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Abstract. We consider the two-dimensional nonlinear Schrödinger equation with
point interaction and we establish a local well-posedness theory, including blow-up
alternative and continuous dependence on the initial data in the energy space. We
provide a proof by employing a Kato’s method along with Hardy inequalities with
logarithmic correction. Moreover, we establish finite time blow-up for solutions
with positive energy and infinite variance.

1. Introduction

In this paper, we consider the Cauchy problem{
i∂tu = ∆αu± |u|p−1u,

u(0, x) = u0(x),
(1.1)

where u = u(t, x), u : R × R2 7→ C, p > 1 and the operators ∆α are a family of
self-adjoint extensions of the free Laplace operator −∆ on the domain C∞(R2 \ {0}).
The parameter α varies in R ∪ {+∞}, and characterizes all nontrivial self-adjoint
extensions on L2(R2) of −∆|C∞(R2\{0}). When α = +∞ we mean ∆∞ = −∆. It can
be thought like a perturbation of the free Laplacian with a point defect (or point
interaction). It is also sometimes incorrectly referred to as the Schrödinger operator
with delta interaction, as it can be viewed as a two-dimensional extension of the
one-dimensional operator − d2

dx2
+ αδ, where δ represents the Dirac delta distribution.

Generally, the operators ∆α are well defined only in Rd with d = 1, 2, 3, and we
refer to the monograph [3] for a comprehensive source on that topic. In this paper,
we focus on the two-dimensional case for reasons that will become clear later (see
Remark 2.4 and the proof of Theorem 1.1 in Section 3). For a rigorous construction
of the two-dimensional case refer to [2]. Additionally, the exhaustive introductions
in [7, 12] provide further insights.

On the physical side, point interactions can represent idealized models of particles
interacting through very short-range forces. This is particularly useful in studying
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systems like quantum dots or impurities in a crystal lattice. One can see in [6] the link
between contact-type regimes and two-impurity Kondo system, for example. We refer
to [3, Chapter I.5] or [4] for the mathematical framework and physical implications
of point interactions in two dimensions.

As stated before, the point-like perturbation of the standard Laplace operator can
be modelled by a one-parameter family ∆α, α ∈ (−∞,∞] of self-adjoint extensions
of the free Laplace operator −∆ on the domain C∞(R2 \ {0}). The spectrum of
this operator has an absolutely continuous part [0,∞) and only one real negative
eigenvalue eα = −4e−2(2πα+γ). The natural energy space H1

α associated with (1.1) is
the domain of (λ + ∆α)1/2, where λ > |eα|. A typical element in the space u ∈ H1

α

has the structure u = φλ + qGλ, where φλ ∈ H1(R2), q ∈ C, and Gλ /∈ H1(R2).
See Section 2 for rigorous definitions. The Cauchy datum u0 in (1.1) is taken this
space. Note by the form of a element u ∈ H1

α(R2), this space strictly contains the
usual Sobolev space H1(R2) arising from the unperturbed Laplacian. Our goal is
to establish a local existence theory for (1.1) with u0 ∈ H1

α(R2), and our first main
result is the following.

Theorem 1.1. Let α ∈ R and p > 1. The Cauchy problem (1.1) is locally well posed
in the classical sense in the energy space. More precisely:

(i) for any u0 ∈ H1
α(R2) there exists a unique solution u(t) ∈ C((−Tmin, Tmax)) to (1.1)

where (−Tmin, Tmax) is the maximal time interval of existence, with Tmin, Tmax > 0;

(ii) the mass and the energy are conserved quantities, i.e., for any t ∈ (−Tmin, Tmax)

M(u(t)) := ‖u(t)‖2
L2(R2) = M(u0) (1.2)

and

E(u(t)) :=
1

2
F (u(t))− 1

p+ 1
‖u(t)‖p+1

Lp+1(R2) = E(u0) (1.3)

where, for u of the form u = φλ + qGλ and Γλα a constant depending on α and λ,

F (u(t)) = Fα(u(t)) := ‖∇φλ‖2
L2(R2) + λ(‖φλ‖2

L2(R2) − ‖u‖2
L2(R2)) + Γλα|q|2, (1.4)

respectively;

(iii) the solution also belongs to the Strichartz spaces Lqloc((−Tmin, Tmax);H1,ρ
α (R2))

where (q, ρ) is any Strichartz admissible pair, i.e. 1
q

= 1
2
− 1

ρ
, ρ ≥ 2;

(iv) we have the blow-up alternative, namely either the solution is global or Tmax > 0
is finite and

lim
t↗Tmax

‖u(t)‖H1
α(R2) = +∞.

A similar statement holds for Tmin;

(v) the solution map is continuous with respect to the initial data.
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The strategy to prove Theorem 1.1 is to implement Kato’s approach based on the
validity of certain a-priori estimates on the nonlinearity, see conditions (3.1) and (3.2)
in Section 3. To achieve this, our main ideas are the followings:

(i) first, we reduce the proof of the crucial estimates to a classical Sobolev space
framework, by means of a characterization of singular Sobolev spaces for certain
index;

(ii) secondly, we remove the singularity of log(|x|)-type from the singular part of
the solution (see Section 2 for the structure of an energy solution to the Cauchy
problem (1.1)), by making it appear as a factor of the regular part of the solution.
Of course, this does not completely remove the singularity, but by using a generalized
Hardy-type inequality, we can properly control the new singular term. Consequently,
we can prove the validity of Kato’s hypothesis and establish the well-posedness result
of Theorem 1.1.

