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Abstract. We study standing waves for a system of nonlinear Schrödinger equations

with three waves interaction arising as a model for the Raman amplification in a

plasma. We consider the mass-critical and mass-supercritical regimes and we prove

existence of ground states along with a synchronised mass collapse behavior. In

addition, we show that the set of ground states is stable under the associated Cauchy

flow. Furthermore, in the mass-supercritical setting we construct an excited state

which corresponds to a strongly unstable standing wave. Moreover, a semi-trivial

limiting behavior of the excited state is drawn accurately. Finally, by a refined control

of the excited state’s energy, we give sufficient conditions to prove global existence or

blow-up of solutions to the corresponding Cauchy problem.
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1. Introduction

In this paper, we consider a three-components system of nonlinear Schrödinger equations

related to the Raman amplification in a plasma, as derived by Colin, Colin, and Ohta in [19],

which reads as follows: 
i∂tψ1 = −∆ψ1 − |ψ1|p−2 ψ1 − αψ3ψ2,

i∂tψ2 = −∆ψ2 − |ψ2|p−2 ψ2 − αψ3ψ1,

i∂tψ3 = −∆ψ3 − |ψ3|p−2 ψ3 − αψ1ψ2.

(1.1)

Here, ψi = ψi(t, x) with i = 1, 2, 3, are complex-valued functions ψi : R × RN 7→ C, with ψi
denoting the complex conjugate, the space dimension is N ≤ 3, α is a positive real parameter,

and the power nonlinearity p is in the range 2∗ ≤ p < 2∗, where{
2∗ = 2 + 4

N ,

2∗ =∞ if N ≤ 2, 2∗ = 2N
N−2 if N = 3.

Namely, we consider the mass-critical or mass-supercritical and energy subcritical power-type

nonlinearities.

It is standard to see that the Cauchy problem associated to (1.1) is locally well-posed in

the energy space, i.e., for a fixed initial datum

(ψ0,1, ψ0,2, ψ0,3)(x) := (ψ1, ψ2, ψ3)(0, x) ∈ H1(RN )×H1(RN )×H1(RN ),

there exists a solution (ψ1, ψ2, ψ3) ∈ C([0, Tmax), H1(RN )×H1(RN )×H1(RN )), where Tmax >

0 is the positive maximal time of existence (a similar notion can be given for negative times).
1



2 L. FORCELLA, X. LUO, T. YANG, AND X. YANG

See the monograph [11]. Moreover, the blow-up alternative holds true, in the sense that

either Tmax =∞ (the solution is global), or Tmax <∞ and the homogenous Sobolev norm of

the solution diverges as t→ T−max. More precisely limt→T−
max

(∑3
i=1 ‖∇ψi(t)‖2L2(RN )

)
=∞.

In addition, the following quantities are conserved along the flow: the energy, defined by

E(t) = E
(
~ψ(t)

)
=

3∑
i=1

(
1

2
‖∇ψi(t)‖2L2(RN ) −

1

p
‖ψi(t)‖pLp(RN )

)
− αRe

∫
RN

(
ψ1ψ2ψ3

)
(t)dx,

(1.2)

and the mixed masses

Q1(t) = Q1

(
~ψ(t)

)
= ‖ψ1(t)‖2L2(RN ) + ‖ψ3(t)‖2L2(RN )

Q2(t) = Q2

(
~ψ(t)

)
= ‖ψ2(t)‖2L2(RN ) + ‖ψ3(t)‖2L2(RN ),

(1.3)

where we used the compact notation

~ψ = ~ψ(t, x) = (ψ1(t, x), ψ2(t, x), ψ3(t, x)) ∈ H1(R× RN ,C3).

As usual, conservation means that the previous quantities are not dependent on time, or

alternatively E(t) = E(0), Q1(t) = Q1(0), and Q2(t) = Q2(0) for any time t in the maximal

interval of existence [0, Tmax). The conservation laws can be showed by a standard regular-

ization argument, see [11].

Furthermore, we note that (1.1) can be written as

∂t ~ψ(t, x) = −iE′
(
~ψ(t, x)

)
,

and that

E
(
eiθ1u1, e

iθ2u2, e
i(θ1+θ2)u3

)
= E(~u),

for any (θ1, θ2) ∈ R2, and any function ~u = (u1, u2, u3) ∈ H1(R× RN ,C3).

The main purpose of the paper, is to study existence and stability properties of standing

waves solution to (1.1). Let us recall that standing wave for (1.1) is a solution of the form

(ψ1(t, x), ψ2(t, x), ψ3(t, x)) with ψ1(t, x) = eiλ1tu1(x), ψ2(t, x) = eiλ2tu2(x) and ψ3(t, x) =

eiλ3tu3(x), where λ1, λ2, λ3 are real numbers and ~u ∈ H1(RN ,C3) satisfies the system of

elliptic equations 
−∆u1 + λ1u1 = |u1|p−2 u1 + αu3u2,

−∆u2 + λ2u2 = |u2|p−2 u2 + αu3u1,

−∆u3 + λ3u3 = |u3|p−2 u3 + αu1u2,

(1.4)

where λ3 = λ1 + λ2.

Under certain conditions, the existence, uniqueness and multiplicity of solutions of (1.4)

have been studied by many authors. We refer the reader to [14, 32, 37, 39] and the references

therein. In particular, the authors in [19, 20] studied the orbital stability of scalar solutions

(semi-trivial standing waves) for system (1.1) of the form (eiωtu, 0, 0), (0, eiωtu, 0), (0, 0, eiωtu),

where ω > 0 and u ∈ H1(RN ,R) is the unique positive radial solution of

−∆u+ ωu = |u|p−2u in RN .

In [17, 19], it is proved that when 2 < p < 2∗, (eiωtu, 0, 0) and (0, eiωtu, 0) are orbitally stable

for any α > 0, while (0, 0, eiωtu) is orbitally stable if 0 < α < ᾱ and it is orbitally unstable if
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α > ᾱ for a suitable positive constant ᾱ = ᾱ(N, p, ω) (see also [33] for dimensions N = 4, 5).

Solutions of the previous type with two trivial components are called scalar solutions.

In [1], it is instead proved the existence of stable standing waves (vector solutions) for the

system (1.1) with N = 1, 2 < p < 6 = 2∗ and α > 0, by minimizing the energy E(~u) on the

manifold

S(a1, a2) :=

{
~u ∈ H1(RN ,C3) s.t.

∫
RN
|u1|2 + |u3|2dx = a2

1,

∫
RN
|u2|2 + |u3|2dx = a2

2

}
,

(1.5)

where a1, a2 > 0. The results of [1] have been generalized in [28] to the higher dimensional

case and to the model (1.1) with potentials (see also [36]). It is worth mentioning that in

[37], the existence of non-scalar solutions were proved by minimizing the action function on

the Nehari manifold, provided the coupling parameter α is large enough.

In this paper, illuminated by [27] and [38], we aim to consider standing waves and their

stability for system (1.1) in the mass-critical or mass-supercritical regime and the energy

subcritical one, namely we cover the range of non-linearities 2∗ ≤ p < 2∗, where the corre-

sponding energy functional E(~u) is not always bounded from below on S(a1, a2). Note that

the coupling terms are of mass-subcritical type and sign-indefinite, then we are dealing with

a special mass-mixed case (i.e., the combination of mass-subcritical and mass-supercritical

terms), which is more complicated.

Before introducing the main results, we recall some definition (see also [5]).

Definition 1.1. We say that ~u0 is a ground state of (1.4) on S(a1, a2) if

dE|S(a1,a2)(~u0) = 0 and E(~u0) = inf
{
E(~u) s.t. dE|S(a1,a2)(u) = 0 and ~u ∈ S(a1, a2)

}
.

We say that ~v0 is an excited state of (1.4) on S(a1, a2) if

dE|S(a1,a2)(~v0) = 0 and E(~v0) > inf
{
E(~u) s.t. dE|S(a1,a2)(u) = 0 and ~u ∈ S(a1, a2)

}
.

The set of ground states will be denoted by G = Gp,α,N .

We emphasise, as in [1], that variational problems with the energy restricted on the mani-

fold S(a1, a2) is particularly appropriate for the study of the stability properties of the ground

states, as both the energy and the partial mass functionals Q1 and Q2 are conserved along

the flow generated by (1.1).

Definition 1.2. (i) We say that the set G is orbitally stable if G 6= ∅ and for any ε > 0, there

exists a δ > 0 such that, provided that an initial datum ~ψ(0) = (ψ1(0), ψ2(0), ψ3(0)) for (1.1)

satisfies

inf
~u∈G
‖~ψ(0)− ~u‖H1(RN ,C3) < δ,

then ~ψ is globally defined and

inf
~u∈G
‖~ψ(t)− ~u‖H1(RN ,C3) < ε ∀t > 0,

where ~ψ(t) is the solution to (1.1) corresponding to the initial condition ~ψ(0).

(ii) A standing wave (eiλ1tu1, e
iλ2tu2, e

iλ3tu3) is said to be strongly unstable if for any ε > 0

there exists ~ψ0 ∈ H1(RN ,C3) such that ‖~u − ~ψ0‖H1(RN ,C3) < ε, and ~ψ(t) blows-up in finite

time, namely Tmax <∞.
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Throughout this article, we are not only interested in proving existence of standing waves

and their stability properties, but also in proving suitable asymptotic results for different

regime on the involved parameters α, a1, and a2. To this aim, before stating our first main

result, we introduce another minimization problem:

m0(a1, a2) := inf
~u∈S(a1,a2)

E0(~u), (1.6)

where

E0(~u) :=
1

2

3∑
i=1

‖∇ui‖2L2(RN ) − Re

∫
RN

u1u2u3dx.

We can now state our main result regarding existence, stability, and mass-synchronised

asymptotic of the ground states.

Theorem 1. Let N ≤ 3, 2∗ ≤ p < 2∗, and α, a1, a2 > 0. There exists a positive explicit

constant D = D(N, p, α) such that if max{a1, a2} < D, we have:

(i) G is nonempty, i.e., there exists a ground state of (1.4) on S(a1, a2);

(ii) the set G is orbitally stable;

(iii) if ~u ∈ G, we fix α > 0, and assume a2 = a1 → 0, then we have

sup
~u∈G
‖~u(x)− κα−1~v0(κ

1
2x)‖H1(RN ,C3) = o(1),

where ~v0 is a minimizer for m0

(√
2‖w‖L2(RN ),

√
2‖w‖L2(RN )

)
, κ =

(
αa1√

2‖w‖
L2(RN )

) 4
4−N

and

w is the unique, real positive solution of −∆w + w = w2;

(iv) if ~u ∈ G then
∑3

i=1 ‖∇ui‖2L2(RN )
→ 0 as α→ 0.

We comment on the results given in Theorem 1 above.

Remark 1.3. To the best of the author’s knowledge, this is the first result dealing with the

existence and stability/instability results of standing waves for the Schrödinger system with

three waves interaction in the mass-critical/supercritical nonlinearities. Moreover, it is worth

mentioning that our result are not perturbative, indeed the constant D in the statement of

Theorem 1 is given by

D :=

(
3

αC3(N, p)

pγp − 2

2pγp −N

)N(p−2)−4
4(p−3)

(
p(4−N)

2(2pγp −N)Cp(N, p)

) 4−N
4(p−3)

, (1.7)

where C(N, p) is the best constant in the following Gagliardo-Nirenberg inequality,

‖u‖Lp(RN ) ≤ C(N, p)‖∇u‖γp
L2(RN )

‖u‖1−γp
L2(RN )

, ∀u ∈ H1(RN ,C), (1.8)

with

γp =
N(p− 2)

2p
. (1.9)

and p ∈ [2, 2∗).
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Remark 1.4. Theorem 1 shows that a ground state exists even if E|S(a1,a2) is unbounded

from below, and, for a1, a2 small enough, the ground state is indeed a least action solution

which reaches the infimum of the C1 action functional J(~u) = E(~u) +
∑3

i=1

(
λi
2 ‖ui‖

2
L2(RN )

)
among all nontrivial solutions to (1.4) (see [37, 39] for the existence of least action solutions),

where λi (i = 1, 2, 3) are the Lagrange multipliers corresponding the ground state.

Remark 1.5. The set G, containing a priori complex-valued ground states, has the following

structure:

G =
{

(eiθ1u1, e
iθ2u2, e

i(θ1+θ2)u3) s.t. θ1, θ2 ∈ R
}
,

where (u1, u2, u3) ∈ S(a1, a2) is a positive, radial ground state of (1.4). See the proof of

Theorem 1 later on.

Remark 1.6. The fact that G is orbitally stable indicates that the coupling term leads to

the stabilization of ground state standing waves corresponding to (1.1). It is worth recalling

that for the Schrödinger equation i∂tψ = −∆ψ − |ψ|p−2 ψ, for p in the mass supercritical

regime, the standing wave ψ = eiλtu is strongly unstable, see [11], where u ∈ H1(RN ) is the

unique positive radial solution of −∆u+ λu = |u|p−2 u for λ > 0.

Remark 1.7. In proving the existence of ground states, due to the indefinite sign of the

three wave interaction term in the corresponding energy functional, we need to introduce

additional constrain given by an inequality. This in turn makes appear further difficulties in

proving the compactness of related minimizing sequences, and is different from constrained

variational problems with a sign-definite type structure, see for example [3, 27, 34, 38, 40]. In

order to get the synchronised mass collapse behavior of the ground state of (1.4) on S(a1, a2)

(point (iii) in Theorem 1), we prove the existence of ground states for the limit system
−∆u1 + λ1u1 = u3u2,

−∆u2 + λ2u2 = u3u1,

−∆u3 + (λ1 + λ2)u3 = u1u2,

(1.10)

under the constraints

Q1(~u) = a2
1 and Q2(~u) = a2

2. (1.11)

If λ1 = λ2, the uniqueness of minimizer for m0(a1, a2) (see (1.6)) and ground state for (1.10)

are proved in [32, 39].

Remark 1.8. For N = 3, by replacing the constraints in (1.11) by three independent pre-

scribed mass constraints, namely we consider, for γ, µ, ν > 0,

‖u1‖2L2(R3) = γ, ‖u2‖2L2(R3) = µ, ‖u3‖2L2(R3) = ν

and by slightly modifying the proof of Lemma 3.6, we also give a positive answer to the open

problem proposed by Kurata and Osada in [28, Remark 4]. See the proof of Lemma 3.6 and

subsequent comments.

We now give the results related to the existence and properties of excited states. In what

follows, we consider mass-energy intracritical nonlinearities, namely 2∗ < p < 2∗.
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Theorem 2. Let N ≤ 3, 2∗ < p < 2∗, max{a1, a2} < D, and a1, a2 > 0. There exists

α0 = α0(a1, a2) > 0 such that, for any α > α0:

(i) there exists an excited state ~v = (v1, v2, v3) ∈ S(a1, a2), with associated Lagrange multi-

pliers λ1, λ2 > 0;

(ii) let a1 > 0 and a2 → 0+, then we have(
κ̃
− 1
p−2 v1(κ̃−

1
2x), v2(x), v3(x)

)
→ (wp, 0, 0) in H1(RN ,C3),

where κ̃ =

(
a21

‖wp‖2
L2(RN )

) p−2
2−pγp

and wp is the unique positive solution of −∆w+w = |w|p−2w.

