 .

The term ‖|k|1/(q+2)(u−m(u))‖q+2
q+2 is estimated as follows: first recall the Sobolev embedding

‖u−m(u)‖Lq+2
y
. ‖u‖

Ḣ

q
2(q+2)
y

,

see e.g. [4]. Then writing also u−m(u) in its Fourier expansion along the y-direction we obtain

‖|k|1/(q+2)(u−m(u))‖q+2
q+2 =

∫
|k(x)||u−m(u)|q+2dydx

.
∫ |k(x)|

∑
j

|j|q/(q+2)|uj(x)|2


q+2
2

 dx

=
∥∥|k|1/(q+2)‖|j|q/(2q+4)|uj |‖l2j

∥∥q+2

Lq+2
x
.

As 2 + q ≥ 2, we continue by using the Minkowski’s inequality,

‖|k|1/(q+2)(u−m(u))‖q+2
q+2 ≤

∑
j

|j|q/(q+2)‖|k|1/(q+2)|uj |‖2Lq+2
x


q+2
2

and by employing again the Strauss embedding theorem as before, we obtain

‖|k|1/(q+2)(u−m(u))‖q+2
q+2 . %

− (d−1)q
2

∑
j

|j|q/(q+2)‖∇xuj‖q/(q+2)
L2
x

‖uj‖(q+4)/(q+2)
L2
x


q+2
2

.

By means of the Hölder’s inequality with exponents η = 2q+4
q and γ = 2q+4

q+4 , in conjunction with the

conservation of the mass, we end-up with

‖|k|1/(q+2)(u−m(u))‖q+2
q+2 . %

− (d−1)q
2


∑

j

|j|2‖∇xuj‖2L2
x


q

2(q+2)
∑

j

‖uj‖2L2
x


q+4

2(q+2)


q+2
2

. %−
(d−1)q

2 ‖∇x,yu‖q/22 ‖u‖
q+4
2

2 . %−
(d−1)q

2 ‖∇x,yu‖q/22 .
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Then the following virial estimate is established:

V ′′φ%(t) ≤ 8Q(u(t)) + C%−2 + C%−
(d−1)q

2 ‖∇x,yu‖q/22 , ∀t ∈ Imax.(4.12)

The desired blow-up claim follows then from (4.12), (4.1), and a convexity arguments.

In the focusing-focusing case, i.e. µ = −1, we are nevertheless unable to simply estimate the contri-
bution from the lower-order term by using its non-negativity property. Alternatively, one may verbatim
repeat the estimate as for the higher order term. By doing so, we get in turn

(4.13)
V ′′φ%(t) ≤ 8Q(u(t)) + C%−2 + C%−

(d−1)p
2 ‖∇x,yu‖p/22 + C%−

(d−1)q
2 ‖∇x,yu‖q/22

≤ 8Q(u(t)) + C%−2 + C%−
(d−1)p

2 ‖∇x,yu‖p/22 , ∀t ∈ Imax.

Note that C%−
(d−1)q

2 ‖∇x,yu‖22 is absorbed in the contribution in p for % � 1. In both cases we can
conclude with the desired blow up results by taking % sufficiently large. This completes the proof of
Theorem 1.4. �

4.2. Proof of Theorem 1.8. In order to prove the blow-up rate results, we are inspired by the scheme
introduced by Merle, Raphaël, and Szeftel in the context of critical equations, see [36].

First consider the defocusing-focusing case µ = 1. By means of (4.4) in conjunction with (4.12), we
get

V ′′φ%(t) ≤ 8Q(u(t)) + C%−2 + C%−
(d−1)q

2 ‖∇x,yu‖q/22

≤ 4dqE(u(t)) + (8− 2dq)‖∇x,yu(t)‖22 + C%−2 + C%−
(d−1)q

2 ‖∇x,yu(t)‖q/22 , ∀t ∈ Imax,

where φ% is defined in (4.10). By Young’s inequality, we have for any ε > 0 and any t ∈ Imax:

V ′′φ%(t) ≤ 4dqE(u(t)) + (8− 2dq)‖∇x,yu(t)‖22 + C%−2 + ε‖∇x,yu(t)‖22 + Cε−
q

4−q %−
2(d−1)q

4−q .