It is worth noticing that Strichartz estimates for the linear operator eit∆α also play
a fundamental role when proving existence results. For the operator ∆α in the
two-dimensional case, such estimates have been established recently in [9, 10,25].

It is noteworthy that a version of Theorem 1.1 was previously proven in a paper by
Fukaya, Ikeda, and the second author (see [12]). The strategy used to establish local
well-posedness in [12] is based on the general abstract theory developed in Okazawa,
Suzuki, and Yokota (see [22]), which extends the results of Cazenave [8]. The approach
in [22] is quite involved, and to prove the existence, regularity, and stability results as
in Theorem 1.1, several conditions need to be satisfied. Additionally, the theory in [22]
was specifically motivated by the infeasibility of Kato’s method for the NLS equation
with an inverse square potential. Therefore, we believe our approach is more suitable
for addressing (1.1), providing a shorter and more elegant proof. Furthermore, the
method of [22] heavily relies on a regularization procedure, which we completely avoid
here by using Kato’s approach.
We also point-out that neither in [12] nor in the original paper [22] the blow-up
alternative (i.e., Theorem 1.1 point (iv)) was mentioned. Indeed, the blow-up
alternative follows directly from the fact that the time interval of existence depends
on the norm of the initial value. Indeed, this is clearly evident when applying a fixed
point argument in the spirit of Kato (see [8]).

In conclusion, regarding the local well-posedness problem, we note that existence
results were provided in the domain space (see (2.1) below) in [7]. With our approach,
we are able to establish a local well-posedness theory in the more natural energy space.

The second result in our paper concerns long time behaviour of solutions to (1.1)
in the focusing regime, namely when the minus sign is considered in the nonlinearity
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of (1.1). Specifically, we investigate the existence of infinite-variance, finite-time
blowing-up solutions for positive energies. Before stating it, we introduce a few
quantities which will be explained further in Section 2: for u ∈ H1

α(R2) and ω ∈ R,
we denote by Sω(u) = E(u) + ωM(u) the action functional, by vω a ground state,
and by

P (u) = F (u)− p− 1

p+ 1
‖u‖p+1

Lp+1(R2) +
|q|2

4π
with u = φλ + qGλ

the Pohozaev functional. Then, our achievement reads as follows.

Theorem 1.2. Let α ∈ R, 3 < p ≤ 5 and consider the focusing case, i.e., the
nonlinearity is −|u|p−1u. Let u0 ∈ H1

α(R2) an initial datum such that Sω(u0) < Sω(vω),
E(u0) ≥ 0, and P (u0) < 0. Suppose that u0(x) = u0(|x|). Then Tmax <∞. A similar
statement holds for Tmin.

The results mentioned above concerning the unperturbed Laplace operator and
negative energies traces back to the work of Ogawa and Tsutsumi (see [21]). Their
research extended the findings of Glassey (see [14]), who focused on finite-variance
solutions. More recently, Holmer and Roudenko (see [16]) expanded the results of [21]
to include positive energies.

For the point interaction equation (1.1), we are only aware of a recent result by Finco
and Noja [11]. They studied solutions with finite variance, specifically those solutions
to (1.1) that decay in space fast enough to satisfy the condition u ∈ Σ := L2(|x|2dx).
For solutions with initial data in Σ, the authors of [11] confirmed the validity of a
virial identity in the context of point interaction, similar to the one for the NLS
equation with an unperturbed Laplace operator. Specifically, they demonstrated the

virial identity
d2

dt2

ˆ
R2

|x|2|u(t)|2dx = 8P (u(t)). The negativity of P (u(t)) directly

implies a blow-up result through a convexity argument, thereby proving Glassey’s
result in this scenario.

In this paper, we explore a potential analogy to the results by Ogawa and Tsutsumi
[21] (and [16]) for (1.1) with positive energies. Theorem 1.2 shows that, even in the
case of point interaction, the same range of nonlinearities as in [16,21] applies. Our
proof also relies on virial estimates, although it is more complex compared to the
proof for solutions in Σ and the case involving the free Laplacian. We refer to Section
4 for more details.

2. Preliminary tools

In this section, we rigorously introduce the mathematical framework we are going
to work with, we give useful properties of the singular operator appearing in (1.1),
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and we show the crucial estimates used to prove our main results. Since now on, as
we specialize to the two-dimensional case, we omit the space R2 when no confusion
may arise.

2.1. Properties of the singular Laplacian operator. We begin with a rigorous
definition of the singular Laplace operator ∆α, and we introduce the functional setting
used in the local well-posedness theory we develop in section 3.

Let us recall the following: given the domain

D(∆α) =

{
u ∈ L2 s.t. u = φλ + qGλ, with φλ ∈ H2 and q =

φλ(0)

Γλα

}
, (2.1)

where

Gλ = (−∆ + λ)−1δ, (2.2)

and

Γλα = α +
γ

2π
+

log(
√
λ/2)

2π
,

γ being the Euler-Mascheroni constant, a classical definition of the action of ∆α as
in [2] is

(λ+ ∆α)u = (λ−∆)φλ (2.3)

with (2.3) being equivalent to the action of ∆α defined as

∆αu = −∆φλ − λqGλ. (2.4)

The space described in (2.1) is denoted by H2
α.