Remark 1.9. Theorem 2 together with Theorem 1 yields the multiplicity of standing waves

for problem (1.1). This indicates that the coupling term not only makes the ground states

stable, but also enriches the solutions set. See the first paragraph of Subsection 1.1 for a

description of what happens from a physical point of view.

Remark 1.10. The condition max{a1, a2} < D in Theorem 1 and Theorem 2 not only

ensures that the corresponding energy functional E admits a convex-concave geometry, but

also guarantees the existence of a natural constraint (the Pohozaev manifold, see later on in

the paper), on which the critical points of E are indeed nontrivial solutions to the problem

(1.4). α > α0 is used for a better control of the energy level which excludes semi-trivial

solutions. Point (ii) of Theorem 2 draws an accurate semi-trivial limiting behavior of the

excited states as portion of the mass vanishes. The transition from mass-supercritical to

mass-critical regime greatly changes the geometry of E|S(a1,a2), preventing the appearance of

the excited state in the latter case. Moreover, if p = 2∗, similarly to the proof of Theorem

2, point (ii), the same semi-trivial limiting behavior of ground states obtained in Theorem 1

holds if and only if a2
1 = ‖wp‖2L2(RN )

. It is worth mentioning that similar semi-trivial limits

of ground states for mass-critical Schrödinger systems were obtained in [10, 22].

Based on the existence results on ground states and excited states, we can provide sufficient

conditions for the global dynamics of solutions.

Firstly, with a control on the energy by means of the excited state obtained in Theorem 2,

we show a global existence result. Define the Pohozaev functional P by

P (~u) :=

3∑
i=1

‖∇ui‖22 − γp
3∑
i=1

‖ui‖pp −
N

2
αRe

∫
RN

u1u2u3dx, (1.12)

then we have the following.

Theorem 3. Under the assumptions of Theorem 2, let ~ψ be the solution of (1.1) with initial

datum ~ψ0 ∈ S(a1, a2) such that P (~ψ0) > 0 and E(~ψ0) < E(~v). Then, ~ψ exists globally in

time.

Secondly, we are able to prove that under certain sufficient condition on the initial datum,

finite time blowing-up solutions exist.

Theorem 4. Under the assumption of Theorem 2, let ~ψ be the solution of (1.1) with initial

datum ~ψ0 ∈ S(a1, a2), P (~ψ0) < 0 and E(~ψ0) < E(~v). If |x|~ψ0 ∈ L2(RN ,C3), the solution



NLS SYSTEM WITH THREE WAVES INTERACTION 7

blows-up in finite time. The same conclusion holds true for N = 2, 3 if the solution is radial

and p ∈ (4, 6) for N = 2.

The previous Theorem implies the following instability result.

Corollary 1. The standing wave constructed ~ψ(t, x) =
(
eiλ1tv1, e

iλ1tv2, e
i(λ1+λ2)tv3

)
with ~v

as in Theorem 2 is strongly unstable.

Remark 1.11. The set

Λ0 := {~u ∈ S(a1, a2) s.t. P (~u) > 0 and E(~u) < E(~v)}

is not empty and contains not only small initial data in the sense of the L2(RN )-norm. Given

γ, µ, ν > 0, in the same manner we can look for solutions (u1, u2, u3) ∈ H1(RN ,C3) of (1.4)

satisfying the conditions ‖u1‖22 = γ, ‖u2‖22 = µ and ‖u3‖22 = ν. Such solutions are of interest

in physics and sometimes referred to as normalized solutions. In the present paper, we care

more about solutions of (1.4) with prescribed partial sum of masses. This is not only because

Q1(~u) and Q2(~u) are invariant with respect to the flow generated by (1.1) but also is suitable

for studying dynamics of (1.1).

Remark 1.12. The last remark is on the fact that similar results as the ones described

above, can be stated for α < 0, provided we replace u3 by −u3 in (1.4).

1.1. Physical background and motivations. The study of the model as described by

equations in (1.1) has a physical motivation, as the system (1.1) is a simplified model of

a quasilinear Zakharov system related to the Raman amplification in a plasma. Roughly

speaking, the Raman amplification is an instability phenomenon taking place when an inci-

dent laser field propagates into a plasma (see [25] and the introduction in [37]). As explained

in [37], the laser field, entering a plasma, is backscattered by a Raman type process and

the interaction of the two waves generates an electronic plasma wave. Then the three waves

together produce a change in the ions’ density which in turn affects the waves. This picture

is described by three Schrödinger equations coupled with a wave equation (a Zakharov type

system), as follows:

(
i (∂t + vC∂y) + α1∂

2
y + α2∆⊥

)
AC = b2

2 nAC − γ(∇ · E)ARe
−iθ,(

i (∂t + vR∂y) + β1∂
2
y + β2∆⊥

)
AR = bc

2 nAR − γ
(
∇ · E

)
ACe

iθ,

(i∂t + δ1∆)E = b
2nE + γ∇

(
ARACe

iθ
)
,(

∂2
t − v2

s∆
)
n = a∆

(
|E|2 + b |AC |2 + c |AR|2

)
,

(1.13)

where θ = k1y − k2
1δ1t, t ∈ R, y ∈ R, and ∆⊥ = ∂2

x + ∂2
z . In this system, AC denotes the

envelope of the incident laser field, AR is the backscattered Raman field, E is the electronic-

plasma wave and n is the variation of ions’ density. We refer to [17, 18] for a precise description

of the physical coefficients appearing in the equations above.

After proving the local well-posedness of (1.13), in order to study the solitary waves towards

an analysis of the global dynamics, the authors of [19] needed to introduce some modifications

on (1.13), eventually leading to the system (1.1) studied in this paper. For the reader’s

convenience and sake of clarity, we report here the few steps as in [19] to derive the desired

three NLS system.
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In (1.13), by writing E = Feiθ, by considering a trivial density of ions, i.e., n = 0, and by

neglecting the ∇ terms, the longitudinal dispersion terms ∂2
y , and the transverse ones ∆⊥,

one reduces to the simplified system
(i∂t + α2∆⊥)AC = −γik1FAR,

(i∂t + β2∆⊥)AR = γik1FAC ,

(i∂t + δ1∆)F = ik1γARAC .

(1.14)

In order to model nonlinear effects, the other nonlinear terms as appearing in (1.1), were

added in [19], hence by a simple change of variables, and the introduction of the power-type

nonlinear terms, one gets 
i∂tv1 = −∆v1 − |v1|p−2 v1 − αv3v2,

i∂tv2 = −∆v2 − |v2|p−2 v2 − αv3v1,

i∂tv3 = −∆v3 − |v3|p−2 v3 − αv1v2,

which is (1.1).

1.2. Notations. In the paper, we use the following notations. x ∈ RN , N ≤ 3, t ∈ R, Lp =

Lp(RN ) with norm ‖f‖Lp(RN ) = ‖f‖p, H1(RN ) is the usual Sobolev space, with H1(RN ,C3)

or H1(RN ,R3) for vector valued functions, or H1(RN ,R) and H1(RN ,C) for scalar functions.

H−1(RN ) denote the dual space of H1(RN ).
∫
RN fdx is denoted simply by

∫
f . Re and Im

are for the real and imaginary part of a complex number, and z stands for the complex

conjugate of z.

2. Preliminaries

In this section, we give some preliminaries useful for the rest of the paper.

Lemma 2.1. Let N ≤ 3, 2∗ ≤ p < 2∗, and (u1, u2, u3) ∈ H1(RN ,C3) be a solution to (1.4).

Then the following identity holds true:

3∑
i=1

∫
|∇ui|2 = γp

3∑
i=1

∫
|ui|p +

N

2
αRe

∫
u1u2u3. (2.1)

Proof. Multiplying both sides of the equation in (1.4) by ui (i = 1, 2, 3), integrating over RN
and taking the real part, adding these three equalities together, we have

3∑
i=1

‖∇ui‖22 +

3∑
i=1

λi‖ui‖22 =

3∑
i=1

‖ui‖pp + 3αRe

∫
u1u2u3. (2.2)

Multiplying both sides of the first equation by x · ∇u1, integrating over RN and taking the

real part, we get

−Re

∫
∆u1x · ∇u1 + λ1Re

∫
u1x · ∇u1 = Re

∫
|u1|p−2u1x · ∇u1 + Re

∫
u3u2x · ∇u1.

By direct calculations, we obtain

−Re

∫
∆u1x · ∇u1 =

N − 2

2
‖∇u1‖22, Re

∫
u1x · ∇u1 =

N

2
‖u1‖22,
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Re

∫
|u1|p−2u1x · ∇u1 =

N

p
‖u1‖pp,

and

Re

∫
u3u2x · ∇u1 = −NRe

∫
u1u2u3 − Re

∫
u1u2x · ∇u3 − Re

∫
u1u3x · ∇u2.

Therefore, we get

−N − 2

2
‖∇u1‖22 −

N

2
λ1‖u1‖22 = −N

p
‖u1‖pp −NαRe

∫
u1u2u3 − αRe

∫
u1u2x · ∇u3

− αRe

∫
u1u3x · ∇u2.

(2.3)

Similarly, by multiplying both sides of the second and third equation of (1.4) with x · ∇u2

and x · ∇u3, respectively, integrating over RN and taking the real part, we have

− N − 2

2
‖∇u2‖22 −

N

2
λ2‖u2‖22 = −N

p
‖u2‖pp + αRe

∫
u3u1x · ∇u2 (2.4)

and

− N − 2

2
‖∇u3‖22 −

N

2
λ3‖u3‖22 = −N

p
‖u3‖pp + αRe

∫
u1u2x · ∇u3. (2.5)

By adding (2.3)-(2.5), we obtain

N − 2

2

3∑
i=1

‖∇ui‖22 +
N

2

3∑
i=1

λi‖ui‖22 =
N

p

3∑
i=1

‖ui‖pp + αNRe

∫
u1u2u3. (2.6)

Combining (2.2) and (2.6), it gives that

3∑
i=1

‖∇ui‖22 =
N(p− 2)

2p

3∑
i=1

‖ui‖pp +
N

2
αRe

∫
u1u2u3.

The proof is complete. �

We now introduce the L2-norm-preserving dilation operator

s ? ~u(x) :=
(
s
N
2 u1(sx), s

N
2 u2(sx), s

N
2 u3(sx)

)
with s > 0. As lim

s→∞
E(s ? ~u) = −∞, we see that inf

~u∈S(a1,a2)
E(~u) = −∞ for 2∗ < p < 2∗.

Furthermore, we introduce (see [3]) the Pohozaev set

Pa1,a2 :=

{
~u ∈ S(a1, a2) : P (~u) :=

3∑
i=1

‖∇ui‖22 − γp
3∑
i=1

‖ui‖pp −
N

2
αRe

∫
u1u2u3 = 0

}
,

(2.7)

where γp is given in (1.9).

The Pohozaev set Pa1,a2 is related to the fiber maps

Ψ~u(s) = E(s ? ~u) =
s2

2

3∑
i=1

∫
|∇ui|2 −

spγp

p

3∑
i=1

∫
|ui|p − s

N
2 αRe

∫
u1u2u3. (2.8)
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Indeed, we have sΨ′~u(s) = P (s ? ~u). Note that Pa1,a2 can be divided into the disjoint union

Pa1,a2 = P+
a1,a2 ∪ P

0
a1,a2 ∪ P

−
a1,a2 , where

P+
a1,a2 :=

{
~u ∈ Pa1,a2 s.t. Ψ′′~u(1) > 0

}
,

P0
a1,a2 :=

{
~u ∈ Pa1,a2 s.t. Ψ′′~u(1) = 0

}
,

P−a1,a2 :=
{
~u ∈ Pa1,a2 s.t. Ψ′′~u(1) < 0

}
.

(2.9)

We first study the case 2∗ < p < 2∗, namely the mass-energy intracritical case. To show

that the energy functional E|S(a1,a2) has a concave-convex geometry (i.e., a structure with a

local minimum and a global maximum, where the local minimum is strictly less than zero

and the global maximum is strictly greater than zero; see Lemma 2.2 below), we introduce

the following constraint:

M :=

{
(u1, u2, u3) ∈ H1(RN ,C3) s.t. Re

∫
u1u2u3 > 0

}
. (2.10)

In the spirit of Soave [38] and Wei and Wu [40], for ~u ∈ M, we see that the presence of

the mass subcritical terms Re
∫
u1u2u3 induces a convex-concave geometry of E|S(a1,a2) if

α > 0 and a1, a2 > 0 are small. For ~u ∈ S(a1, a2), we have ‖u1‖2 ≤ a1, ‖u2‖2 ≤ a2 and

‖u3‖2 ≤ min{a1, a2}. By Gagliardo-Nirenberg inequality and Young inequality, we have

1

p

3∑
i=1

‖ui‖pp ≤
1

p
Cp(N, p)

(
2∑
i=1

a
p(1−γp)
i ‖∇ui‖

pγp
2 + max

{
a
p(1−γp)
1 , a

p(1−γp)
2

}
‖∇u3‖

pγp
2

)

≤ A1

(
3∑
i=1

‖∇ui‖22

) pγp
2

,

(2.11)

where A1 := Cp(N,p)
p (max{a1, a2})p(1−γp). Similarly, we have

∣∣∣∣αRe

∫
u1u2u3

∣∣∣∣ ≤ α ∫ |u1||u2||u3|

≤ α

3
C3(N, p) (max{a1, a2})3−3γ3

(
3∑
i=1

‖∇ui‖22

) 3γ3
2

= A2

(
3∑
i=1

‖∇ui‖22

)N
4

,

(2.12)
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where A2 := α
3C

3(N, p) (max{a1, a2})
6−N

2 . Then, combining (2.11) and (2.12) with the den-

tition of the energy, we get

E(~u) =

3∑
i=1

(
1

2
‖∇ui‖22 −

1

p
‖ui‖pp

)
− αRe

∫
u1u2u3

≥ 1

2

3∑
i=1

‖∇ui‖22 −A1

(
3∑
i=1

‖∇ui‖22

) pγp
2

−A2

(
3∑
i=1

‖∇ui‖22

)N
4

= h

( 3∑
i=1

‖∇ui‖22

) 1
2

 ,

(2.13)

where

h(ρ) =
ρ2

2
−A1ρ

pγp −A2ρ
N
2 . (2.14)

The next Lemma below shows that the functional E has a concave-convex structure on

S(a1, a2).

Lemma 2.2. Let N ≤ 3, 2∗ < p < 2∗, and α, a1, a2 > 0. Let D be as in (1.7) and h as in

(2.14).

(i) If max{a1, a2} < D, then h(ρ) has a local minimum at negative level and a global maximum

at positive level. Moreover, there exist R0 = R0(a1, a2), R1 = R1(a1, a2), and ρ∗ such that,

R0 < max{a1, a2}D−1ρ∗ < ρ∗ < R1, and

h(R0) = h(R1) = 0, h(ρ) > 0 ⇐⇒ ρ ∈ (R0, R1).

(ii) If max{a1, a2} = D, then h(ρ) has a local minimum at negative level and a global maxi-

mum at level zero. Moreover, we have

h(ρ∗) = 0 and h(ρ) < 0 ⇐⇒ ρ ∈ (0, ρ∗) ∪ (ρ∗,+∞).

Proof. (i) We first prove that h has exactly two critical points. Indeed,

h′(ρ) = 0⇐⇒ ĥ(ρ) =
NA2

2
, with ĥ(ρ) = ρ2−N

2 − pγpA1ρ
pγp−N2 .