We select now ε to be equal to −(4− dq). Hence the above inequality reduces to

V ′′φ%(t) ≤ 4dqE(u(t)) + (4− dq)‖∇x,yu(t)‖22 + C%−2 + C%−
2(d−1)q

4−q .

Note that 1 < (d−1)q
4−q is always satisfied as we are working in the mass supercritical case. Therefore by

the conservation of energy and 1 < (d−1)q
4−q , provided % > 0 is taken sufficiently small, we get

(dq − 4)‖∇x,yu(t)‖22 + V ′′φ%(t) ≤ C%
− 2(d−1)q

4−q .(4.14)

Now, consider times 0 < t0 < t < Tmax. Integrating (4.14) twice on (t0, t) gives

(dq − 4)

∫ t

t0

∫ s

t0

‖∇x,yu(τ)‖22dτds+ Vφ%(t) ≤ C%
− 2(d−1)q

4−q (t− t0)2 + (t− t0)V ′φ%(t0) + Vφ%(t0)

≤ %−
2(d−1)q

4−q (t− t0)2 + C%(t− t0)‖∇u(t0)‖2
+ C%2,

where we have used the conservation of mass and the estimates below:

Vφ%(t0) ≤ C%2‖u(t0)‖22 ≤ C%2,

V ′φ%(t0) ≤ C%‖∇x,yu(t0)‖2‖u(t0)‖2 ≤ C%‖∇x,yu(t0)‖2.

Fubini’s Theorem then implies∫ t

t0

∫ s

t0

‖∇x,yu(τ)‖22dτds =

∫ t

t0

(∫ t

τ

ds

)
‖∇x,yu(τ)‖22dτ =

∫ t

t0

(t− τ)‖∇x,yu(τ)‖22dτ.

Recall that Vφ% is non-negative. Then we get∫ t

t0

(t− τ)‖∇x,yu(τ)‖22dτ ≤ %
− 2(d−1)q

4−q (t− t0)2 + C%(t− t0)‖∇x,yu(t0)‖2 + C%2.
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In the limit t→ Tmax, by means of the Young’s inequality we obtain∫ Tmax

t0

(Tmax − τ)‖∇x,yu(τ)‖22dτ ≤ %
− 2(d−1)q

4−q (Tmax − t0)2 + C%(Tmax − t0)‖∇x,yu(t0)‖2 + C%2

≤ %−
2(d−1)q

4−q (Tmax − t0)2 + (Tmax − t0)2‖∇x,yu(t0)‖22 + C%2.

Optimizing in % by choosing %−
2(d−1)q

4−q (Tmax−t0)2 = %2, or equivalently % = (Tmax−t0)
4−q

(d−2)q+4 , we deduce

(4.15)

∫ Tmax

t0

(Tmax − τ)‖∇x,yu(τ)‖22dτ ≤ C(Tmax − t0)
8−2q

(d−2)q+4 + (Tmax − t0)2‖∇x,yu(t0)‖22,

for any 0 < t0 < Tmax. By introducing the function

(4.16) g(t) :=

∫ Tmax

t

(Tmax − τ)‖∇x,yu(τ)‖22dτ,

from (4.15) and the Fundamental Theorem of Calculus we get

g(t) ≤ C(Tmax − t)
8−2q

(d−2)q+4 − (Tmax − t)g′(t), ∀ 0 < t < Tmax

which can be straightforwardly rewritten as

d

dt

(
g(t)

Tmax − t

)
=

1

(Tmax − t)2
(g(t) + (Tmax − t)g′(t)) ≤ C(Tmax − t)

8−2q
(d−2)q+4

−2.

Integrating over the interval (0, t) the above inequality gives

g(t)

Tmax − t
≤ g(0)

Tmax
+

C

(Tmax − t)
4−dq

(d−2)q+4

− C

(Tmax)
4−dq

(d−2)q+4

which in turn implies that

g(t)

Tmax − t
≤ C

(Tmax − t)
4−dq

(d−2)q+4

as t→ T−max.