The operator λ+ ∆α with λ > |eα| is self-adjoint and positive one. The domain of its
square root can be characterized (see [19])

D((λ+ ∆α)1/2) =
{
u ∈ L2 s.t. ∃ q ∈ C and φλ ∈ H1 : u = φλ + qGλ

}
,

and this becomes a domain of the corresponding quadratic form

F (u) = ‖∇φλ‖2
L2 + λ(‖φλ‖2

L2 − ‖u‖2
L2) + Γλα|q|2

already appeared in (1.4). Therefore, D(Fα) is the domain of the square root of the
operator ∆α + λ:

D(Fα) = D((∆α + λ)1/2) := H1
α, for λ > −eα = |eα|, (2.5)

with eα being the only simple negative eigenvalue of ∆α. Note that

‖u‖H1
α
' ‖φλ‖H1 + |q|
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where H1 is the classical Sobolev space H1 = (−∆ + 1)−1L2.
In this subsection we will resume some properties of the Green function Gλ, the
fundamental solution of (λ−∆) for any

λ ∈ R \ σ(∆) = R \ (−∞, 0].

First of all, it can be represented, in the 2D case, as

Gλ(x) = (2π)−1K0(
√
λ|x|).

Here Kν is the second type modified Bessel function of order ν ≥ 0, also called
Macdonald function. The asymptotic expansions at zero and infinity are also well
known. Indeed, we have

Gλ(x) = − 1

2π
log(|x|)− Γλ − α + o(|x|) for x→ 0, (2.6)

while at infinity we have the exponential decay (see [24, relation (20), section 7.23])

G1(x) = e−|x|
(√

π

2|x|
+O

(
|x|−3/2

))
, for x→∞.

We also recall that Gλ ∈ Lρ for any ρ ≥ 1.

For our dynamical result, two proprieties are essential: the unique representation of
an element in the domain D(∆α) for a given λ, and the independence of the domain
and the action with respect to the choice of λ. These are, respectively, the content of
the following two lemmas, whose proofs can be found in [13].

Lemma 2.1. For a fixed λ, suppose that for an element u ∈ D(∆α) we have two
representations

u = φλ1 + q1Gλ,

u = φλ2 + q2Gλ,

where qj =
φj(0)

Γλα
, j = 1, 2. Then

φλ1 = φλ2 and q1 = q2.

Lemma 2.2. For λ > |eα|, the domain of the operator (λ+ ∆α) and its action are
independent of the choice of λ.

2.2. Sobolev and Logarithmic Hardy inequalities. A natural extension of the
H1
α as defined in (2.5) for other index of summability is

H1,r
α =

{
u s.t. ∃ q ∈ C and φλ ∈ H1,r : u = φλ + qGλ

}
,
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where H1,r = (1−∆)−1/2Lr is the usual Sobolev space. As for the classical H1 space,
also in the presence of a point interaction we have the Sobolev embedding

H1
α ↪→ Lρ for any ρ ≥ 2, (2.7)

namely there exists a C = C(ρ) > 0 such that ‖u‖Lρ ≤ C‖u‖H1
α
, provided λ > |eα|.

Indeed,

‖u‖Lρ . ‖φλ‖Lρ + |q|‖Gλ‖Lρ . ‖φλ‖H1 + |q| ∼ ‖u‖H1
α
.

Beside the above embedding, a characterization property will be crucially used in
establishing a well-posedness theory. Precisely, we have the following (for a proof we
refer to [13]).

Proposition 2.3. For any r < 2, H1,r
α = H1,r.

Remark 2.4. A similar characterization is given for more general singular spaces.
Indeed, it holds that Hs,p

α (Rd) = Hs,p(Rd) provided s < d
p
− d + 2, d = 2, 3. As we

aim at establishing an existence theory in the energy space, the characterizion can be
used only in the two-dimensional framework.

An essential tool in our ideas to establish the local well-posedness theory for (1.1)
will be a generalized logarithmic Hardy inequality in a critical Sobolev space. Precisely,
we will make use of the following.

Lemma 2.5. Let 1 < a, b < ∞ such that 1 + a − b < 0. Then we have that there
exists a constant C > 0 such that for any u ∈ H1

ˆ
|x|< 1

2

|u(x)|a

|x|2| log(|x|)|b
dx ≤ C‖u‖aH1 . (2.8)

The proof of the above result is due to Machihara, Ozawa, and Wadade, see [18].

Remark 2.6. The previous Lemma is specifically tailored for our scope, but in its
full generality holds true also in the n-dimensional Euclidean space when the critical
Sobolev space appearing in the right-hand side of (2.8) is replaced by the critical

Sobolev-Lorentz space H
p/n
p,q (Rn) := (1−∆)−p/nLp,q(Rn), where Lp,q is the classical

Lorentz space, provided some conditions on the parameters a, b (also depending on q)
are satisfied. We refer the reader to [18, Theorem 1.1].

Remark 2.7. It is worth mentioning that for an integer s, the Sobolov-Lorentz space
Hs
p,q coincides with the usual Sobolev space Hs provided p = q = 2. See [5, Theorem

6.2.3].

We conclude this subsection by recalling the non-endpoint Leibniz rule which will
be used later on.
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Lemma 2.8. Let 1 < mj ≤ ∞ for j = 1, 2, 3, 4 such that 1
r

= 1
m1

+ 1
m2

= 1
m3

+ 1
m4

,

with 1
2
< r <∞. Then

‖fg‖H1,r . ‖f‖H1,m1‖g‖Lm2 + ‖f‖Lm3‖g‖H1,m4 . (2.9)

A proof of the Lemma above can be found in [15], or in the monograph [20] with a
different approach.