We have that ĥ(ρ) is increasing on [0, ρ̄) and decreasing on (ρ̄,+∞), with the point ρ being

ρ̄ =
(

4−N
pγp(2pγp−N)A1

) 1
pγp−2

. Since 2 < pγp, we get

max
ρ≥0

ĥ(ρ) = ĥ(ρ̄) =
2pγp − 4

2pγp −N

(
4−N

pγp(2pγp −N)A1

) 4−N
2pγp−4

>
NA2

2

if and only if

max{a1, a2} < D0 :=

(
3

αC3(N, p)

2(2pγp − 4)

N(2pγp −N)

)N(p−2)−4
4(p−3)

(
4−N

γp(2pγp −N)Cp(N, p)

) 4−N
4(p−3)

.

As lim
s→0+

ĥ(s) = 0+ and lim
s→+∞

ĥ(s) = −∞, we see that h has exactly two critical points if

max{a1, a2} < D0.



12 L. FORCELLA, X. LUO, T. YANG, AND X. YANG

Notice that

h(ρ) > 0⇐⇒ h̃(ρ) > A2 with h̃(ρ) =
1

2
ρ2−N

2 −A1ρ
pγp−N2 .

It is not difficult to check that h̃(ρ) is increasing on [0, ρ0) and decreasing on (ρ0,+∞), where

ρ0 =
(

4−N
2(2pγp−N)A1

) 1
pγp−2

. We have

max
ρ≥0

h̃(ρ) = h̃(ρ0) =
pγp − 2

2pγp −N

(
4−N

2(2pγp −N)A1

) 4−N
2pγp−4

> A2

provided

max{a1, a2} < D :=

(
3

αC3(N, p)

pγp − 2

2pγp −N

)N(p−2)−4
4(p−3)

(
p(4−N)

2(2pγp −N)Cp(N, p)

) 4−N
4(p−3)

.

We have h(ρ) > 0 on an open interval (R0, R1) if and only if max{a1, a2} < D. We claim

that D < D0. To this purpose, we only need to prove that
(

4
N

)N(p−3)
(

1
p−2

)4−N
> 1 holds.

As in [38, Lemma 5.2], by letting z = 4
N , y = p− 2, we have(

4

N

)N(p−3)( 1

p− 2

)4−N
> 1⇐⇒ zy−1 > yz−1.

Since log z
z−1 is a monotone decreasing function for z > 0, we have D < D0.

If max{a1, a2} < D, combining lims→0+ h(s) = 0− and lims→+∞ h(s) = −∞, we see that

h has a local minimum point at negative level in (0, R0) and a global maximum point at

positive level in (R0, R1). Define

ρ∗ :=

(
p(4−N)

2(2pγp −N)Cp(N, p)

) 1
pγp−2

D
− p(1−γp)

pγp−2 , (2.15)

then ρ∗ < ρ0. By direct calculation, we have

h̃(ρ∗) >
1

2
(ρ∗)2−N

2 − C(N, p)

p
Dp(1−γp)(ρ∗)pγp−

N
2 =

α

3
C3(N, p)D

6−N
2 > A2,

then h(ρ∗) > 0 and ρ∗ > R0. Note that ρ∗ is independent of a1, a2. In addition, it holds that

h̃

(
max{a1, a2}

D
ρ∗
)

=
1

2

(
max{a1, a2}

D

) 4−N
2

(ρ∗)2−N
2 −A1

(
max{a1, a2}

D

)N(p−3)
2

(ρ∗)pγp−
N
2

>

(
max{a1, a2}

D

) 4−N
2 α

3
C3(N, p)D

6−N
2 > A2.

(ii) Similarly to the proof of (i), we have

R0 = ρ̄ = ρ0 = ρ∗ = R1, h̃(ρ0) = A2, ĥ(ρ̄) >
N

2
A2.

�
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Next, we study the structure of the manifold

P̄a1,a2 := Pa1,a2 ∩M. (2.16)

We will observe that a critical point for the functional E on P̄a1,a2 is a critical point for the

functional E on S(a1, a2). Hence, P̄a1,a2 is a natural constraint.

Lemma 2.3. Let N ≤ 3, 2∗ < p < 2∗, and α, a1, a2 > 0. If max{a1, a2} ≤ D, then

P0
a1,a2 = ∅, and the set P̄a1,a2 is a C1-submanifold of codimension 1 in S(a1, a2).

Proof. We adopt the Soave’s argument from [38]. It is sufficient to prove that P0
a1,a2 is empty.

Indeed, if P0
a1,a2 = ∅, we show that P̄a1,a2 is a C1-submanifold of codimension 1 in S(a1, a2).

Assume by contradiction that there exists a ~u ∈ P0
a1,a2 such that P (~u) = 0, thus

Ψ′′~u(0) =

3∑
i=1

∫ (
2|∇ui|2 − pγ2

p |ui|p
)
− N2

4
αRe

∫
u1u2u3 = 0.

Let

f(y) : = yΨ′~u(0)−Ψ′′~u(0)

= (y − 2)
3∑
i=i

∫
|∇ui|2 − (y − pγp)γp

3∑
i=i

∫
|ui|p −

(
y − N

2

)
N

2
αRe

∫
u1u2u3,

and observe thatf(y) = 0, ∀y ∈ R. Therefore, it follows from f
(
N
2

)
= 0 that(

2− N

2

) 3∑
i=2

‖∇ui‖22 = γp

(
pγp −

N

2

) 3∑
i=2

‖ui‖pp. (2.17)

By (2.11) and (2.17), we have(
3∑
i=1

‖∇ui‖22

) 1
2

≥
(

4−N
γp(2pγp −N)Cp(N, p)

) 1
pγp−2

(max{a1, a2})
−
p(1−γp)
pγp−2 .

Since f(pγp) = 0, we get

(pγp − 2) =

(
pγp −

N

2

)
N

2

(
3∑
i=1

‖∇ui‖22

)−1

αRe

∫
u1u2u3

≤
(
pγp −

N

2

)
N

2
A2

(
4−N

γp(2pγp −N)Cp(N, p)

) N−4
2pγp−4

(max{a1, a2})
p(1−γp)(4−N)

2pγp−4 ,

which is a contradiction with respect to the hypothesis max{a1, a2} ≤ D < D0.

We now prove that P̄a1,a2 is a smooth manifold of codimension 1 in S(a1, a2). We know

that P̄a1,a2 is defined by P (~u) = 0, G1(u1, u2) = 0, G2(u2, u3) = 0 and G(u1, u2, u3) > 0

where

G1(u1, u3) = ‖u1‖22 + ‖u3‖22 − a2
1, G2(u2, u3) = ‖u2‖22 + ‖u3‖22 − a2

2,

and

G(u1, u2, u3) = Re

∫
u1u2u3.
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Since P , G1, G2, and G are of C1-class, the proof is complete provided we show that the map

d(P,G1, G2, G) : H1(RN ,C3)→ R4 is surjective, for every

(u1, u2, u3) ∈
(
G−1

1 (0)×G−1
2 (0)

)
∩G−1(0) ∩ P−1(0).

If this is not true, dP (~u) has to be linearly dependent from dG1(u1, u3), dG2(u2, u3), and

dG(u1, u2, u3), i.e. there exist ν1, ν2, ν3 ∈ R such that
Re
∫

2∇u1∇ϕ1 + 2ν1u1ϕ1 + ν3αu3u2ϕ1 = Re
∫
pγp|u1|p−2u1ϕ1 + Nα

2 u3u2ϕ1,

Re
∫

2∇u2∇ϕ2 + 2ν2u2ϕ2 + ν3αu3u1ϕ2 = Re
∫
pγp|u2|p−2u2ϕ2 + Nα

2 u3u1ϕ2,

Re
∫

2∇u3∇ϕ3 + 2(ν1 + ν2)u3ϕ3 + ν3αu1u2ϕ3 = Re
∫
pγp|u3|p−2u3ϕ3 + Nα

2 u1u2ϕ3.

(2.18)

Testing (iϕ1, iϕ2, iϕ3) instead of (ϕ1, ϕ2, ϕ3) and using the fact Re(iz) = −Im(z), we even-

tually obtain
∫

2∇u1∇ϕ1 + 2ν1u1ϕ1 + ν3αu3u2ϕ1 =
∫
pγp|u1|p−2u1ϕ1 + Nα

2 u3u2ϕ1,∫
2∇u2∇ϕ2 + 2ν2u2ϕ2 + ν3αu3u1ϕ2 =

∫
pγp|u2|p−2u2ϕ2 + Nα

2 u3u1ϕ2,∫
2∇u3∇ϕ3 + 2(ν1 + ν2)u3ϕ3 + ν3αu1u2ϕ3 =

∫
pγp|u3|p−2u3ϕ3 + Nα

2 u1u2ϕ3,

for every (ϕ1, ϕ2, ϕ3) ∈ C∞0 × C∞0 × C∞0 . Therefore, (u1, u2, u3) satisfies
−2∆u1 + 2ν1u1 + ν3αu3u2 = pγp|u1|p−2u1 + Nα

2 u3u2,

−2∆u2 + 2ν2u2 + ν3αu3u1 = pγp|u2|p−2u2 + Nα
2 u3u2,

−2∆u3 + 2(ν1 + ν2)u3 + ν3αu1u2 = pγp|u3|p−2u3 + Nα
2 u1u2.

The Pohozaev identity for the above system is

3∑
i=1

∫ (
2|∇ui|2 − pγ2

p |ui|p
)
− N

2

(
N

2
− ν3

)
αRe

∫
u1u2u3 = 0.

Then
3∑
i=1

∫ (
2|∇ui|2 − pγ2

p |ui|p
)

= 0.

Since

(u1, u2, u3) ∈ (G−1
1 (0)×G−1

2 (0)) ∩G−1(0) ∩ P−1(0),

we have
3∑
i=1

∫
|∇ui|2 = γp

3∑
i=1

∫
|u|p,

which is a contradiction. By [34, Proposition A.1], we get that if inf
~u∈P̄a1,a2

E = E(u1, u2, u3),

then there exist λi ∈ R (i = 1, 2, 3, 4) such that
−(1 + λ4)∆u1 + λ1u1 + λ3αu3u2 =

(
1 +

pγpλ4
2

)
|u1|p−2u1 +

(
1 + Nλ4

4

)
αu3u2,

−(1 + λ4)∆u2 + λ2u2 + λ3αu3u1 =
(

1 +
pγpλ4

2

)
|u2|p−2u2 +

(
1 + Nλ4

4

)
αu3u1,

−(1 + λ4)∆u3 + (λ1 + λ2)u3 + λ3αu1u2 =
(

1 +
pγpλ4

2

)
|u3|p−2u3 +

(
1 + Nλ4

4

)
αu1u2.
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Therefore, by combining G(u1, u2, u3) > 0 with [16, Theorem 1] or the proof of [34, Proposi-

tion A.1], we have λ3 = 0. Thus, we obtain that the restricted set M does not change the

structure of the manifold Pa1,a2 . In conclusion, P̄a1,a2 is a smooth manifold of codimension

1 on S(a1, a2). �

Lemma 2.4. Let N ≤ 3, 2∗ < p < 2∗, and α, a1, a2 > 0. If max{a1, a2} < D, for ~u ∈
S(a1, a2) ∩M, then the function Ψ~u(s) has exactly two critical points s~u < σ~u ∈ R and two

zeros c~u < d~u with s~u < c~u < σ~u < d~u. Moreover, we have the properties below:

(i) s~u ? ~u ∈ P+
a1,a2 and σ~u ? ~u ∈ P−a1,a2. Moreover, if s ? ~u ∈ Pa1,a2, then either s = s~u or

s = σ~u,

(ii) s~u < R0

(∑3
i=1 ‖∇ui‖22

)− 1
2

and

Ψ~u(s~u) = inf

Ψ~u(s) : s ∈

0, R0

(
3∑
i=1

‖∇ui‖22

)− 1
2

 < 0,

(iii) E (σ~u ? ~u) = max
s∈R

E (s ? ~u) > 0,

(iv) The maps ~u 7→ s~u ∈ R and ~u 7→ σ~u ∈ R are of class C1.

Proof. Let ~u ∈ S(a1, a2), we have s ? ~u ∈ Pa1,a2 if and only if Ψ′~u(s) = 0, Ψ defined in (2.8).

By (2.13)-(2.14), we get

Ψ~u(s) = E (s ? ~u) ≥ h

s( 3∑
i=1

‖∇ui‖22

) 1
2

 .

If max{a1, a2} < D, from Lemma 2.1, point (i), Ψ~u(s) is positive in the intervalR0

(
3∑
i=1

‖∇ui‖22

)− 1
2

, R1

(
3∑
i=1

‖∇ui‖22

)− 1
2

 ,

and we have the asymptotic behavior lim
s→−∞

Ψ~u(s) = 0−, lim
s→+∞

Ψ~u(s) = −∞, thus we can see

that Ψ~u(s) has a local minimum point s~u in

(
0, R0

(∑3
i=1 ‖∇ui‖22

)− 1
2

)
and a global max-

imum point σ~u in

(
R0

(∑3
i=1 ‖∇ui‖22

)− 1
2
, R1

(∑3
i=1 ‖∇ui‖22

)− 1
2

)
. It follows from Lemma

2.1 that Ψ~u(s) has no other critical points.

Since Ψ′′~u(s~u) ≥ 0, Ψ′′~u(σ~u) ≤ 0 and P0
a1,a2 = ∅, we know that s~u ? ~u ∈ P+

a1,a2 and σ~u ? ~u ∈
P−a1,a2 . By the monotonicity and the behavior at infinity of Ψ~u(s), we get that Ψ~u(s) has

exactly two zeros c~u < d~u with s~u < c~u < σ~u < d~u. Thus, the conclusions (i)-(iii) follows

from the facts above. Finally, applying the Implicit Function Theorem to the C1 function

g : R × S(a1, a2) 7→ R defined by g = g(s, ~u) = Ψ′~u(s). Therefore, we have that ~u 7→ s~u is

of class C1 because g~u(s~u) = 0 and ∂sg~u(s~u) = Ψ′′~u(s~u) > 0. Similarly, we can prove that

~u 7→ σ~u ∈ R is of class C1, and (iv) follows. �
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3. Proof of Theorem 1

In this section, we give a proof of Theorem 1, and we divide it into two cases: p = 2∗ and

2∗ < p < 2∗. We first prove several results eventually leading to the conclusions of Theorem

1.

3.1. Mass-energy intracritical case. Let c > 0, and for N ≤ 3 we consider 2∗ < p < 2∗.

We introduce the following complex valued equation:{
−∆u+ λu = |u|p−2u, u ∈ H1(RN ,C),∫
|u|2 = c2.

(3.1)

From [13, 29, 30, 38], the solutions of (3.1) corresponds to the critical points of the functional

J : H1(RN ,C)→ R,

J(u) =
1

2

∫
|∇u|2 − 1

p

∫
|u|p, (3.2)

constrained on the sphere

S(c) = {u ∈ H1(RN ) s.t. ‖u‖22 = c2},

and the parameter λ appears as a Lagrange multiplier. We introduce the Pohozaev-type

constraint for the single equations (3.1)

Pc :=
{
u ∈ H1(RN ,C) ∩ S(c) s.t. ‖∇u‖22 = γp‖u‖pp

}
, (3.3)

recalling that γp = N(p−2)
2p . Define

m(c) = inf
Pc
J(u) > 0. (3.4)

The next Lemma, see [23, Lemma 2.3], ensures that the infimum m(c) above is the same if

we restrict to real functions.