Therefore, we have∫ Tmax

t

(Tmax − τ)‖∇x,yu(τ)‖22dτ ≤ C(Tmax − t)
2q(d−1)

(d−2)q+4 as t→ T−max.

The above estimate can be reformulated as

1

Tmax − t

∫ Tmax

t

(Tmax − τ)‖∇x,yu(τ)‖22dτ ≤
C

(Tmax − t)
4−dq

(d−2)q+4

.(4.17)

At this point we consider a sequence Tn → T−max, and we note that for any n the function g introduced in
(4.16) is a continuous function on [Tn, Tmax] and differentiable on the interior points (Tn, Tmax). Hence,
the mean value theorem gives the existence of a time tn ∈ (Tn, Tmax) such that the left-hand side of
(4.17) satisfies

1

Tmax − Tn

∫ Tmax

Tn

(Tmax − τ)‖∇x,yu(τ)‖22dτ = (Tmax − tn)‖∇x,yu(tn)‖22.

Using (4.17), we have

‖∇u(tn)‖2 ≤
C

(Tmax − tn)
4−q

(d−2)q+4

This concludes the proof for the blow-up rate in the case µ = 1.

As for the focusing-focusing case (µ = −1), using (4.5) instead of (4.4), we see that nothing changes
with respect to the defocusing-focusing case, except for the coefficient of the homogeneous Sobolev norm
term. In this case, we may simply repeat the same arguments given previously by taking the range of
p into account instead of considering the higher order exponent q, we omit the repeating details. This
completes the desired proof.
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Appendix A. Large data scattering: Proof of Theorem 1.9

In this section, we focus on the large data scattering result for (1.1), i.e. proving Theorem 1.9. As
already pointed out in the introductory section and also in the recent papers [29, 34] by the second
author, the proof of Theorem 1.9 is quite different in the cases d < 5 and d ≥ 5, mainly due to the fact
that the nonlinearity becomes less regular in high-dimensional spaces.

From an analytical point of view, we may consider (1.1) as a perturbed version of the NLS with a
single nonlinearity by an intercritical perturbation, thus the proof of Theorem 1.9 is essentially the same
compared to the ones given in [29, 34]. For the sake of completeness, we follow the same lines in [34]
to present a sketch of the proof of Theorem 1.9 in the case d ≥ 5, by making use of the modern tool
interaction Morawetz-Dodson-Murphy (IMDM) inequality which has been recently developed in [18]. We
shall also omit the almost identical proofs in most cases and refer to [34] for details. Instead, we focus
on explaining the ideas for proving the main scattering result.

Finally, we also note that the proof of Theorem 1.9 in the case d ≤ 4 can be similarly deduced as in
the paper [29] via the standard concentration compactness method. To keep the paper as concise and
short as possible, we omit the latter details.

A.1. Scattering Criterion. First notice that since (1.1) possesses an energy-subcritical nature and we
work with a problem in the energy space, a solution of (1.1) can always be extended beyond its lifespan
as long as its H1-norm remains bounded. In particular, a solution of (1.1) will be a global solution
when certain variational assumption is satisfied (see Section A.2 below). The main issue here is that
to guarantee a global solution of (1.1) is also scattering, further control of the solution in infinite time
becomes necessary. Such motivation leads to the useful scattering criterion Lemma A.2. To formulate
Lemma A.2, some notion of the exotic Strichartz estimates will also be introduced.

Lemma A.1 (Exotic Strichartz estimates on Rd × T, [34]). For any α ∈ ( 4
d ,

4
d−1 ) there exist a, r,b, s ∈

(2,∞) such that

(α+ 1)s′ = r, (α+ 1)b′ = a, α/r < min{1, 2

d
}, 2

a
+
d

r
=

2

α
.