2.3. Ground states. In this subsection we recall an existence result for the ground
states associated to (1.1), and a few properties of the Pohozaev functional. In what
follows, we consider the focusing equation, namely the nonlinearity in the right-hand
side of (1.1) is −|u|p−1u.

Let us consider the action functional

Sω(u) = E(u) +
ω

2
M(u),

where E and M are energy and the mass of a function u ∈ H1
α as defined in (1.3) and

(1.2), respectively. We recall that a standing wave is a solution of (1.1) of the form
u(t, x) = eiωtv(x), hence v = v(x) satisfies the stationary equation

∆αv + ωv − |v|p−1v = 0. (2.10)

The set of ground states is defined instead as the set of solution to (2.10) minimizing
the action functional Sω, i.e.

G = {vω ∈ H1
α s.t. Sω(vω) ≤ Sω(v) for any v ∈ H1

α and vω satisfies (2.10)}.
Existence of solution to (2.10) was proved in [12], via minimization of the functional
Sω constrained to the Nehari manifold

Nω(u) := {u ∈ H1
α s.t. F (u) + ω‖u‖2

L2 − ‖u‖p+1
Lp+1 = 0}.

Specifically, it was proved in [12] that for any ω > |eα| a ground state vω exists, it
minimizes the following variational problem:

iω = inf
{06=v∈Nω}

Sω(v),

and in particular iω = Sω(vω). We also refer to the work of Adami, Boni, Carlone,
and Tentarelli [1].

Via standard variational argument, see [11], we have that the set of initial data
u0 ∈ H1

α satisfying E(u0) ≥ 0, Sω(u0) < Sω(vω), and P (u0) < 0, where

P (u) = F (u)− p− 1

p+ 1
‖u‖p+1

Lp+1 +
|q|2

4π
, u ∈ H1

α,

is the Pohozaev functional, is invariant along the flow of (1.1). More precisely, we
have the following.
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Proposition 2.9. Let u0 ∈ H1
α an initial datum fulfilling Sω(u0) < Sω(vω), E(u0) ≥ 0,

and P (u0) < 0. Then the solution u(t) to the Cauchy problem (1.1), preserves the
same bounds for any t ∈ (−Tmin, Tmax), and in particular

P (u(t)) < 2(Sω(u0)− Sω(vω)) < 0. (2.11)

Remark 2.10. The bound involving Sω and the one on E are straightforward by
conservation of mass and energy, while the one P follows by standard variational
analysis.

3. LWP theory

We prove here the local existence result à la Kato for (1.1). As discussed earlier, a
local existence theory for (1.1) was given in [12] by implementing the abstract theory
of [22]. For the reasons explained in the Introduction, we give a direct proof using
the Kato theory.

In the following we denote g(u) = ±|u|p−1u. From [8] we can claim that in order
to apply the Kato’s theory, it is enough to prove that for some 2 ≤ r, ρ <∞

‖g(u)− g(v)‖Lr′ ≤ C(M)‖u− v‖Lρ (3.1)

for all u, v ∈ H1
α such that ‖u‖H1

α
, ‖v‖H1

α
≤M and that

‖g(u)‖
H1,r′
α
≤ C(M)(1 + ‖u‖H1,ρ

α
) (3.2)

for all u ∈ H1
α ∩H1,r

α such that ‖u‖H1
α
≤M .

Recall the estimate ||u|p−1u− |v|p−1v| . |u− v|(|u|p−1 + |v|p−1). Take r′ = 2− ε,
ε ∈ (0, 1) then by the Hölder inequality with 1

q̃
+ 1

2
= 1

2−ε and the Sobolev (2.7), we

have
‖|u|p−1u− |v|p−1v‖L2−ε . ‖u− v‖L2(‖u‖p−1

L(p−1)q̃ + ‖v‖p−1

L(p−1)q̃)

. ‖u− v‖L2(‖u‖p−1
H1
α

+ ‖v‖p−1
H1
α

).

Therefore, we have that (3.1) is verified.

We have from Proposition 2.3 that, for σ < 2, ‖f‖H1,σ
α
∼ ‖f‖H1,σ . Hence our first

idea is to reduce our task to estimate the H1,σ-norms for σ’s less than 2.
As before, take r′ = 2− ε, where ε ∈ (0, 1). Let us rewrite

|u|p−1u = ψ|u|p−1u+ (1− ψ)|u|p−1u (3.3)

where ψ ∈ C∞c such that ψ = 1 in a neighbourhood of x = 0 and its support is
contained in the ball |x| ≤ 1/2. Note that if u ∈ H1

α then (1− ψ)u ∈ H1 since the
singularity at the origin is removed.
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Let us focus on the first term ψ|u|p−1u. Consider a further cut-off function ψ1

such that ψ1 = 1 on the support of ψ. Then, ψ|u|p−1u = ψ|ψ1u|p−1(ψ1u). Since
now on along this section, we omit the λ-dependence of φλ and Gλ. Hence, in a
neighbourhood of the origin

ψ|u|p−1u = ψ(ψ1φ+ qψ1G)|ψ1φ+ qψ1G|p−1

∼ ψ(ψ1φ+ qψ1 log |x|)|ψ1φ+ qψ1 log |x||p−1

= ψ(ψ1φ− qψ1 log(|x|−1))|ψ1φ− qψ1 log(|x|−1)|p−1

= ψ logp(|x|−1)

(
ψ1φ

log(|x|−1)
− qψ1

) ∣∣∣∣ ψ1φ

log(|x|−1)
− qψ1

∣∣∣∣p−1

.