Lemma 3.1. Let c > 0, N ≤ 3, and 2∗ < p < 2∗. We have that

m(c) = inf
H1(RN ,R)∩Pc

J(u),

and m(c) is strictly decreasing with respect to c. Moreover, any normalized solution of (3.1)

has the form eiσU , where σ ∈ R and U is a positive, radial decreasing normalized solution of

(3.1).

Let us introduce the set

Bρ∗ :=

~u ∈ H1(RN ,C3) s.t.

(
3∑
i=1

‖∇ui‖22

) 1
2

< ρ∗


and

V (a1, a2) := S(a1, a2) ∩Bρ∗ ∩M,

whereM is defined in (2.10) and ρ∗ in (2.15). Thus, we can define the following minimization

problem: for any positive a1 and a2 such that max{a1, a2} < D, let

m(a1, a2) := inf
~u∈V (a1,a2)

E(~u). (3.5)
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Lemma 3.2. Let N ≤ 3, 2∗ < p < 2∗, and α, a1, a2 > 0. If max{a1, a2} < D, the set P+
a1,a2

is contained in V (a1, a2) and

m(a1, a2) = m+(a1, a2) := inf
~u∈P+

a1,a2
∩M

E(~u) = inf
~u∈P̄a1,a2

E(~u) < 0. (3.6)

Moreover, there exists ε0 > 0 such that for any 0 < ε < ε0

m(a1, a2) < inf
S(a1,a2)∩(Bρ∗\Bρ∗−ε)

E(~u).

Proof. For ~u ∈ V (a1, a2), we have

E(~u) ≥ h

( 3∑
i=1

‖∇ui‖22

) 1
2

 ≥ min
ρ∈[0,R0]

h(ρ) > −∞,

where R0 and h are given in Lemma 2.2. For a function ~u ∈ S(a1, a2)∩M, there exists s0 > 0

small enough such that s0 ? ~u ∈ Bρ0 and E(s0 ? ~u) < 0. Hence, we get m(a1, a2) ∈ (−∞, 0).

From Lemma 2.4, we have P+
a1,a2 ∩ M ⊂ V (a1, a2), and then m(a1, a2) ≤ inf

P+
a1,a2

∩M
E. In

addition, if ~u ∈ V (a1, a2), s~u ? ~u ∈ P+
a1,a2 ⊂ V (a1, a2), we get

E (s~u ? ~u) = min {E(s ? ~u) : s ∈ R and s ? ~u ∈ V (a1, a2)} ≤ E(~u),

and it follows that inf
P+
a1,a2

∩M
E ≤ m(a1, a2). By Lemma 2.4, E(~u) > 0 on P−a1,a2 , so we

conclude that m(a1, a2) = inf
~u∈P̄a1,a2

E(~u) = inf
~u∈P+

a1,a2
∩M

E(~u).

There exists ε > 0 small enough such that, if ρ ∈ [ρ∗ − ε, ρ∗], we have h(ρ) ≥ m(a1,a2)
2 , and

then

E(~u) ≥ h

 3∑
j

‖∇uj‖22

 ≥ m(a1, a2)

2
> m(a1, a2),

for any ~u ∈ S(a1, a2) and ρ∗− ε ≤
∑3

j ‖∇uj‖22 ≤ ρ∗, where in the last inequality we used the

fact that m is negative. �

Let ~u belong to H1(RN ,C3). E(|~u|) ≤ E(~u), and by the symmetric rearrangement, see

[9, 31],

‖∇|ui|∗‖2 ≤ ‖∇|ui|‖2 ≤ ‖∇ui‖2, ‖|ui|∗‖p = ‖ui‖p,
and ∫

|u1||u2||u3| ≤
∫
|u1|∗|u2|∗|u3|∗,

where |ui|∗ is the Schwarz symmetric rearrangement of |ui|, for i = 1, 2, 3. Then E(|~u|∗) ≤
E(|~u|) ≤ E(~u), where the short notation |~u|∗ stands for |~u|∗ = (|u1|∗, |u2|∗, |u3|∗). Let us

consider (v1, v2, v3) ∈ H1(RN ,R3) a solution to the system (1.4), namely
−∆v1 + λ1v1 = |v1|p−2 v1 + αv3v2,

−∆v2 + λ2v2 = |v2|p−2 v2 + αv3v1,

−∆v3 + (λ1 + λ2)v3 = |v3|p−2 v3 + αv1v2.

(3.7)

Denote

Pr,a1,a2 :=
{
~v ∈ H1

r (RN ,R3) ∩ S(a1, a2) s.t. P (~v) = 0
}
,
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and

P+
r,a1,a2 := H1

r (RN ,R3) ∩ P+
a1,a2 .

The notation H1
r (RN ,R3) denotes the subspace of functions in H1(RN ,R3) which are radially

symmetric. We set

m+
r (a1, a2) := inf

~u∈P+
r,a1,a2

∩M
E(~u), (3.8)

and

W+
r :=

{
~u ∈ H1

r (RN ,R3) ∩ S(a1, a2) s.t. E(~u) = m+
r (a1, a2)

}
.

We have the following.

Lemma 3.3. Let N ≤ 3, 2∗ < p < 2∗, and α, a1, a2 > 0. If max{a1, a2} < D, then

m+
r (a1, a2) = inf

~u∈P+
r,a1,a2

∩M
E(~u) = inf

~u∈P+
a1,a2

∩M
E(~u).

Moreover, if inf
P+
a1,a2

∩M
E is reached, it is reached by a Schwartz radially symmetric function.

More precisely, inf
P+
a1,a2

∩M
E is reached by the vector function (eiθ1w1, e

iθ1w2, e
i(θ1+θ2)w3) where

~w is the minimizer for inf
P+
r,a1,a2

E and (θ1, θ2) ∈ R2.

Proof. It follows from P+
r,a1,a2 ⊂ P

+
a1,a2 that inf

P+
r,a1,a2

∩M
E ≥ inf

P+
a1,a2

∩M
E. From Lemma 2.4, for

any ~u ∈ S(a1, a2) ∩M, there exists s+
~u ∈ R such that s+

~u ? ~u ∈ P
+
a1,a2 , and

inf
~u∈P+

a1,a2
∩M

E(~u) = inf
~u∈S(a1,a2)∩M

min
−∞<σ≤s+

~u

E(σ ? ~u).

For ~u ∈ S(a1, a2), let ~w ∈ Sr(a1, a2) be the Schwarz rearrangement of (|u1|, |u2|, |u3|), i.e.

(w1, w2, w3) := (|u1|∗, |u2|∗, |u3|∗). Then, we have for all σ > 0, E(σ? ~w) ≤ E(σ?~u). Recalling

that Ψ′~u(σ) = P (σ ? ~u) (see (2.8)), we have

lim
σ→−∞

Ψ′~w(σ) ≤ lim
σ→−∞

Ψ′~u(σ) < 0 and Ψ′′~w(σ) ≤ Ψ′′~u(σ) ∀ σ > −∞.

It follows that −∞ < s+
~u ≤ s

+
~w . Therefore, we have

min
−∞<σ<s+

~w

E(σ ? ~w) ≤ min
−∞<σ<s+

~u

E(σ ? ~u),

and then inf
P+
r,a1,a2

∩M
E ≤ inf

P+
a1,a2

∩M
E.

First, we set ~v := (eiθ1w1, e
iθ2w2, e

i(θ1+θ2w3), where θ1, θ2 ∈ R and E(~w) = m+
r (a1, a2). Then,

~v ∈ S(a1, a2) and

E(~v) =
1

2

3∑
j=1

‖∇wi‖22 −
1

p

3∑
j=1

‖wi‖pp − αRe

∫
eiθ1w1e

iθ2w2e
−i(θ1+θ2)w3 = E(~w).

Thus,
{

(eiθ1w1, e
iθ2w2, e

i(θ1+θ2)w3) s.t. θ1, θ2 ∈ R, ~w ∈W+
r

}
⊂ G.
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We claim that for any ~u ∈ G, ~w := (|u1|∗, |u2|∗, |u3|∗) ∈ H1
r (RN ,R3)∩S(a1, a2), the Schwarz

rearrangement of (|u1|, |u2|, |u3|), belongs to P+
r,a1,a2 . Indeed, if

∑3
i=1 ‖∇wi‖22 <

∑3
j=1 ‖∇ui‖22

or Re
∫
u1u2u3 > Re

∫
w1w2w3, then E(~u) < E(~w). We have

inf
~u∈P+

a1,a2
∩M

E(~u) = inf
~u∈S(a1,a2)∩M

min
−∞<σ≤s+

~u

E(σ ? ~u)

≤ min
−∞<σ≤s+

~w

E(σ ? ~w) < min
−∞<σ≤s+

~w

E(σ ? ~u)

= inf
~u∈P+

a1,a2
∩M

E(~u),

which is a contradiction. In the chain of relations above, we used in order: the definition,

the fact that ~w ∈ S(a1, a2), the relation E(~u) < E(~w), in the last identity we employed

the inequality s+
~u ≤ s+

~w , and the fact that u is in the set of ground states G. Therefore,

~w ∈ P+
r,a1,a2 and E(~w) = E(~u). We set ũj(x) :=

uj(x)
|uj(x)| , j = 1, 2, 3. Since |ũj | = 1, we get

Re(ũj∇ũj) = 0,

∇uj = (∇(|uj |))ũj + |uj |∇ũj = ũj
(
∇(|uj |) + |uj |ũj∇ũj

)
,

and |∇uj |2 = |∇(|uj |)|2+|uj |2|∇ũj |2. Since E(~w) = E(~u), we have E(~u0) = E(|u1|, |u2|, |u3|),
and it follows that

3∑
j=1

‖∇|uj |‖22 − α
∫
|u1||u2||u3| =

3∑
j=1

‖∇uj‖22 − αRe

∫
u1u2u3.

Since ‖∇|uj |‖22 ≤ ‖∇uj‖22 and Re
∫
u1u2u3 ≤

∫
|u1||u2||u3|, we see that ‖∇|uj |‖22 = ‖∇uj‖22

for j = 1, 2, 3, and

Re

∫
u1u2u3 =

∫
|u1||u2||u3|. (3.9)

By a direct calculation
∫
|uj |2|∇ũj |2 = 0, and for all x ∈ RN we have ũj(x) ≡ 1, then there

exists θj ∈ R such that uj(x) = eiθjρj(x) on RN , where ρj(x) = |uj(x)|. Notice that∫
|u1||u2||u3| =

∫
ρ1(x)ρ2(x)ρ3(x) > 0. (3.10)

Then, combining (3.9) and (3.10), we obtain that Re
(
ei(θ1+θ2−θ3)

)
= 1, it follows that

ei(θ1+θ2) = eiθ3 . Similar arguments apply to the Schwarz symmetric rearrangement of the

vector function (ρ1, ρ2, ρ3). Hence, we can prove that (ρ1, ρ2, ρ3) ∈ W+
r . Therefore, for any

~u ∈ G, we have ~u = (eiθ1v1, e
iθ2v2, e

i(θ1+θ2)v3) and ~v ∈W+
r . �

Lemma 3.4. Let N ≤ 3, 2∗ < p < 2∗, and α, a1, a2 > 0. If max{a1, a2} < D, then (1.4)

has a ground state solution (λ1, λ2, u1, u2, u3) with λ1, λ2 > 0, and ~u ∈ S(a1, a2) is positive,

radially symmetric, and decreasing.

Proof. By Lemma 3.3, we only need to show that m+
r (a1, a2) is attained. Since m+

r (a1, a2) =

infV (a1,a2)E, and using the symmetric decreasing rearrangement, we obtain a minimizing

sequence {~wn} with ~wn ∈ H1
r (RN ,R3) ∩ V (a1, a2) is decreasing for every n. Moreover, by

Lemma 3.2, E(s~wn ? ~wn) ≤ E(~wn) and s~wn ? ~wn ∈ V (a1, a2). Replacing ~wn by s~wn ? ~wn, we

have a new minimizing sequence s~wn ? ~wn ∈ P+
a1,a2 ∩M. Thus, by the Ekeland’s variational

principle, we can choose a nonnegative radial Palais-Smale sequence {~un} for E|S(a1,a2) at
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level m+
r (a1, a2) with P (~un) = on(1) such that lim

n→∞
E(~un) = m+

r (a1, a2) and E′|S(a1,a2) → 0

as n→∞ (see also [27, Lemma 3.7]). Since

m+
r (a1, a2) + on(1) = E(~un) =

(
1

2
− 1

pγp

) 3∑
i=1

∫
|∇ui,n|2 −

(
1− N

2pγp

)
α

∫
u1,nu2,nu3,n,

we have that the sequence {~un} is bounded inH1
r (RN ,R3). Indeed, using thatm+

r (a1, a2) < 0,

by the Hölder and the Gagliardo-Nirenberg inequalities,

3∑
i=1

∫
|∇ui,n|2 ≤

2pγp −N
pγp − 2

α

∫
u1,nu2,nu3,n

≤ 2pγp −N
3(pγp − 2)

αmax{a
6−N

2
1 , a

6−N
2

2 }C(N, p)3

(
3∑
i=1

‖∇ui,n‖
N
2

2

)
.

As 2∗ < p < 2∗, we have N
2 < 2 < pγp, hence the boundedness. Then there exists (u1, u2, u3)

such that (u1,n, u2,n, u3,n) ⇀ (u1, u2, u3) weakly inH1
r (RN ,R3), (u1,n, u2,n, u3,n)→ (u1, u2, u3)

strongly in Lr × Lr × Lr for r ∈ (2, 2∗), and a.e. in RN × RN × RN as n → ∞. Therefore,

ui ≥ 0 are radial functions for i = 1, 2, 3.

By the Lagrange multiplier’s rule (see [7, Lemma 3]), we know that there exists a sequence

{(λ1,n, λ2,n)} ⊂ R× R such that
∫
∇u1,n∇φ1 + λ1,nu1,nφ1 − |u1,n|p−2u1,nφ1 − αu3,nu2,nφ1 = on(1)‖φ1‖H1(RN ),∫
∇u2,n∇φ2 + λ2,nu2,nφ2 − |u2,n|p−2u2,nφ2 − αu3,nu1,nφ2 = on(1)‖φ2‖H1(RN ),∫
∇u3,n∇φ3 + (λ1,n + λ2,n)u3,nφ3 − |u3,n|p−2u3,nφ3 − αu1,nu2,nφ2 = on(1)‖φ3‖H1(RN ),

(3.11)

as n → ∞, for every φi ∈ H1(RN ,R) (i = 1, 2, 3). In particular, if we take (φ1, φ2, φ3) =

(u1,n, u2,n, u3,n), we have that (λ1,n, λ2,n) is bounded, therefore up to a subsequence we have

convergence (λ1,n, λ2,n)→ (λ1, λ2) ∈ R2. Passing to the limit in (3.11), we get that (u1, u2, u3)

satisfies 
−∆u1 + λ1u1 = |u1|p−2u1 + αu3u2,

−∆u2 + λ2u2 = |u2|p−2u2 + αu3u1,

−∆u3 + (λ1 + λ2)u3 = |u3|p−2u3 + αu1u2.