Moreover, for any γ ∈ R we have the following exotic Strichartz estimate:

‖
∫ t

t0

ei(t−s)∆x,yF (s) ds‖La
tL

r
xH

γ
y (I) . ‖F‖Lb′

t L
s′
x H

γ
y (I).(A.1)

When d ≥ 5, we can additionally assume that there exists some 0 < β � 1 such that r can be chosen as

an arbitrary number from (α(α+1)d
α+2 , α(α+1)d

α+2 + β).

Lemma A.2 (Scattering criterion, [34]). Let u be a global solution of (1.1) and assume that

‖u‖L∞t H1
x,y(R) ≤ A.

Then for any σ > 0 there exist ε = ε(σ,A) sufficiently small and T0 = T0(σ, ε, A) sufficiently large such
that if for all a ∈ R there exists T ∈ (a, a+ T0) such that [T − ε−σ, T ] ⊂ (a, a+ T0) and

‖u‖Laq
t L

rq
x Hsy(T−ε−σ,T ) . ε

µ(A.2)

for some µ > 0, where (aq, rq) is the exotic-admissible pair in Lemma A.1 corresponding to the exponent
q, then u scatters forward in time.

Proof. This follows immediately from the proof of [34, Lem. 6] by dealing the combined nonlinearities
separately and using interpolation to bound the estimates for the nonlinearity of order p by the ones of
the larger order q. �

The scattering criterion will be applied in conjunction with the following useful local control result.
The latter can be similarly deduced by using the proof of [34, Lem. 5], where again we only need to cheat
the both nonlinearities separately and use suitable interpolation inequalities.

Lemma A.3 (Local control of a solution, [34]). Let u be a global solution of (1.1) with ‖u‖L∞t H1
x,y(R) <∞

and let s ∈ ( 1
2 , 1−sq), where sq = d

2−
2
q . Then for any L2

x-admissible pair (`1, `2) (namely (`1, `2) satisfies
2
`1

+ d
`2

= d
2 ) with (`1, `2, d) 6= (2,∞, 2) we have

‖u‖
L
`1
t W

1−s,`2
x Hsy(I)

. 〈I〉
1
`1 .(A.3)
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A.2. Variational analysis and the IMDM-estimates. As mentioned in Subsection A.1, we will need
to establish the uniform H1-boundedness for the solution of (1.1) by appealing to suitable variational
arguments that can be deduced nowadays in a quite standard way by using the functional inequalities
such as the Gagliardo-Nirenberg or Sobolev inequalities. In the context of the waveguide setting, suitable
scale-invariant (w.r.t. the x-direction) replacement of such functional inequalities becomes necessary, see
e.g. Lemma 2.2. Moreover, to fit the non-local nature of the Morawetz inequalities of interaction type,
additional spatial translation shall also be taken into account in the functional inequalities, see [18, Lem.
2.1]. All the consideration leads to the following coercivity result. For a proof, see e.g. [34, 1].

Lemma A.4 (Coercivity property, [34, 1]). Let u be a solution of (1.1) with u(0) ∈ A, where{
A := {u ∈ S(c) : E(u) < mc, Q(u) > 0}, when µ = −1,
A := {u ∈ H1

x,y \ {0} : Sω(u) < γω, Q(u) > 0}, when µ = 1.

Then u is global and u(t) ∈ A for all t ∈ R. Moreover, there exist 0 < δ � 1 and R0 � 1 such that for
all R ≥ R0, z ∈ Rd, t ∈ R we have

Q(χR(· − z)uξ(t)) ≥ δ‖∇x(χR(· − z))uξ(t)‖22,(A.4)

where uξ(t, x, y) := eix·ξu(t, x, y) and

ξ = ξ(t, z, R) =

{
−

∫
Im(χ2

R(x−z)ū(t,x,y)∇xu(t,x,y)) dxdy∫
χ2
R(x−z)|u(t,x,y)|2 dxdy , if

∫
χ2
R(x− z)|u(t, x, y)|2 dxdy 6= 0,

0, if
∫
χ2
R(x− z)|u(t, x, y)|2 dxdy = 0.