(3.4)

In the last step, we eliminated the log(|x|)-type singularity from the localized non-
regular term G by placing it as a factor of the regular term ψ1φ. Later, we will
demonstrate how to manage this new term with log(|x|) incorporated into the regular
part of the solution.

The function h := ψ1φ
log(|x|−1)

is clearly in L2 as it is supported in |x| < 1/2 and in that

ball 1
log(|x|−1)

≤ 1
log 2

. We claim that actually h ∈ H1. Straightforward calculations

give

∇h = − ψ1φ

|x|2 log2(|x|−1)
x+

1

log(|x|−1)
∇(ψ1φ),

then

|∇h| . |ψ1φ|
|x| log2(|x|−1)

+
|∇(ψ1φ)|
log(|x|−1)

.

At this point we invoke the logarithmic Hardy inequality (2.8) with a = 2, b = 4, so
that ˆ

|x|< 1
2

|ψ1φ|2

|x|2 log4(|x|−1)
dx =

ˆ
|x|< 1

2

|φ|2

|x|2 log4(|x|−1)
dx . ‖φ‖2

H1 .

Using the boundedness of 1
log(|x|−1)

and the properties of ψ1, we control the second
term ˆ

|x|< 1
2

|∇(ψ1φ)|2

log2(|x|−1)
dx .

ˆ
|x|< 1

2

|∇(ψ1φ)|2dx . ‖φ‖2
H1 .

At this point, we introduce the function

ũ =
ψ1φ

log(|x|−1)
− qψ1.
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By means of the Leibniz rule (2.9), we estimate (3.4) as follows:

‖ψ logp(|x|−1)ũ|ũ|p−1‖H1,r . ‖(ψ logp(|x|−1))‖H1,m1‖ũ‖pLpm2 (3.5)

+ ‖ψ logp(|x|−1)‖Lm3‖(ũ|ũ|p−1)‖H1,m4 , (3.6)

where r = 2− ε, ε ∈ (0, 1), and

1

2− ε
=

1

r
=

1

m1

+
1

m2

=
1

m3

+
1

m4

.

Let m1 = 2 − ε
2

and m2 = (4−ε)(2−ε)
ε

. We have that ψ logp(|x|−1) ∈ Lm1 and
∇ψ logp(|x|−1) ∈ Lm1 , indeed ψ and ∇ψ are supported in the ball |x| < 1/2,
and logp(|x|−1) . |x|−β for any β > 0 in that ball. In particular it holds for
β < (4 − ε)/ε which gives the desired integrability. Moreover, basic calculus gives

ψ∇ logp(|x|−1) = −pψ logp−1(|x|−1)
x

|x|2
, then

|ψ∇ logp(|x|−1)| . ψ
1

|x|
logp−1(|x|−1),

which is in Lm1 as well for the same consideration as above. Since ũ ∈ H1 and by the
Sobolev embedding H1 ⊂ Lρ for any ρ ≥ 2, then ũ ∈ Lm2p for m2p <∞. Hence, the
right-hand side of (3.5) is estimated by

‖ψ logp(|x|−1)‖H1,m1‖ũ‖pLpm2 . ‖ũ‖pH1 . (3.7)

As above, take m4 = 2− ε
2

and m3 = (4−ε)(2−ε)
ε

. By the Kato-Staffilani estimate, [17,23],
and the Sobolev embedding, we have

‖∇(ũ|ũ|p−1)‖Lm4 . ‖ũ‖p−1

L2(p−1)(4−ε)/ε‖ũ‖H1 . ‖ũ‖pH1 .

Note that ũ is in H1 since ũ = h− qψ1 (by definition) and by the previous discussion
both h and ψ1 belong to H1. The Lm3-norm of ψ logp(|x|−1) is finite, then for (3.6)
we have

‖ψ logp(|x|−1)‖Lm3‖(ũ|ũ|p−1)‖H1,m4 . ‖ũ‖pH1 . (3.8)

The observation now is that

‖ũ‖H1 . ‖φ‖H1 + |q| ∼ ‖u‖H1
α
. (3.9)

Therefore (3.7) and (3.8) jointly with (3.9) along with the definition (3.4) yield

‖ψ|u|p−1u‖H1,r . ‖ψ logp(|x|−1)ũ|ũ|p−1‖H1,r . ‖u‖pH1
α
.

Note that the constants hidden in the notation . and ∼ only depends on ψ1.
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At this point we move to the estimate of the remaining term in (3.3), namely
(1 − ψ)|u|p−1u. Observe that away from the origin the function G is regular and
decays at infinity faster than exponentially, see (2.6), hence

||u|p−1u| = |φ+ qG|p . |φ|p + |G|p ∈ L2−ε.