In addition, we claim that Re
∫
u1u2u3 > 0. If not, we have

3∑
i=1

‖∇ui‖22 ≤ γp
3∑
i=1

‖ui‖pp ≤ pγpA1

(
3∑
i=1

‖∇ui‖22

) pγp
2

,

and then (pγpA1)
− 2
pγp−2 ≤

∑3
i=1 ‖∇ui‖22. Moreover, as P+

a1,a2 ⊂ V (a1, a2), we get ~u ∈ Bρ∗ ,

and this is a contradiction with max{a1, a2} < D. From P (~u) = 0, we conclude that

λ1‖u1‖22 + λ2‖u2‖22 + (λ1 + λ2)‖u3‖22 =
3∑
i=1

(1− γp)‖ui‖pp +

(
3− N

2

)
α

∫
u1u2u3. (3.12)
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By P (~un) = on(1), we obtain

λ1a
2
1 + λ2a

2
2 = lim

n→∞

(
λ1‖u1,n‖22 + λ2‖u2,n‖22 + (λ1 + λ2)‖u3,n‖22

)
= lim

n→∞

(
3∑
i=1

(1− γp)‖ui,n‖pp +

(
3− N

2

)
α

∫
u1,nu2,nu3,n

)

= (1− γp)‖ui‖pp +

(
3− N

2

)
α

∫
u1u2u3.

(3.13)

We claim that u1 6≡ 0, u2 6≡ 0 and u3 6≡ 0.

Case 1. If ui = 0 for any i = 1, 2, 3, then
∫
|ui,n|p → 0,

∫
u1,nu2,nu3,n → 0, we have

P (~un) =

3∑
i=1

‖∇ui,n‖22 = on(1).

Therefore,

m+
r (a1, a2) + on(1) = E(~un) = on(1),

and this contradicts the fact that m+
r (a1, a2) < 0.

Case 2. If ui 6≡ 0, uj = 0 and ul = 0, i, j, l ∈ {1, 2, 3}, then uj,n → 0 and ul,n → 0 in Lp. Let

ũi,n = ui,n − ui, ũi,n → 0 in Lp. By the Brezis-Lieb Lemma [8], we deduce that

P (~un) =
3∑
i=1

‖∇ui,n‖22 − γp‖ui,n‖pp + on(1)

= ‖∇ũi,n‖22 + ‖∇uj,n‖22 + ‖∇ul,n‖22 + ‖∇ui‖22 − γp‖ui‖pp + on(1).

Thus,

m+
r (a1, a2) + on(1) = E(~un) =

(
γp
2
− 1

p

)
‖ui‖pp + on(1) ≥ 0,

which contradicts our assumption m+
r (a1, a2) < 0.

Case 3. If ui 6≡ 0, uj 6≡ 0 and ul = 0. By the structure of system (1.4), we get ui = 0 or

uj = 0, so Case 3 does not happen.

Therefore, ui 6≡ 0 for all i = 1, 2, 3. It remains to show that m+
r (a1, a2) is achieved. From

[26, Lemma A.2], we get λ1, λ2 > 0. Moreover, combining (3.12) with (3.13), we have

λ1a
2
1 + λ2a

2
2 = λ1‖u1‖22 + λ2‖u2‖22 + (λ1 + λ2)‖u3‖22. (3.14)

Since ‖u1‖22+‖u3‖22 ≤ a2
1 and ‖u2‖22+‖u3‖22 ≤ a2

2, it follows from (3.14) that ‖u1‖22+‖u3‖22 = a2
1

and ‖u2‖22 + ‖u3‖22 = a2
2, and hence ~u ∈ Pr,a1,a2 . By the maximum principle (see [24,

Theorem 2.10]), ui > 0 (i = 1, 2, 3). We then conclude that ~un → ~u in H1
r (RN ,R3) and

E(~u) = m+
r (a1, a2).

In conclusion, we have proved that m+
r (a1, a2) is attained by a function ~u which is positive,

radially symmetric, and decreasing in r = |x|. Therefore, the proof is complete. �

We look for the existence of (ω1, ω2, ~v) ∈ R2 × H1(RN ,C3) satisfying (1.10) (see also

[28, 32]) and Q1(~v) = a2
1, Q2(~v) = a2

2. It is important to our purpose to study the asymptotic

behavior of minimizers for m+(a1, a2) because somehow (1.10) can be seen as a limiting
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equation of problem (1.4), see Proposition 3.10 below. Then, we find the critical points of

E0 : H1(RN ,C3)→ R

E0(~v) :=
1

2

3∑
i=1

‖∇vi‖22 − Re

∫
v1v2v3 (3.15)

constrained on S(a1, a2). Let us observe that in [28, Theorem 1.3], only the case N ≤ 2 is

considered. See also Remark 1.8 in the Introduction. Define

0 > m0(a1, a2) := inf
~v∈S(a1,a2)

E0(~v) > −∞. (3.16)

We have the following Lemmas.

Lemma 3.5. Let N ≤ 3. For any a1, a2 > 0

m0(a1, a2) = m0,r(a1, a2) := inf
S(a1,a2)∩H1

r (RN ,R3)
E.

In addition, m0(a1, a2) is reached by the vector function (eiθ1w1, e
iθ1w2, e

i(θ1+θ2)w3) where

E(~w) = inf
S(a1,a2)∩H1

r (RN ,R3)
E, for some (θ1, θ2) ∈ R2.

Proof. It is standard to get that m0(a1, a2) ≤ m0,r(a1, a2). For any (u1, u2, u3) ∈ S(a1, a2),

we have (|u1|∗, |u2|∗, |u3|∗) ∈ S(a1, a2). Moreover, we also have

E0(~u) =

3∑
i=1

1

2
‖∇ui‖22 − Re

∫
u1u2u3 ≥

3∑
i=1

1

2
‖∇|ui|∗‖22 −

∫
|u1|∗|u2|∗|u3|∗

= E0(|u1|∗, |u2|∗, |u3|∗).
Then,

E0(~u) ≥ E0(|u1|∗, |u2|∗, |u3|∗) ≥ m0,r(a1, a2),

for any ~u ∈ S(a1, a2). Therefore, m0(a1, a2) ≥ m0,r(a1, a2). Arguing as in the proof of Lemma

3.3, we obtain m0(a1, a2) is reached by the vector function (eiθ1w1, e
iθ1w2, e

i(θ1+θ2)w3) where

E0(~w) = inf
S(a1,a2)∩H1

r (RN ,R3)
E0 and (θ1, θ2) ∈ R2. �

Lemma 3.6. Let N ≤ 3. For any a1, a2 > 0, m0(a1, a2) is reached by a real valued, positive,

radially symmetric, and decreasing function.

Proof. From Lemma 3.3, we consider a minimizing sequence {~un} for m0,r(a1, a2). We assume

that ~un ∈ H1
r (RN ,R3)∩S(a1, a2) is radially decreasing for any n (since we can replace un with

|un|∗, the Schwarz rearrangement of |un|). By the Ekeland’s variational principle, there exists

a Palais-Smale sequence {(v1,n, v2,n, v3,n)} ⊂ S(a1, a2) ∩ H1
r (RN ,R3), vi,n ≥ 0 (i = 1, 2, 3)

such that ‖~un − ~vn‖H1(RN ,R3) as n→∞, E0(~vn)→ m0(a1, a2) and

dE0|S(a1,a2)∩H1
r (RN ,R3)(~vn)→ 0 in H−1(RN )×H−1(RN )×H−1(RN ).

Since {~vn} is bounded in H1
r (RN ,R3), up to a subsequence, we assume that (v1,n, v2,n, v3,n) ⇀

(v1, v2, v3) weakly in H1
r (RN ,R3) as n→∞. For N ≤ 3, ~vn → ~v in L3×L3×L3 by compact

embedding of H1
r (RN ) ↪→ L3(RN ). See [11, Proposition 1.7.1] for the 1D case and sequences

of non-increasing functions. By the Lagrange multiplier’s rule (see [7, Lemma 3]) there exist

{(ω1,n, ω2,n)} ⊂ R× R such that

dE0(~vn)−
(
ω1,nv1,n, ω2,nv2,n, (ω1,n + ω2,n)v3,n

)
→ 0 in H−1(RN )×H−1(RN )×H−1(RN ),
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and then {(ω1,n, ω2,n)} is bounded, and ωi,n → ωi, i = 1, 2 as n → ∞. Therefore, ~v is a

nonnegative solution of 
−∆v1 + ω1v1 = v3v2,

−∆v2 + ω2v2 = v3v1,

−∆v3 + (ω1 + ω2)v3 = v1v2.

(3.17)

Moreover, the Pohozaev identity for solutions of (3.17) is given by

P0(~v) :=
3∑
i=1

‖∇vi‖22 −
N

2

∫
v1v2v3 = 0,

then we have

ω1a
2
1 + ω2a

2
2 =

(
3− N

2

)∫
v1v2v3 = ω1

(
‖v1‖22 + ‖v3‖22

)
+ ω2

(
‖v2‖22 + ‖v3‖22

)
. (3.18)

We show that v1 6≡ 0, v2 6≡ 0 and v3 6≡ 0.

Case 1. If vi = 0 for any i = 1, 2, 3. By P0(~vn)→ 0, we have

0 > m0(a1, a2) = lim
n→∞

N − 4

2N

3∑
i=1

‖∇vi,n‖22 → 0,

which is a contradiction.

Case 2. If vi 6≡ 0, vj = vl = 0, i, j, l ∈ {1, 2, 3}. Then, if ωi > 0,

−∆vi + ωivi = 0,

a contradiction. If ωi ≤ 0, we get

−∆vi ≥ 0, vi ∈ L2.

It follows from [26, Lemma A.2] that vi ≡ 0, which is a contradiction with respect to the

assumption.

Case 3. If ui 6≡ 0, uj 6≡ 0 and ul = 0. By the structure of system (3.17), we get ui = 0 or

uj = 0, so Case 3 does not happen.

By the same argument as in the proof of Lemma 3.4, we have ω1, ω2 > 0. Then, by

the strong maximal principle, ~v is a positive solution of (1.10). It follows from (3.18) that

~v ∈ S(a1, a2). Hence, E0(~v) = m0(a1, a2). �

Remark 3.7. As already mentioned in Remark 1.8, a straightforward modification of the

proof of Lemma 3.6 solves a problem left open in [28] in the case N = 3. Indeed, instead of

considering the minimization problem (3.16), we consider as in [28] the problem

Σ0(γ, µ, s) := inf
{
E0(~u) s.t. ~u ∈ H1(RN ,C3), ‖u1‖22 = γ, ‖u2‖22 = µ, ‖u3‖22 = ν

}
,

and a similar analysis as the one in Lemma 3.6 gives a positive answer to [28, Theorem 1.3

(ii)] in the three-dimensional case. In addition, if 2∗ < p < 2∗, under scaling transformation,

α−
N

4−N ~u
(
α−

2
4−N x

)
→ ~v in H1(RN ,C3) as α → 0, where ~u ∈ G and ~v is a ground state of

(1.10) on S(a1, a2) (see Proposition 3.10).
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In the following, we derive an improved upper bound of m+
r (a1, a2) when a1 = a2. Indeed,

we show in Lemma 3.8 below, that m+
r (a1, a1) is not only negative, but bounded away from

zero. Compare (3.6) and (3.23). We consider the problem{
−∆u+ λu = αu2,∫
|u|2 = a2,

(3.19)

where α, a > 0. Define

J0(u) =
1

2
‖∇u‖22 −

α

3
‖u‖33, (3.20)

then solutions u of (3.19) can be found, see [38], as minimizers of

0 > m0(a) := inf
u∈S(a)

J0(u) > −∞, (3.21)

where λ is a Lagrange multiplier, and S(a) :=
{
u ∈ H1(RN ,R) s.t.

∫
u2 = a2

}
. From [3], we

obtain that (3.19) has a unique positive solution (λ, uα) given by

λ =

(
α2a2

‖w‖22

) 2
4−N

, uα =
λ

α
w(λ

1
2x), −∆w + w − w2 = 0, (3.22)

and we recall that w is unique and positive. We have

m0(a) = − 4−N
2(6−N)

(
α2

‖w‖22

) 2
4−N

a
2(6−N)
4−N < 0.

Lemma 3.8. Let N ≤ 3, 2∗ < p < 2∗, and α, a1, a2 > 0. If a1 = a2 < D, then

m+(a1, a1) < 3m0

(
a1√

2

)
< 0. (3.23)

Proof. m0

(
a1√

2

)
is achieved by ũ1 ∈ S

(
a1√

2

)
and ũ1 is radially symmetric and decreasing, see

[12]. By adopting the same notation as in Lemma 2.2, we have

h(ρ) < h1(ρ) :=
1

2
ρ2 − α

3
C3(N, p)a

6−N
2

1 ρ
N
2 , (3.24)

where, by Hölder, we have that

αRe

∫
u1u2u3 ≤ α‖u1‖3‖u2‖3‖u2‖3 ≤

α

3

3∑
i=1

∫
|ui|3.

With calculations similar to the ones in (2.13), J0(~u) ≥ h1

((
3∑
i=1
‖∇ui‖22

) 1
2

)
. By direct

calculations, there exists 0 < ρ̂ < R0 such that h1(ρ̂) = 0. Then, we have

3‖∇ũ1‖22 ≤ ρ̂2 < R2
0 < (ρ∗)2.

Since h(R0) = h(R1) = 0, by the monotonicity of h(ρ), we deduce that (ũ1, ũ1, ũ1) ∈
V (a1, a1). It implies that

m+(a1, a1) = inf
~u∈V (a1,a1)

E(~u) ≤ E(ũ1, ũ1, ũ1)

= 3J0(ũ1)− 3

p
‖ũ1‖pp < 3m0

(
a1√

2

)
.
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Hence, the proof is complete. �

Lemma 3.9. Let N ≤ 3, 2∗ < p < 2∗, and α, a1, a2 > 0. If a1 = a2 < D, then for any

ground state ~u ∈ S(a1, a1) of (1.4), for a1 → 0 we have, up to a subsequence,(
ακ−1u1(κ−

1
2x), ακ−1u2(κ−

1
2x), ακ−1u3(κ−

1
2x)
)
→ ~v0 in H1(RN ,C3),

where ~v0 is a ground state solution of E0 constrained on S(
√

2‖w‖2,
√

2‖w‖2), w is defined

in (3.22), and κ =
(

αa1√
2‖w‖2

) 4
4−N

.

Proof. Fix α > 0. For any {an} ∈ R+ with an → 0+ as n → +∞, let ~un ∈ V (an, an) be a

minimizer of m+(an, an), where V (an, an) =

{
~un ∈ S(an, an) ∩M :

(∑3
i=1 ‖∇u‖22

) 1
2
< ρ∗

}
.

By Lemma 3.4, we get that ~un is a ground state of E|S(an,an). Then the Lagrange multipliers

rule implies the existence of some λ1,an , λ2,an ∈ R such that
∫
∇u1,n∇φ1 + λ1,anu1,nφ1 − |u1,n|p−2u1,nφ1 = αRe

∫
u3,nu2,nφ1,∫

∇u2,n∇φ2 + λ2,anu2,nφ2 − |u2,n|p−2u2,nφ2 = αRe
∫
u3,nu1,nφ2,∫

∇u3,n∇φ3 + (λ1,an + λ2,an)u3,nφ3 − |u3,n|p−2u3,nφ3 = αRe
∫
u1,nu2,nφ3,

(3.25)

for each ~φ ∈ H1(RN ,C3).