Having established the previous coercivity property of the solution u of (1.1), we may immediately
deduce the following IMDM-inequality by using the interaction Morawetz potential initiated by Dodson
and Murphy [17, 18] which plays a crucial role in the rest of the paper. In the waveguide setting, we
shall simply apply the interaction Morawetz inequality along the x-direction and integrate the quantities
over the y-direction without taking other operations. This can also be seen from the observation that
the NLS only possesses dispersive effects in the infinite Euclidean space.

Lemma A.5 (IMDM-inequality, [18, 34]). Let u be a global solution of (1.1) satisfying the assumptions
in Lemma A.4. Then for any ε > 0 there exist T0 = T0(ε)� 1, J = J(ε)� 1, R0 = R0(ε, u0)� 1 and
η = η(ε)� 1 such that for any a ∈ R we have

(A.5)

1

JT0

∫ a+T0

a

∫ R0e
J

R0

1

Rd

∫
(Rdxa×Tya )×(Rdxb×Tyb )×Rdz

|χR(xb − z)u(t, xb, yb)|2|∇x(χR(xa − z)uξ(t, xa, ya))|2d(xa, ya)d(xb, yb)dz
dR

R
dt . ε.

A.3. Conclusion. In this final subsection, we explain briefly how we are able to prove Theorem 1.9 in
the case d ≥ 5 by using the lemmas stated in previous subsections.

Notice first that by the scattering criterion (Lemma A.2) we will need to prove

‖u‖La
tL

r
xH

s
y(T−ε−σ,T ) . ε

µ

for some µ > 0, where (a, r) = (aq, rq) is the exotic-admissible pair in Lemma A.1 corresponding to the
exponent q. To deduce this, we firstly apply the pigeonhole principle to reduce the (both spatially and
temporally) averaged inequality (A.5) to the localized form∫ t0

t0−ε−σ

∑
w∈Zd

‖χR1
(· − R1

4
(w + θ0))u(t)‖2L2

x,y
‖∇x(χR1

(· − R1

4
(w + θ0))uξ(t))‖2L2

x,y
dt . ε1−σ,(A.6)

where θ0 : Zd → [0, 1]d is a suitable function whose existence is guaranteed by the mean value theorem.
Using the modified Gagliardo-Nirenberg inequality on Rd (see [18, Lem. 2.1])

‖u‖2
L

2d
d−1
x

. ‖u‖L2
x
‖∇xuξ‖L2

x
(A.7)

and Hölder and Minkowski inequalities we obtain∫ t0

t0−ε−σ

∑
w∈Zd

‖χR1
(· − R1

4
(w + θ0))u(t)‖4

L
2d
d−1
x L2

y

dt . ε1−σ.(A.8)
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Another application of the Hölder, Cauchy-Schwarz inequalities and the Sobolev embedding H1
x ↪→ L

2d
d−2
x

yields ∑
w∈Zd

‖χR1
(· − R1

4
(w + θ0))u(t)‖2

L
2d
d−1
x L2

y

. ‖u(t)‖2H1
x,y

+O(R−2
1 η−2)‖u(t)‖2L2

x
. 1

by choosing R1 � 1, hence∫ t0

t0−ε−σ

∑
w∈Zd

‖χR1
(· − R1

4
(w + θ0))u(t)‖2

L
2d
d−1
x L2

y

dt . ε−σ.(A.9)

Interpolating (A.8) and (A.9) we obtain

(A.10)

‖u‖
2d
d−1

L
2d
d−1
t,x L2

y(t0−ε−σ,t0)

.
(∫ t0

t0−ε−σ

∑
w∈Zd

‖χR1(· − R1

4
(w + θ0))u(t)‖4

L
2d
d−1
x L2

y

dt
) 1
d−1

×
(∫ t0

t0−ε−σ

∑
w∈Zd

‖χR1(· − R1

4
(w + θ0))u(t)‖2

L
2d
d−1
x L2

y

dt
) d−2
d−1

. ε
1
d−1−σ.

Now the desired claim follows from (A.10), Lemma A.3 (setting |I| = t0 − (t0 − ε−σ) = ε−σ therein) and
suitable interpolation (noticing that ( 2d

d−1 ,
2d
d−1 ) is not yet an L2

x-admissible pair, hence Lemma A.3 is not

directly applicable).
This essentially explains the idea for proving Theorem 1.9 in the case d ≥ 5 by making use of the

IMDM-estimates. For full details, we refer to [34].