Moreover, as |∇(|u|p−1u)| . |u|p−1|∇u|, by the Hölder inequality

‖|u|p−1|∇u|‖2−ε
L2−ε ≤ ‖∇u‖2−ε

L2 ‖u‖(p−1)(2−ε)
L2(p−1)(2−ε)ε . ‖u‖

p(2−ε)
H1 ,

hence also |u|p−1∇u ∈ L2−ε. We then conclude with the fact that (1−ψ)|u|p−1u ∈ H1,r
α ,

r = 2− ε.

Proof of Theorem 1.1. The proof of estimates (3.1) and (3.2) gives Theorem 1.1 along
the same lines of the theory developed in the Cazenave’s monograph [8, Chapter
4.4]. �

4. Blow-up

We move now to the proof of the dynamical results of radial solutions. The
approach is based on virial estimates. Comparing to the classical case in the presence
of the unperturbed Laplacian, virial identities for (1.1) must take account of the
singular nature of the operator ∆α, hence we cannot straightforwardly proceed as
for the equation with a free Laplacian. To prepare the rigorous proof of the virial
identity we note that we crucially have from (2.2) the following identity which holds
in distributional sense for any regular function η with η(0) = 0:

η(λ−∆)Gλ = 0.

Lemma 4.1. If η a smooth cut-off function which is |x|2 for x near the origin. Then
for any u ∈ H2

α we have:

(i) ηu ∈ H2;

(ii) ∆α(ηu) = −∆(ηu).

Proof. Let us suppose that i) holds true. Then by definition of H2
α as in (2.1), along

with the decomposition into the regular and irregular part of u as in (2.4), we have
that

(λ−∆α)(ηu) = (λ−∆)(ηu),

indeed ηu only consists of a regular part. The thesis follows. Let us now prove
that i) is verifies. It is enough to show that the multiplication by η regularizes Gλ,
namely ηGλ ∈ H2. By (2.6), the singularity of Gλ is of the type log |x| as x → 0,
so ηGλ ∼ |x|2 log |x| := h(x) as |x| → 0. Therefore, straightforward calculations
give that in a neighbourhood of x = 0 the function h is clearly in L2; moreover



LWP AND BLOW-UP NLS POINT INTERACTION 13

|∇h| . |x|(log |x|+ 1) which is in L2, and |∇2h| . log (|x|−1) which is in L2
loc as well.

The proof is concluded. �

With the regularity Lemma above, we can state the virial identities used along the
paper. Consider the virial functional

V (t) =

ˆ
η(x)|u(t)|2dx

which is well defined provided η is a compactly supported smooth cut-off function.
In what follows, we omit the time-dependence of u, φλ, and q when no confusion may
arise.

Proposition 4.2. Let u ∈ H1
α be a radial solution to (1.1), and η a smooth cut-off

function having compact support and which is |x|
2

2
for x in a neighbourhood of the

origin. Then we have
d

dt
V (t) = 2Im

ˆ
∇η · ∇uūdx (4.1)

and
d2

dt2
V (t) = 4P (u(t)) +R(u(t)), (4.2)

where R(u(t)) is a remainder term defined in (4.13) below.

Proof. Using a density argument we approximate u by a sequence in H2
α. Therefore,

we can assume u ∈ H2
α and then by using the self-adjointness of ∆α and Lemma 4.1,

we get

d

dt
V (t) = 2Re

ˆ
η∂tuūdx = 2Re

ˆ
(−iη∆αu) ūdx

= 2Im

ˆ
ηū∆αudx = −2Im

ˆ
u∆(ηū)dx = 2Im

ˆ
ū∇η∇udx,

which is (4.1). Note that we do not use the behaviour of η in this step.

As for the second derivative of V (t), by using again the equation (1.1) solved by u,
differentiating (4.1) in time yields to

d2

dt2
V (t) = 2 Re

ˆ
∆ηu∆αūdx (4.3)

+ 4 Re

ˆ
∆αū∇u · ∇ηdx (4.4)

− 2 Re

ˆ
∆η|u|p+1dx (4.5)

− 4 Re

ˆ
|u|p−1ū∇u · ∇ηdx. (4.6)
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We expand (4.6) obtaining

(4.6) =
4

p+ 1

ˆ
(∆η − 2)|u|p+1dx+

8

p+ 1

ˆ
|u|p+1dx

and we rewrite

(4.5) = −2

ˆ
(∆η − 2)|u|p+1dx− 4

ˆ
|u|p+1dx;

hence

(4.5) + (4.6) = −2(p− 1)

p+ 1

ˆ
(∆η − 2)|u|p+1dx− 4(p− 1)

p+ 1

ˆ
|u|p+1dx.

To deal with (4.4) we explicitly write the solution u = φλ + qGλ, and the action of
the operator ∆αu = −∆φλ − qλGλ, then we get

(4.4) = 4 Re

ˆ
∇η
(
−∆φ̄λ − q̄λGλ

) (
∇φλ + q∇Gλ

)
dx

= 4 Re

ˆ
∇η
(
−∆φ̄λ∇φλ − q∆φ̄λ∇Gλ − q̄λGλ∇φλ − λ|q|2Gλ∇Gλ

)
= A+B + C +D.

We have, in order:

A = 4 Re

ˆ
∇2η∇φ̄λ∇φλdx− 2

ˆ
∆η|∇φλ|2dx,

B + C = 4 Re

ˆ
q̄λφλ div(∇ηGλ)− qφ̄λ∆(∇η∇Gλ)dx,

D = 2λ|q|2
ˆ

∆η(Gλ)2dx.