We claim that

1− γp
γp

(
α2N(p− 3)

N(p− 2)− 4
C3(N, p)

) 4
4−N

a
4

4−N
n > λ1,an + λ2,an > 6KNa

4
4−N
n , (3.26)

where KN := 4−N
4(6−N)

(
α2

2‖w‖22

) 2
4−N

. Indeed, it follows from (3.25) that

(λ1,an + λ2,an)a2
n = −

3∑
i=1

‖∇ui,n‖22 +
3∑
i=1

‖ui,n‖pp + 3αRe

∫
u1,nu2,nu3,n > 6KNa

2(6−N)
4−N

n .

Since P (~un) = 0, by Lemma 3.8 we have

E(~un) =

(
1

2
− 1

pγp

) 3∑
i=1

‖∇ui,n‖22 −
p− 3

p− 2
αRe

∫
u1,nu2,nu3,n

= −4−N
2N

3∑
i=1

‖∇ui,n‖22 + γp

(
2

N
− 1

pγp

) 3∑
i=1

‖ui,n‖pp

< −3KNa
2(6−N)
4−N

n .

(3.27)

It follows immediately that

6N

4−N
KNa

2(6−N)
4−N

n <
3∑
i=1

‖∇ui,n‖22 <
(
α2N(p− 3)

N(p− 2)− 4
C3(N, p)

) 4
4−N

a
2(6−N)
4−N

n . (3.28)
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Hence, combining with P (~un) = 0, we obtain that

(λ1,an + λ2,an)a2
n =

(
1

γp
− 1

) 3∑
i=1

‖∇ui,n‖22 −
(

3− N

2γp

)
αRe

∫
u1,nu2,nu3,n

<
1− γp
γp

(
α2N(p− 3)

N(p− 2)− 4
C3(N, p)

) 4
4−N

a
2(6−N)
4−N

n .

The proof of claim (3.26) is complete.

Define now

v1,n := ακ−1
n u1,n(κ

− 1
2

n x), v2,n := ακ−1
n u2,n(κ

− 1
2

n x), and v3,n := ακ−1
n u3,n(κ

− 1
2

n x), (3.29)

where κn =
(

αan√
2‖w‖2

) 4
4−N

. Then, for i = 1, 2, 3,

‖∇vi,n‖22 = κ
N−6

2
n α2‖∇ui,n‖22, ‖vi,n‖pp = κ

N−2p
2

n αp‖ui,n‖pp, ‖vi,n‖22 =
2‖w‖22
a2
n

‖ui,n‖22.

Therefore, for an → 0 as n→∞, we have

m+(an, an) + on(1) = E(~un) = κ
6−N

2
n α−2E0(~vn)− κ

2p−N
2

n α−(p−2)
3∑
i=1

‖vi,n‖pp

≥ κ
6−N

2
n α−2m0

(√
2‖w‖2,

√
2‖w‖2

)
+ o

(
a

2(6−N)
4−N

n

)
,

where we used the definition of κn to have κ
2p−N

2
n ∼ a

2(2p−N)
4−N

n , then we can estimate the

remainder with o(a
2(6−N)
4−N

n ), as p > 3.

From the definition of m0(
√

2‖w‖2,
√

2‖w‖2), for any ε > 0, there exists ~v0 ∈ S(a1, a2) such

that

E0(~v0) ≤ m0

(√
2‖w‖2,

√
2‖w‖2

)
+ ε.

Let ui,an := κnα
−1vi,0

(
κ

1
2
nx

)
for i = 1, 2, 3. Therefore, ~uan ∈ V (an, an) for an small enough.

Then
m+(an, an) = inf

~u∈V (an,an)
E(~u) ≤ E(u1,an , u2,an , u3,an)

≤ κ
6−N

2
n α−2E0(~v0) + κ

2p−N
2

n α−p
3∑
i=1

‖vi,0‖pp

≤ κ
6−N

2
n α−2

(
m0(
√

2‖w‖2,
√

2‖w‖2) + ε
)

+ o

(
a

2(6−N)
4−N

n

)
.

for all ε > 0 and an > 0 small enough. Therefore,

m+(an, an) = κ
6−N

2
n α−2m0(

√
2‖w‖2,

√
2‖w‖2) + o

(
a

2(6−N)
4−N

n

)
.

This implies that {~vn} is a minimizing sequence for m0

(√
2‖w‖2,

√
2‖w‖2

)
. If {un} is a

minimizing sequence of m+(an, an), E(~un) = m+(an, an) + o(1). By the definition of {~vn},
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see (3.29), we have

E(~vn) = E(ακ−1
n ~un(κ

− 1
2

n x)) = m0(
√

2‖w‖2,
√

2‖w‖2) + o(a
2(6−n)
4−n

n ),

i.e., {vn} is a minimizing sequence of m2(
√

2‖w‖2,
√

2‖w‖2). Up to a subsequence, there

exists a radially symmetric Palais-Smale sequence {~̃vn} such that ‖~̃vn − ~vn‖H1(RN ,C3) =

on(1). Similar to the proof of Lemma 3.6, up to translation, there exists a minimizer ~v0

for m0(
√

2‖w‖2,
√

2‖w‖2) such that ~̃vn → ~v0 in H1(RN ,C3). Indeed, by Lemma 3.6 for any

minimizing sequence of m0(
√

2‖w‖2,
√

2‖w‖2) , there exists a compact subsequence. �

Proposition 3.10. Let N ≤ 3, 2∗ < p < 2∗, a1, a2 > 0, and suppose that max{a1, a2} < D.

Let {αn} be a positive sequence with αn → 0 as n → ∞, and let ~un be a minimizer for

m+(a1, a2) (with α = αn > 0), up to a subsequence,

~vn := α
− N

4−N
n ~un

(
α
− 2

4−N
n x

)
→ ~v in H1(RN ,C3),

where ~v is a minimizer of m0(a1, a2).

Proof. Let {αn} ⊂ (0,∞) with αn → 0. From the definition of m0(a1, a2), for any ε > 0

sufficiently small, there exists ~v0 ∈ S(a1, a2) such that E0(~v0) ≤ m0(a1, a2)+ε. Let uj,αn(x) :=

α
N

4−N
n vj,0

(
α

2
4−N
n x

)
, (j = 1, 2, 3). As the calculation in (3.24), we have (u1,αn , u2,αn , u3,αn) ∈

V (a1, a2), and then

m+(a1, a2) = inf
~u∈V (a1,a2)

E(~u) ≤ E(u1,αn , u2,αn , u3,αn)

≤ α
4

4−N
n E0(~v0) + α

N(p−2)
4−N

n

3∑
j=1

‖vj,0‖pp ≤ α
4

4−N
n (m0(a1, a2) + ε) + o(α

4
4−N
n ),

(3.30)

for all ε > 0 and αn > 0 small enough.

Let ~un ∈ V (a1, a2) be a minimizer of m+(a1, a2) for αn > 0. Then, combining (3.30) and

the same argument as in (3.27)-(3.28), we can prove that there exist C1, C2 > 0 such that

C1α
4

4−N
n ≤

∑3
i=1 ‖∇ui,n‖22 ≤ C2α

4
4−N
n . Define

~vn := α
− N

4−N
n ~un

(
α
− 2

4−N
n x

)
.

Then, ~vn ∈ S(a1, a2), and there exists C > 0 such that for all αn < 1,
∑3

i=1 ‖∇vi,n‖22 ≤ C.

Hence,

m+(a1, a2) + on(1) = E(~un) = α
4

4−N
n

E0(~vn)− α
N(p−2)−4

4−N
n

p

3∑
i=1

‖vi,n‖pp


≥ m0(a1, a2)α

4
4−N
n + o

(
α

4
4−N
n

)
.

Thus, it follows that

m+(a1, a2) = m0(a1, a2)α
4

4−N
n + o

(
α

4
4−N
n

)
.
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This implies that {~vn} is a minimizing sequence for m0(a1, a2). Up to a subsequence, there

exists a radially symmetric Palais-Smale sequence {~̃vn} such that ‖~̃vn−~vn‖H1(RN ,C3) = on(1).

Similar to Lemma 3.6, there exists a minimizer ~v for m0(a1, a2) such that ~̃vn → ~v in

H1(RN ,C3). �

3.2. Mass-critical case. In this subsection, we deal with the mass critical case p = 2∗ =

2 + 4
N . As in the previous sections, α, a1, a2 are positive. We recall the decomposition of

Pa1,a2 = P+
a1,a2 ∪ P

0
a1,a2 ∪ P

−
a1,a2 as in Section 2, see (2.9). From the definition of P0

a1,a2 , i.e.,

Ψ′~u(0) = Ψ′′~u(0) = 0, then necessarily ui = 0 (i = 1, 2, 3). Therefore, P0
a1,a2 = ∅. Similarly

to Lemma 2.3, we can also check that Pa1,a2 ∩M is a smooth manifold of codimension 1 in

H1(RN ,C3).

Lemma 3.11. If max{a1, a2} <
(
N+2
N

)N
4 (C(N, 2∗))

−N+2
2 and a1, a2 > 0, for all ~u ∈

S(a1, a2) ∩ M, there exists σ~u such that σ~u ? ~u ∈ Pa1,a2. Further, σ~u is the unique criti-

cal point of the function Ψ~u and it is a strict minimum point at negative level. Moreover:

(i) Ψ~u is strictly decreasing in (0, σ~u),

(ii) Pa1,a2 = P+
a1,a2 and P (~u) < 0 if and only if σ~u < 1,

(iii) the map ~u 7→ σ~u ∈ R is of class C1.

Proof. (i) Since p = 2∗, we have, see the definition of Ψ in (2.8),

Ψ~u(s) = s2
3∑
i=1

(
1

2
‖∇ui‖22 −

N

2N + 4
‖ui‖2∗2∗

)
− s

N
2 αRe

∫
u1u2u3

≥ s2

2

(
3∑
i=1

‖∇ui‖22

(
1− N (C(N, 2∗))

2+ 4
N

N + 2
max

{
a

4
N
1 , a

4
N
2

}))
− s

N
2 αRe

∫
u1u2u3.

(3.31)

Note that, for any ~u ∈ M, s ? ~u ∈ Pa1,a2 if and only if Ψ′~u(s) = 0. From the latter property,

if 1 − N(C(N,2∗))2+
4
N

N+2 max{a
4
N
1 , a

4
N
2 } is positive, then Ψ~u(s) has a unique critical point σ~u,

which is a strict minimum point at negative level. Therefore, under the bound condition on

max{a1, a2} as in the statement of the Lemma, we have that

3∑
i=1

(
1

2
‖∇ui‖22 −

N

2N + 4
‖ui‖2∗2∗

)
> 0.

(ii) If ~u ∈ Pa1,a2∩M, then σ~u is a minimum point, we have that Ψ′′~u(σ~u) ≥ 0. Since P0
a1,a2 = ∅,

we have ~u ∈ P+
a1,a2 . Finally, Ψ′~u(s) > 0 if and only if s > σ~u, then P (~u) = Ψ′~u(0) < 0 if and

only if σ~u < 1.

(iii) To prove that the map ~u ∈ S(a1, a2) ∩M 7→ σ~u ∈ R is of class C1, we can apply the

Implicit Function Theorem as in Lemma 2.4. �

Lemma 3.12. Let N ≤ 3, assume p = 2∗, and let α, a1, a2 > 0. We have the followings:

(i) if max{a1, a2} <
(
N+2
N

)N
4 (C(N, 2∗))

−N+2
2 , then

−∞ < m+(a1, a2) := inf
~u∈P+

a1,a2
∩M

E(~u) = inf
~u∈S(a1,a2)

E(~u) < 0,
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(ii) if min{a1, a2} ≥
(
N+2
N

)N
4 (C(N, 2∗))

−N+2
2 , then

inf
~u∈S(a1,a2)

E(~u) = −∞.

Proof. (i) If 0 < max{a1, a2} <
(
N+2
N

)N
4 (C(N, 2∗))

−N+2
2 , from (3.31), we have E is coercive

on S(a1, a2), it follows that m+(a1, a2) > −∞. For ~u ∈ P+
a1,a2 , then

E(s ? ~u) = s2
3∑
i=1

(
1

2
‖∇ui‖22 −

N

2N + 4
‖ui‖2∗2∗

)
− s

N
2 αRe

∫
u1u2u3.

Hence, E(s ? ~u) < 0 for every u ∈ P+
a1,a2 ∩M with s > 0 small enough. Therefore, we know

that m+(a1, a2) < 0.

(ii) If min{a1, a2} ≥
(
N+2
N

)N
4 (C(N, 2∗))

−N+2
2 , there exists ~u ∈ S(a1, a2) such that E(~u) ≤ 0

(see also [38, Section 3]). Using (3.31), we deduce by taking the limit, that inf
S(a1,a2)

E =

−∞. �

We state the following Lemmas, whose proofs are similar to the ones for Lemmas 3.3, 3.5,

and Lemma 3.9, respectively.

Lemma 3.13. Let N ≤ 3. For p = 2∗, m
+(a1, a2) = m+

r (a1, a2), where m+
r (a1, a2) is

given by (3.8). In addition, inf
P+
a1,a2

∩M
E(~u) is attained by (eiθ1w1, e

iθ1w2, e
i(θ1+θ2)w3) where

E(~w) = inf
~u∈P+

r,a1,a2
∩M

E(~u) and (θ1, θ2) ∈ R2.

Lemma 3.14. Let N ≤ 3, assume p = 2∗, and let α, a1, a2 > 0. If max{a1, a2} <(
N+2
N

)N
4 (C(N, 2∗))

−N+2
2 , then E|S(a1,a2) has a critical point ~u at m+(a1, a2), and ~u is real

valued, positive, and radially symmetric for some λ1, λ2 > 0.

Lemma 3.15. Let N ≤ 3, assume p = 2∗, and let α > 0 and a1 = a2 > 0. If 0 < a1 <(
N+2
N

)N
4 (C(N, 2∗))

−N+2
2 , then for any ground state ~u ∈ S(a1, a1) of (1.4), let a1 → 0, we

have (
ακ−1u1(κ−

1
2x), ακ−1u2(κ−

1
2x), ακ−1u3(κ−

1
2x)
)
→ ~v0 in H1(RN ,C3),

where ~v0 is a minimizer of m0(
√

2‖w‖2,
√

2‖w‖2), w is given in (3.22), and κ =
(

αa1√
2‖w‖2

) 4
4−N

.

We are now in position to prove the first main result of the paper, namely Theorem 1.

3.3. Proof of Theorem 1. We start with the intracritical case, 2∗ < p < 2∗.

(i) It follows from Lemmas 3.3 and 3.4 that there is a local minimizer of E on V (a1, a2).

(ii) We shall prove that the set G defined in Introduction is orbitally stable. By contradiction,

suppose that there exist ε0 > 0, a sequence of times {tn} ⊂ R+, and a sequence of initial

data {~ψ0,n} ⊂ H1(RN ,C3) such that the unique (for n fixed) solution ~ψψ0,n(t) to the problem

(1.1) with initial datum ~ψψ0,n(0) = ~ψ0,n satisfies

distH1(RN ,C3)

(
~ψ0,n,G

)
<

1

n
and distH1(RN ,C3)

(
~ψψ0,n(tn),G

)
≥ ε0.
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Without loss of generality, we assume ~ψ0,n ∈ S(a1, a2). Denote ~ψψ0,n(tn) by ~un. Then by the

conservation laws (1.2) and (1.3), {~un} ⊂ H1(RN ,C3) satisfies Q1(~un) = a2
1, Q2(~un) = a2

2

and E(~un)→ m+(a1, a2).