Appendix B. The grow-up result: Proof of Theorem 1.7

In this section we give the proof of the grow-up result Theorem 1.7. Consider (4.6) with a cut-off
function ϑ : R+ 7→ [0, 1] with 0 ≤ ϑ′ ≤ 4 and

ϑ(|x|) =

{
0 if |x| ≤ 1,
1 if |x| ≥ 2.

(B.1)

Consider ϑ% = ϑ(|x|/%). Recall the definition of Vϑ%(t) as in (4.6). If we suppose that the solution is
global and sup

R+

‖∇x,yu(t)‖2 is finite, then by the conservation of mass, there exists a constant C > 0 such

that

Vϑρ(t) = Vϑ%(0) +

∫ t

0

V ′ϑ%(s) ds ≤ oρ(1) + Ct%−1,

where Vϑ%(0) = o%(1) as %→ +∞ by means of the the dominated convergence theorem. Clearly∫
{|x|≥%}×T

|u(x, y, t)|2 dxdy ≤ Vϑ%(t),

so we have that for any δ̃ > 0

(B.2)

∫
{|x|≥%}×T

|u(x, y, t)|2dxdy ≤ o%(1) + δ̃, for t ≤ T̃ := C−1%δ̃.

Going back to (4.6) and (4.8) with the localization function φρ as defined in (4.10), and by recalling that
for a radial function

∂xj =
xj
r
∂r, ∂2

xjxk
=

(
δxjxk
r
− xjxk

r3

)
∂r +

xjxk
r2

∂2
r ,

we have

(B.3)

V ′′φ%(t) = 8Q(u(t))−
∫

∆2
xφ%|u(t)|2dxdy

+ 4

∫ (
φ′%
r
− 2

)
|∇xu|2dxdy + 4

∫ (
φ′′%
r2
−
φ′%
r3

)
|x · ∇xu|2dxdy

+
2µp

p+ 2

∫ (
φ′′% − (d− 1)

φ%
r
− 2d

)
|u(t)|p+2dxdy

− 2q

q + 2

∫ (
φ′′% − (d− 1)

φ%
r
− 2d

)
|u(t)|q+2dxdy.
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By the support properties of the localization function and by interpolation it follows that

(B.4) V ′′φ%(t) ≤ 8Q(u(t)) + Cp‖u‖
ηp(p+2)

L2({|x|≥%}×T) + Cq‖u‖
ηq(q+2)

L2({|x|≥%}×T)

where ηp, ηq ∈ (0, 1). Thus, by combining Lemma 4.1, (B.2), (B.4) we obtain

V ′′φ%(t) ≤ −8δ + 2 max{Cp, Cq}
(
o%(1) + δ̃min{ηp(p+2),ηq(q+2)}

)
for t ≤ T̃ .

A choice δ̃ � 1 implies that for % large enough

(B.5) V ′′φ%(t) ≤ −4δ < 0.

As φ ≤ |x|2, one notes that

(B.6)
Vφ%(0) ≤

∫
{|x|≤√%}×T

|x|2|u(x, y, 0)|2dxdy +

∫
{√%≤|x|≤2%}×T

|x|2|u(x, y, 0)|2dxdy

≤ %M(u0) + 4%2o%(1) = Co%(1)%2.

Similarly,

(B.7) V ′φ%(0) ≤ Co%(1)%.

It easily follows, by integrating twice in time over the interval [0, T̃ ] the inequality (B.5) and by using

(B.6), (B.7), along with the definition of T̃ ∼ %, we conclude with

Vφ%(T̃ ) = Vφ%(0) + T̃ V ′φ%(0) +

∫ T̃

0

∫ s

0

V ′′φ%(s)dsdt ≤ C(o%(1)− δ)%2 ≤ −Cδ
2
%2,

which is a contradiction with respect to the non-negativity of the function Vφ%(t).
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