In conclusion,

(4.4) = 4 Re

ˆ
∇2η∇φ̄λ∇φλdx− 2

ˆ
∆η|∇φλ|2dx

+ 4 Re

ˆ
q̄λφλ div(∇ηGλ)− qφ̄λ∆(∇η∇Gλ)dx

+ 2λ|q|2
ˆ

(∆η − 2)(Gλ)2dx

+ 4λ|q|2
ˆ

(Gλ)2dx.
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Let us expand the term in the right-hand side of (4.3).

r.h.s.(4.3) = 4

ˆ
u∆αūdx+ 2 Re

ˆ
(∆η − 2)u∆αūdx

= 4F (u) + 2 Re

ˆ
(∆η − 2)u∆αūdx.

Note that 4λ|q|2
ˆ

(Gλ)2dx =
|q|2

π
, and by gluing all contribution together, recalling

that F (u) = 2E(u) +
2

p+ 1
‖u‖p+1

Lp+1 , we obtain

d2

dt2
V (t) = 8E(u)− 4(p− 3)

p+ 1
‖u‖p+1

Lp+1 +
|q|2

π
(4.7)

− 2(p− 1)

p+ 1

ˆ
(∆η − 2)|u|p+1dx (4.8)

+ 2 Re

ˆ
(∆η − 2)u∆αūdx (4.9)

+ 4 Re

ˆ
∇2η∇φ̄λ∇φλdx− 2

ˆ
∆η|∇φλ|2dx (4.10)

+ 4 Re

ˆ
q̄λφλ div(∇ηGλ)− qφ̄λ∆(∇η∇Gλ)dx (4.11)

+ 2λ|q|2
ˆ

(∆η − 2)(Gλ)2dx. (4.12)

Observe that right-hand side (4.7) = 4P (u(t)), and the proof of (4.2) is done by
defining

R(u(t)) = (4.8) + (4.9) + (4.10) + (4.11) + (4.12). (4.13)

�

At this point we precisely describe the function η we are going to use to estimate
R(u(t)). Let θ : [0,∞)→ [0, 1] be a smooth function satisfying

θ(τ) =

{
1 if 0 ≤ τ ≤ 1,
0 if τ ≥ 2.

We define the function Θ : [0,∞)→ [0,∞) by

Θ(|x|) :=

ˆ |x|
0

ˆ s

0

θ(τ)dτds.

For R > 0, we define the radial function η : R2 → R by

η = ηR(|x|) := R2Θ(|x|/R).
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With such a cut-off function we have the following.

Proposition 4.3. Provided 3 < p ≤ 5, for sufficiently large R, the remainder R is
estimated by

R(u(t)) . oR(1) + oR(1)‖u(t)‖2
H1
α
,

where oR(1) is uniform in time. Consequently,

d2

dt2
V (t) . 4P (u(t)) + oR(1) + oR(1)‖u(t)‖2

H1
α
. (4.14)

Remark 4.4. With standard notation, oR(1) stands for a function depending on R
and independent of time such that lim

R→+∞
oR(1) = 0.

Proof. We use the Strauss decay estimate for radial function to estimate the contri-
bution given by (4.8). To this end, let us consider a radial bump function χ having
the following properties:

χ ∈ C∞c , 0 ≤ χ ≤ 1, χ = 1 for |x| ≥ R

2
, χ = 0 for |x| ≤ R

4
.

By means of the conservation of the mass, the properties of χ, the fact that χu ∈ H1,
the decomposition of the function u = φλ + qGλ, and the decay properties of Gλ away
from the origin, we estimate

(4.8) .
ˆ
|x|≥R

|u|p+1dx .
ˆ
|x|≥R

4

(
|x|1/2|χu|
|x|1/2

)p−1

|u|2dx

. R−
p−1
2

(
sup
|x|≥R

4

|x|1/2|χu(x)|

)p−1

. R−
p−1
2 ‖χu‖

p−1
2

L2 ‖∇(χu)‖
p−1
2

L2

. R−
p−1
2 ‖∇(χu)‖

p−1
2

L2

. R−
p−1
2

(
‖∇χ‖L∞‖u‖L2 + ‖χ‖L∞‖∇φλ + q∇Gλ‖L2(|x|≥R

4
)

) p−1
2

. R−
p−1
2

(
M1/2 + ‖∇φλ‖L2 + |q|‖∇Gλ‖L2(|x|≥R

4
)

) p−1
2

. oR(1) + oR(1)(‖∇φλ‖L2 + |q|)
p−1
2

. oR(1) + oR(1)‖u‖
p−1
2

H1
α
.
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Let us deal with (4.9).

(4.9) = −2 Re

ˆ
(∆η − 2)(φλ + qGλ)(∆φλ + q̄λGλ)dx

= −
ˆ

(∆η − 2)
(
∆|φλ|2 − 2|∇φλ|2 + q̄λφλGλ + qGλ∆φ̄λ + λ|q|2(Gλ)2

)
dx

= −
ˆ

∆2η|φλ|2dx+ 2 Re

ˆ
(∆η − 2)|∇φλ|2dx

− 2 Re

ˆ
(∆η − 2)

(
q̄λφλGλ + qGλ∆φ̄λ + λ|q|2(Gλ)2

)
dx.