We shall prove that for any n ∈ N, ~ψψ0,n(t) is globally defined in time and ~ψψ0,n(t) ∈
Bρ∗ for any t > 0, recalling that ρ∗ is given in Lemma 2.2. Since ~ψ0,n ∈ Bρ∗ , if ~ψψ0,n(t)

leaves the set Bρ∗ , there exists t1 ∈ (0, Tmax) such that ~ψψ0,n(t1) ∈ ∂Bρ∗ , where Tmax is the

maximal forward time of existence for the solution ~ψψ0,n . By (2.13), we have E(~ψψ0,n(t1)) ≥
h(ρ∗) ≥ 0, contradicting the conservation of the energy. If Tmax < ∞, by the blow-up

alternative limt→T−
max

(∑3
i=1 ‖~ψψ0,n(t)‖2

L2(RN )

)
= ∞, then there also exists t2 ∈ (0, Tmax)

such that ~ψψ0,n(t2) ∈ ∂Bρ∗ . Analogously to the proof of the fact that ~ψψ0,n(t) ∈ Bρ∗ , one

shows that Tmax = +∞. This implies that solutions starting in Bρ∗ are globally defined in

time. By Lemmas 2.2 and 3.2, if max{a1, a2} < D, we thus get

m+(a1, a2) = inf
~u∈S(a1,a2)∩Bρ∗∩M

E(~u) = inf
{
E(~u) s.t. ~u ∈ S(a1, a2) ∩Bmax{a1,a2}D−1ρ∗ ∩M

}
.

A similar analysis to that in the proof of [28, Theorem 1.2] and [38, Theorem 1.4], yields strict

sub-additivity of E on V (a1, a2) = S(a1, a2)∩Bρ∗ ∩M. Moreover, combining m+(a1, a2) < 0

with E(~un) → m+(a1, a2), we have that ~un ∈ M. Therefore, there exists ~u ∈ G such that

~un → ~u in H1(RN ,C3). Since the set of ground states G is invariant under translations, this

contradicts the equality distH1(RN ,C3) (~un,G) ≥ ε0 > 0.

(iii) The third point of the Theorem follows from Lemma 3.9.

(iv) The last point follows from (3.28).

We turn now the attention to the critical case. For p = 2∗ we have that (i), i.e., existence

of minimizer of m+(a1, a2), follows from Lemmas 3.13 and 3.14; the orbital stability of G
as in (ii) can be proved following [1, Theorem 1.4] or [28, Theorem 1.2]; (iii) follows from

Lemma 3.15.

We conclude with the proof of (iv). By recalling that the ground state has a negative energy,

by using the estimate in (2.13) with p = 2∗ we obtain

0 > E(~u) ≥ 1

2

3∑
i=1

‖∇ui‖22

(
1− N (C(N, 2∗))

2+ 4
N

N + 2
max

{
a

4
N
1 , a

4
N
2

})

− α

3
C3(N, 2∗) max

{
a

6−N
2

1 , a
6−N

2
2

}( 3∑
i=1

‖∇ui‖22

)N
4

,

then, if α→ 0, we have

1

2

(
3∑
i=1

‖∇ui‖22

)1−N
4
(

1− N (C(N, 2∗))
2+ 4

N

N + 2
max

{
a

4
N
1 , a

4
N
2

})

<
α

3
C3(N, 2∗) max

{
a

6−N
2

1 , a
6−N

2
2

}
→ 0.

The proof is complete.
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4. Proof of Theorem 2

In this section, for α, a1, a2 > 0, 2∗ < p < 2∗ for N ≤ 3, we study the existence and

properties of the second1 standing wave solution of (1.4). Define

m−(a1, a2) = inf
~u∈P−

a1,a2

E(~u).

By Lemma 2.3, if max{a1, a2} < D, we check that P0
a1,a2 is empty. Similar to the proof

of Lemma 3.3, we get that if max{a1, a2} < D, then inf~u∈P−
r,a1,a2

E(~u) = inf~u∈P−
a1,a2

E(~u).

Furthermore, inf
P−
a1,a2

E(~u) is reached by the vector function (eiθ1w1, e
iθ1w2, e

i(θ1+θ2)w3) where

~w is the minimizer for inf
P−
r,a1,a2

E and (θ1, θ2) ∈ R2 and P−r,a1,a2 = P−a1,a2 ∩H
1
r (RN ,R3).

Lemma 4.1. Suppose that max{a1, a2} < D, α, a1, a2 > 0, 2∗ < p < 2∗ and N ≤ 3, then

there exists α0 > 0 such that

0 < m−(a1, a2) := inf
~u∈P−

a1,a2

E(~u) < min {m(a1),m(a2)} ,

for any α > α0, where m(a1) and m(a2) are defined in (3.4).

Proof. For any ~u ∈ P−a1,a2 , see Lemma 2.4, we have

E(~u) = Ψ~u(0) ≥ Ψ~u(σ~u) = E(σ~u ? ~u) = h

σ~u
(

3∑
i=1

‖∇ui‖22

) 1
2

 > 0,

and then infP−
a1,a2

E ≥ maxR h > 0. For fixed a1, a2 > 0, by Lemma 3.1, m(b) is achieved by

u0 ∈ S(b)∩H1(RN ,R3) for any 0 < b. Let u1 be the positive solution of (3.1) with parameter

‖u1‖22 = b2, u2 be the positive solution of (3.1) with ‖u2‖22 = a2
1 − b2 and u3 be the positive

solution of (3.1) with ‖u3‖22 = a2
2 − b2. We have (u1, u2, u3) ∈ S(a1, a2), and it is easy to see

that

J(s ? u1)→ 0 and J(s ? u2)→ 0 and J(s ? u3)→ 0, as s→ 0,

see (3.2) for the definition of J . Therefore, there exists an s0 > 0 small enough which is

independent of α such that

max
s<s0

E(s ? (u1, u2, u3)) < max
s<s0

J(s ? u1) + J(s ? u2) + J(s ? u3)

< min {m(a1),m(a2)} ,

as both m(a1) and m(a2) are strictly positive. If s ≥ s0, then the interaction term is bounded

from below as in the following:∫
(s ? u1)(s ? u2)(s ? u3) = s

N
2

∫
u1u2u3 ≥ Ks

N
2

0 ,

1The first solution obtained in Theorem 1 is a ground state solution (local minimum point). The

second solution we are going to prove the existence, is a mountain pass solution.
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where K > 0. Thus, we have

max
s≥s0

E (s ? (u1, u2, u3)) ≤ max
s≥s0

J(s ? u1) + J(s ? u2) + J(s ? u3)− αKs
N
2

0

≤ m(b) +m

(√
a2

1 − b2
)

+m

(√
a2

2 − b2
)
− αKs

N
2

0 .

From Lemma 3.1, m(b) is strictly decreasing for b > 0, then m(b) ≥ max{m(a1),m(a2)}. It

is clear that there exists α0 > 0 such that

max
s≥s0

E(s ? (u1, u2, u3)) < min {m(a1),m(a2)} for all α > α0.

Hence, the proof is complete. �

Lemma 4.2. Let max{a1, a2} < D, a1, a2 > 0, 2∗ < p < 2∗ and N ≤ 3. There exists α0 > 0

such that for all α > α0, m−(a1, a2) is achieved by some ~v, which is real-valued, positive,

radially symmetric and decreasing.

Proof. Similarly, we only need to show that m−r (a1, a2) is attained. If N = 2, 3, for E|S(a1,a2)

with a radially Palais-Smale sequence at level m−r (a1, a2) and P (~un) → 0, we refer to

[3, 13, 27, 38]. If N = 1, combine [38, Remark 5.2] with [13, Lemma 3.1] with the nec-

essary modifications. Therefore, we can choose a nonnegative and radially symmetric Palais-

Smale sequence {~un} for m−r (a1, a2) with P (~un) = on(1), i.e. lim
n→∞

E(~un) = m−r (a1, a2) and

E′|S(a1,a2) → 0 as n→∞. Similar to the proof of Lemma 3.4, we have that sequence {~un} is

bounded in H1(RN ,C3), and there exists (u1, u2, u3) such that (u1,n, u2,n, u3,n) ⇀ (u1, u2, u3)

in H1(RN ,C3). Hence, ui ≥ 0 are radial functions for all i = 1, 2, 3.

We claim that u1 6≡ 0, u2 6≡ 0, and u3 6≡ 0.

Case 1. If ui = 0 for any i = 1, 2, 3, then
∫
|ui,n|p → 0,

∫
u1,nu2,nu3,n → 0, we have

P (~un) =
3∑
i=1

‖∇ui,n‖22 = on(1).

Therefore,

m−r (a1, a2) + on(1) = E(~un) = on(1),

this contradicts the fact that m−(a1, a2) > 0.

Case 2. If ui 6≡ 0, uj = 0 and ul = 0, i, j, l ∈ {1, 2, 3}, then uj,n → 0 and ul,n → 0 in Lp. Let

ũi,n = ui,n − ui, ũi,n → 0 in Lp. By the maximum principle (see [24, Theorem 2.10]), u is a

positive solution of (3.1). By the Brezis-Lieb Lemma [8], we deduce that

P (~un) =

3∑
i=1

‖∇ui,n‖22 − γp‖ui,n‖pp + on(1)

= ‖∇ũi,n‖22 + ‖∇uj,n‖22 + ‖∇ul,n‖22 + ‖∇ui‖22 − γp‖ui‖pp + on(1).

Since ui satisfies P (ui) = ‖∇ui‖22 − γp‖ui‖
p
p = on(1), we have

m−r (a1, a2) + on(1) = E(~un) =
1

2
‖∇ui‖22 −

1

p
‖ui‖pp + on(1)

=

(
γp
2
− 1

p

)
‖ui‖pp + on(1) ≥ m(‖ui‖2).
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which contradicts our assumption m−r (a1, a2) < min{m(a1),m(a2)} if α > α0.

Case 3. If ui 6≡ 0, uj 6≡ 0 and ul = 0. By the structure of system (1.4), we get ui = 0 or

uj = 0, so Case 3 does not happen.

So we can apply a similar argument as the proof of Lemma 3.4. Therefore, we then conclude

that ~un → ~u in H1
r (RN ,R3) and E(~u) = m−r (a1, a2). �

At this point, we study the semi-trivial limit behavior as a1 > 0 and a2 → 0.

Lemma 4.3. Let α, a1, a2 > 0, and 2∗ < p < 2∗ for N ≤ 3. If a1 6= 0 is fixed and a2 → 0

(a1 → 0 and a2 6= 0), then for the second solution ~v of (1.4), up to a subsequence, we have

m−(a1, a2)→ m(a1), and(
κ̃
− 1
p−2 v1

(
κ̃−

1
2x
)
, v2(x), v3(x)

)
→ (wp, 0, 0) in H1(RN ,C3),

where κ̃ =
(

a21
‖wp‖22

) p−2
2−pγp and wp is the positive radial solution of −∆w + w = |w|p−2w.

Proof. An analysis similar to that in the proof of [28, Lemma 2.6] show that for a1, a2 ≥
0, m−(a1, a2) is continuous at (a1, a2). By Theorem 2, for a1,n, a2,n > 0, there exists

(u1,n, u2,n, u3,n) ∈ H1
r (RN ,C3) ∩ S(a1,n, a2,n) such that

P (~un) = on(1) and E(~un)→ m−(a1,n, a2,n)

provided α is large enough. We assume that a1,n → a1 and a2,n → 0. Then we have that

‖u1,n‖22 → a2
1, ‖u2,n‖22 → 0 and ‖u3,n‖22 → 0, and ~un is a bounded sequence in H1(RN ,R3).

There exists u1 ∈ H1(RN ,R) such that u1,n ⇀ u1 and u2,n ⇀ 0 and u3,n ⇀ 0. Therefore,

we have
∫
u1,nu2,nu3,n → 0. Moreover, by the Lagrange multipliers rule there exists ωn ∈ R

such that ∫
∇u1,n∇ψ − λnu1,nψ − |u1,n|p−2u1,nψ = on(1)‖φ‖H1(RN ),

for all φ ∈ H1(RN ,R). The choice ψ = u1,n gives

λna
2
1 = ‖∇u1,n‖22 − ‖u1,n‖pp + on(1).

And the boundedness of {~un} in H1(RN ,R3) implies that {λn} is bounded as well, thus

λn → λ1 ∈ R. Similarly, since ‖u2,n‖22 → 0 and ‖u3,n‖22 → 0, we have u2,n, u3,n → 0 in

H1(RN ,R). Recalling that P (~un)→ 0,

on(1) = P (~un) =
3∑
i=1

‖∇ui,n‖22 − γp‖u1,n‖pp + on(1) = ‖u1,n‖22 − γp‖u1,n‖pp + on(1),

we have

λna
2
1 = (1− γp) ‖u1,n‖pp + on(1).

Since γp < 1, we deduce that λ1 ≥ 0 with equality only if u1 ≡ 0. But u1 cannot be identically

0 because E(~un) 6→ 0. Then, up to a subsequence, λn → λ1 > 0. By weak convergence, u1 is

a radial weak solution of −∆u+ λ1u = |u|p−2u. We infer that∫
|∇(ui,n − u1)|2 + λ1|u1,n − u1|2 = on(1),
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then u1,n → u1 in H1
r (RN ,R). In addition,

E(~un) =
1

2
‖u1,n‖22 −

1

p
‖u1,n‖pp + on(1) =

1

2

(
1− 1

γp

)
‖u1,n‖pp + on(1)

=
1

2

(
1− 1

γp

)
‖u1‖pp + on(1) = m(a1) + on(1).

By rescaling, u1 = κ̃
1
p−2wp(κ̃

1
2x) where κ̃ =

(
a21
‖wp‖22

) p−2
2−pγp and wp is the positive radial

solution of −∆w + w = |w|p−2w. �

Proof of Theorem 2. (i) It follows from Lemmas 3.3 and 4.2 that there is a mountain-

pass critical point of E on S(a1, a2). Therefore, there exists ~v ∈ S(a1, a2) such that E(~v) =

m−(a1, a2).

(ii) It follows from Lemma 4.3.

5. Proof of Theorem 3

In this section we prove the global existence result. We observe that the following identity

holds true:

E(~ψ)− 1

pγp
P (~ψ) =

1

2

(
1− 2

pγp

) 3∑
i=1

‖∇ψi‖22 − α
(

1− 1

p− 2

)
Re

∫
ψ1ψ2ψ3, (5.1)

recalling the definition of the energy (1.2) and the Pohozaev functions in (1.12).

Proof of Theorem 3. From Chapter 4 in [11], we get that (1.1) is locally well-posed,

therefore, ~ψ ∈ C
(
[0, Tmax), H1(RN ,C3)

)
for some Tmax > 0, and by the blow-up alternative

Tmax = +∞ or
∑3

i=1 ‖∇ψi(t)‖22 → +∞ as t → T−max. We assume by contradiction that∑3
i=1 ‖∇ψi(t)‖22 → +∞ as t→ T−max. We omit the time dependence when no confusion may

arise. By the Gagliardo-Nirenberg inequality,

E(~ψ)− 1

pγp
P (~ψ)

=
1

2

(
1− 2

pγp

) 3∑
i=1

‖∇ψi‖22 − α
(

1− 1

p− 2

)
Re

∫
ψ1ψ2ψ3

≥ 1

2

(
1− 2

pγp

) 3∑
i=1

‖∇ψi‖22 −
α

3
C3(N, p) max

{
a

6−N
2

1 , a
6−N

2
2

}( 3∑
i=1

‖∇ψi‖22

)N
4

.

Therefore, we have

E(~ψ(t))− 1

pγp
P (~ψ(t))→ +∞ as t→ T−max,

and by conservation of the energy, it follows that P (~ψ(t))→ −∞ as t→ T−max.

We claim, with a strategy as in [38], that there exists K > 0 such that t~ψ0
< 1 for all

~ψ0 ∈ S(a1, a2) with P (~ψ0) < −K.
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We separate two cases. At first, suppose that ~ψ0 ∈ M, then by the Gagliardo-Nirenberg

inequality,

P (~ψ0) ≥
3∑
i=1

‖∇ψ0,i‖22 − γpCp(N, p) max

{
a
p−pγp

2
1 , a

p−pγp
2

2

}( 3∑
i=1

‖∇ψ0,i‖22

) pγp
2

− Nα

2
C3(N, p) max

{
a

6−N
2

1 , a
6−N

2
2

}( 3∑
i=1

‖∇ψ0,i‖22

)N
4

.

This implies that P (~ψ0) ≥ g

((
3∑
i=1
‖∇ψ0,i‖22

) 1
2

)
, where

g(y) = y2 − γpCp(N, p) max

{
a
p−pγp

2
1 , a

p−pγp
2

2

}
ypγp − Nα

2
C3(N, p) max

{
a

6−N
2

1 , a
6−N

2
2

}
y
N
2 .

As in the proof of Lemma 2.2, under the assumption of max{a1, a2} < D, there exists

R2, R3 > 0 such that g is positive on (R2, R3). Since limy→0+ g(y) = 0− and g is continuous,

there exists K > 0 such that g(y) ≥ −K on [0, R2]. From Lemma 2.4, we get that s~ψ0
is the

local minimizer of Ψ~ψ0
, and hence

inf
s∈(0,s~ψ0

)
sΨ′~ψ0

(s) = inf
s∈(0,s~ψ0

)
P (s ? ~ψ0)

≥ inf
s∈(0,s~ψ0

)
g

s ?( 3∑
i=1

‖∇ψi‖22

) 1
2

 ≥ inf
y∈(0,R2)

g(y) ≥ −K.

We assume by contradiction that P (~ψ0) < −K but t~ψ0
≥ 1. If 1 ∈ [s~ψ0

, t~ψ0
], then we have

P (~ψ0) = Ψ′~ψ0
(1) ≥ 0, which is impossible. If s~ψ0

> 1, it follows that

−K > P (~ψ0) = Ψ′~ψ0
(1) ≥ inf

s∈(0,s~ψ0
)
sΨ′~ψ0

(s) ≥ −K,

which is a contradiction.

Secondly, suppose that ~ψ0 6∈ M, let t~ψ0
be the unique critical point of the function Ψ~u which is

a strict maximum point at positive level. Then t~ψ0
< 1 for ~ψ0 ∈ S(a1, a2) with P (~ψ0) < −K.

Thus, the proof of the claim is complete.

Since P
(
~ψ(t)

)
→ −∞ as t → T−max, by the above claim and Lemma 2.4, it gives that

t~ψ(Tmax−ε) < 1 if ε is small enough. It follows from P (~ψ0) > 0 that t~ψ0
> 1, and since

~ψ0 7→ t~ψ0
is continuous in H1(RN ,C3), then there exists τ ∈ (0, Tmax) such that t~ψ(τ)

= 1,

i.e., ~ψ(τ) ∈ P−a1,a2 . The conservation of the energy and the assumption on E(~ψ0) yields

inf
P−
a1,a2

E > E(~ψ0) = E(~ψ(τ)) ≥ inf
P−
a1,a2

E,

which is a contradiction.
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6. Proof of Theorem 4

In this last section, we prove that the conditions in Theorem 4 are sufficient to have

formation of singularities in finite time, as well as the instability result. The Pohozaev

function P below is defined in (1.12).

Lemma 6.1. Under the assumption of Theorem 2, let ~ψ(t) be the solution of (1.1) with

initial datum ~ψ0 ∈ S(a1, a2), P (~ψ0) < 0 and E(~ψ0) < inf E(~v). Then there exists η > 0 such

that P (~ψ(t)) ≤ −η < 0 for any t in the maximal time of existence.

Proof. Similar to the proof of Lemma 2.2, t~ψ0
is the unique global maximal point of Ψ~ψ0

, and

Ψ~ψ0
is strictly decreasing and concave in (t~ψ0

,+∞), see (2.8) for the definition of Ψ. From

[38, Section 10], we have the following claim, if ~ψ0 ∈ S(a1, a2) and t~ψ0
∈ (0, 1), then

P (~ψ0) ≤ E(~ψ0)− inf
P−
a1,a2

E. (6.1)

Let ~ψ(t) be the solution of (1.1) with initial datum ~ψ(0) := ~ψ0, defined on the interval

[0, Tmax). By continuity, and P (~ψ0) < 0, provided t is sufficiently small we have P (~ψ(t)) < 0.

Therefore, from (6.1),

P (~ψ(t)) ≤ E(~ψ(t))− inf
P−
a1,a2

E = E(~ψ0)− inf
P−
a1,a2

E =: −η < 0, (6.2)

for any t. Hence, we deduce from the continuity that P (~ψ(t)) < −η for all t ∈ [0, Tmax). �

The next result is a refinement of the Lemma 6.1.

Lemma 6.2. Under the same hypothesis of Lemma 6.1, there exists a positive constant δ > 0

such that

P (~ψ(t)) ≤ −δ
3∑
i=1

‖∇ψi(t)‖22.

Proof. From the proof of Lemma 6.1 we already know that there exists a positive η > 0

such that P (~ψ(t)) ≤ −η in the maximal time of existence of the solution, see (6.2). By the

algebraic relation (we omit the time dependence on ψi)

E(~ψ)− 1

pγp
P (~ψ) =

1

2

(
1− 2

pγp

) 3∑
i=1

‖∇ψi‖22 − α
(

1− 1

p− 2

)
Re

∫
ψ1ψ2ψ3,

we have that

3∑
i=1

‖∇ψi‖22 = 2
pγp

pγp − 2

(
E(~ψ)− 1

pγp
P (~ψ) + α

p− 3

p− 2
Re

∫
ψ1ψ2ψ3

)
.

Therefore,

P (~ψ) + δ‖∇~ψ‖22 =

(
1− 2δ

pγp − 2

)
P (~ψ) +

2δpγp
pγp − 2

E(~ψ) +
2αδpγp
pγp − 2

p− 3

p− 2
Re

∫
ψ1ψ2ψ3. (6.3)
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By the Hölder and the Gagliardo-Nirenberg interpolation inequalities, jointly with the con-

servation of the masses, see (1.3),∫
ψ1ψ2ψ3 ≤ ‖ψ1‖3‖ψ2‖3‖ψ3‖3 . (‖∇ψ1‖2‖∇ψ2‖2‖∇ψ3‖2)N/6 .

(
3∑
i=1

‖∇ψi‖22

)N/4
.

For N = 2, 3, N/4 < 1, and hence by the generalized Young’s inequality

δ
2αpγp
pγp − 2

p− 3

p− 2
Re

∫
ψ1ψ2ψ3 ≤

δ

2

3∑
i=1

‖∇ψi‖22 + Cδ.

By inserting the above estimate in (6.3), and using the conservation of the energy, we get

P (~ψ(t)) +
δ

2

3∑
i=1

‖∇ψi(t)‖22 ≤ −
(

1− 2δ

pγp − 2

)
σ + δC,

and by choosing δ sufficiently small, we obtain the desired result, as the right-hand side can

be made strictly negative uniformly in time. �

6.1. Proof of Theorem 4. We can now prove the blow-up results. Define

I(t) =
3∑
i=1

∫
ϕ|ψi(t)|2 dx (6.4)

for a smooth, real, nonnegative, time independent function ϕ = ϕ(x). By differentiating

twice in time and using (1.1), we get (we omit the time dependence on ψi)

I ′(t) =
3∑
i=1

2Im

{∫
∇ϕψi∇ψi

}
and

I ′′(t) =
3∑
i=1

4Re

{∫
∇2ϕ∇ψi∇ψi

}
−
∫

∆2ϕ|ψi|2 − 2

(
1− 2

p

)∫
∆ϕ|ψi|p

− 2αRe

∫
∆ϕψ1ψ2ψ3.

(6.5)

By plugging ϕ = |x|2 in (6.4), and using (6.5) along with Lemma 6.1, after integrating in

time twice we obtain

0 ≤ I(t) ≤ −8ηt2 +O(t) for all t ∈ [0, Tmax),

and a convexity argument gives Tmax <∞.

We now consider radial solutions. Let χ : [0,∞) → [0,∞) be a smooth, nonnegative

function satisfying

χ(r) :=

{
r2 if 0 ≤ r ≤ 1,

const. if r ≥ 2,
χ′′(r) ≤ 2, ∀ r ≥ 0. (6.6)

Given R > 1, we define by rescaling, the radial function ϕR : RN → R by

ϕR(x) = ϕR(r) := R2χ(r/R). (6.7)

If ϕ is radial and ~ψ is also radial, then
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I ′′(t) =

3∑
i=1

4

∫
ϕ′′R(r)|∇ψi|2 −

∫
∆2ϕR|ψi|2 − 2

(
1− 2

p

)∫
∆ϕR|ψi|p

− 2αRe

∫
∆ϕRψ1ψ2ψ3

=
3∑
i=1

8

∫
|∇ψi|2 + 4

3∑
i=1

∫
(ϕ′′R(r)− 2)|∇ψi|2 −

∫
∆2ϕR|ψi|2

+

3∑
i=1

2

(
1− 2

p

)∫
(2N −∆ϕR)|ψi|p − 4N

3∑
i=1

(
1− 2

p

)∫
|ψi|p

+ 2αRe

∫
(2N −∆ϕR)ψ1ψ2ψ3 − 4Nα2Re

∫
ψ1ψ2ψ3.

By using the properties of the localisation function, and the conservation of masses (the

quantities Q1 and Q2, see (1.3)), we estimate

I ′′(t) ≤ 8
3∑
i=1

∫
|∇ψi|2 + CR−2 − 4N

3∑
i=1

(
1− 2

p

)∫
|ψi|p − 4Nα2Re

∫
ψ1ψ2ψ3

+ C
3∑
i=1

∫
|x|≥R

|ψi|p + 2α

∫
|x|≥R

|ψ1ψ2ψ3|

= 8P (~ψ) + CR−2 + C

3∑
i=1

∫
|x|≥R

|ψi|p + 2α

∫
|x|≥R

|ψ1ψ2ψ3|.

(6.8)

To estimate the last term, we recall the following radial Sobolev embedding (see e.g. [15]):

for a radial function f ∈ H1(R3), we have for 1
2 ≤ s < 1 and N ≥ 2,

sup
x 6=0
|x|

N
2
−s|f(x)| ≤ C‖∇f‖s2‖f‖1−s2 . (6.9)

Thanks to (6.9) and the conservation of mass, we estimate with s = 1
2 ,∫

|x|≥R
|ψi|p =

∫
|x|≥R

|ψi|2|ψi|p−2 .
(
R−

(N−1)
2 ‖∇ψi‖1/22 ‖ψi‖

1/2
2

)p−2
‖ψi‖22

. R−
(N−1)(p−2)

2 ‖∇ψi‖(p−2)/2
2 .

(6.10)

Note that by the Hölder and the Cauchy-Schwarz inequalities,∫
|x|≥R

|ψ1ψ2ψ3| ≤
1

3

3∑
i=1

∫
|x|≥R

|ψi|3,

thus by (6.10) with p = 3 we get∫
|x|≥R

|ψ1ψ2ψ3| . R−
N−1

2

3∑
i=1

‖∇ψi‖1/22 . (6.11)
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Hence, from (6.8), (6.10), and (6.11) we get

I ′′(t) ≤ 8P (~ψ) + CR−2 + CR−
(N−1)(p−2)

2

3∑
i=1

‖∇ψi‖(p−2)/2
2 +R−

N−1
2

3∑
i=1

‖∇ψi‖1/22 . (6.12)

Let us observe that in dimension N = 3 it holds true that p−2
2 < 2 provided p < 6 =

2 + 4
N−2 = p∗, which fits our assumption in the three-dimensional setting. When N = 2, we

must restrict the range of the nonlinearity to p ∈ (4, 6). See also Ogawa and Tsutsumi [35].

A convexity argument yields the blow-up result, by glueing together (6.12), (6.2) and

Lemma 6.2, provided R is large enough.

Remark 6.3. In the three-dimensional case, the radial symmetry can be further relaxed to

a cylindrical symmetric setting, provided we impose partial weighted L2-summability of the

initial data, see the first author’s results in [2, 4, 21].

6.2. Proof of Corollary 1. Let ~v be the excited state constructed in Theorem 2, point (i).

For any s > 0, let ~vs := s ? ~v, and let ~ψs be the solution to (1.1) with the initial datum ~vs.

Then, ~vs → u as s → 1+. By Lemma 6.1, it is sufficient to prove that ~ψs blows-up in finite

time. In fact, it follows from [6] that ~v ∈ H1(RN ,R3) decays exponentially at infinity, and

hence |x|~v ∈ L2(RN ,R3). Let σ~vs be defined in Lemma 2.4, we have

E(~vs) = E(s ? ~v) < E(σ~vs ? ~v) = inf
P−
a1,a2

E,

because P (~vs) < 0. The proof of Corollary 1 is completed.

Acknowledgements. X. Luo and T. Yang are supported by the National Natural Science

Foundation of China (Grant No. 11901147 and No. 12201564).

References

[1] A. H. Ardila, Orbital stability of standing waves for a system of nonlinear Schrödinger

equations with three wave interaction, Nonlinear Anal., 167(2018), 1–20.

[2] A. H. Ardila, V. D. Dinh, and L. Forcella, Sharp conditions for scattering and blow-up

for a system of NLS arising in optical materials with χ3 nonlinear response, Comm.

Partial Differential Equations, 46 (2021), no. 11, 2134–2170.

[3] T. Bartsch, L. Jeanjean and N. Soave. Normalized solutions for a system of coupled

cubic Schrödinger equations on R3, J. Math. Pures Appl., 106(2016), no. 4, 583–614.

[4] J. Bellazzini, L. Forcella, and V. Georgiev, Ground state energy threshold and blow-

up for NLS with competing nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci., to

appear. arXiv:2012.10977[math.AP]

[5] J. Bellazzini, L. Jeanjean, On dipolar quantum gases in the unstable regime, SIAM

J. Math. Anal., 48(3)(2016), 2028–2058.

[6] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a

ground state, Arch. Rational Mech. Anal., 82(1983), no. 4, 313–345.

[7] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infin-

itely many solutions, Arch. Ration. Mech. Anal., 82(1983), no. 4, 347–375.

[8] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and

convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490



40 L. FORCELLA, X. LUO, T. YANG, AND X. YANG

[9] F. Brock, A general rearrangement inequality à la Hardy-Littlewood, J. Inequality
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