Gluing all together we end-up with

d2

dt2
V (t) . 4P (u(t)) + oR(1)

ˆ
|φλ|2dx+R−

p−1
2 ‖u(t)‖

p−1
2

H1
α

+ 4

ˆ
(η′′ − 1)|∇φλ|2dx (4.15)

− 2 Re

ˆ
(∆η − 2)

(
q̄λφλGλ + qGλ∆φ̄λ

)
dx (4.16)

+ 4 Re

ˆ
q̄λφλ div(∇ηGλ)− qφ̄λ∆(∇η∇Gλ)dx. (4.17)

The term (4.15) is negative as η′′ ≤ 1, so it is simply estimated by zero. As for
the term (4.16) we note that the support of ∆η − 2 is contained outside the ball
centered at the origin and radius R, so by using the L2 integrability of Gλ outside a
ball centered at the origin, we control by the Cauchy-Schwarz inequality and by the
dominated convergence theorem

Re

ˆ
(∆η − 2)q̄λφλGλdx . |q|‖φλ‖L2‖Gλ‖L2(|x|≥R) . oR(1)(|q|2 + ‖φλ‖2

L2).

Similarly, after integration by part, we estimate

Re

ˆ
(∆η − 2)qGλ∆φ̄λdx = −qRe

(ˆ
∇(∆η − 2)Gλ∇φ̄λdx+ (∆η − 2)∇Gλ∇φ̄λdx

)

. oR(1)(|q|2 + ‖∇φλ‖2
L2).

Therefore,

(4.16) . oR(1)(|q|2 + ‖φλ‖2
L2 + ‖∇φλ‖2

L2).
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As for (4.17), we manipulate the integral as

(4.17) = 4 Re

ˆ
q̄λφλ div((∇η − x)Gλ)− qφ̄λ∆((∇η − x)∇Gλ)dx

+ 4 Re

ˆ
q̄λφλ div(xGλ)− qφ̄λ∆(x∇Gλ)dx

= 4 Re

ˆ
q̄λφλ div((∇η − x)Gλ)− qφ̄λ∆((∇η − x)∇Gλ)dx

= −4 Re

ˆ
q̄λ∇φλ((∇η − x)Gλ)− q∇φ̄λ∇((∇η − x)∇Gλ)dx, (4.18)

where we used the identity

Re

ˆ
q̄λφλ div(xGλ)− qφ̄λ∆(x∇Gλ)dx = 0.

By observing that the function ∇η−x is supported outside a ball of radius R centered
at the origin, similarly to the estimate for (4.16) we get

(4.18) . oR(1)(|q|2 + ‖∇φλ‖2
L2).

In the end, provided p < 5, by using the Young inequality, we get

d2

dt2
V (t) . 4P (u(t)) + oR(1)(|q|2 + ‖φλ‖2

L2 + ‖∇φλ‖2
L2) +R−

p−1
2 ‖u(t)‖

p−1
2

H1
α

. 4P (u(t)) + oR(1) + oR(1)‖u(t)‖2
H1
α
.

If instead p = 5, we directly have the estimate without employing Young inequality.
�

We prove now a refinement of (2.11) which will be used in the proof of existence of
finite-time blowing-up solutions.

Lemma 4.5. Under the hypothesis of Proposition 2.9, provided 3 < p ≤ 5, we have
the following refinement of the control on P (u(t)): the exist two constants c1, c2 > 0
independent of t such that

P (u(t)) + c1‖u(t)‖2
H1
α
≤ −c2. (4.19)

Proof. Consider ε > 0 to be chosen later. First of all, we note the following identity:

F (u) =
2

p− 3

(
(p− 1)E(u)− P (u) +

|q|2

4π

)
.



LWP AND BLOW-UP NLS POINT INTERACTION 19

Then we have

P (u) + ε
(
‖∇φλ‖2

L2 + λ‖φλ‖2
L2 + |q|2

)
= P (u) + ε

(
‖∇φλ‖2

L2 + λ‖φλ‖2
L2 ± λ‖u‖2

L2 ± Γλα|q|2 + |q|2
)

= P (u) + ε
(
F (u) + λM(u)− Γλα|q|2 + |q|2

)
≤
(

1− 2ε

p− 3

)
P (u) +

2ε(p− 1)

p− 3
E(u) + ελM(u) + ε

(
1

2π(p− 3)
+ 1− Γλα

)
|q|2,

and by conservation of energy and mass we can estimate, provided ε is small enough,

P (u) + ε
(
‖∇φλ‖2

L2 + λ‖φλ‖2
L2 + |q|2

)
≤ −δ

2
+ ε

(
1

2π(p− 3)
+ 1− Γλα

)
|q|2,

where δ = 2(Sω(vω)−S(u0)). Recall that Γλα = α+ γ−log 2
2π

+ log λ
4π

. Thus, for sufficiently
large λ, possibly up to considering a smaller ε, we can infer that

P (u) + ε
(
‖∇φλ‖2

L2 + λ‖φλ‖2
L2 + |q|2

)
≤ −δ

2
+
ε

2
|q|2,

and then

P (u) +
ε

2

(
‖∇φλ‖2

L2 + λ‖φλ‖2
L2 + |q|2

)
≤ −δ

2
.

The claim follows with c1 = ε
2

and c2 = δ
2
. �

Lemma 4.6. Under the hypothesis of Proposition 2.9, provided 3 < p ≤ 5, we have

inf
t∈(−Tmin,Tmax)

‖u(t)‖2
H1
α
≥ c > 0. (4.20)

Proof. Recall the definition F (u) = ‖∇φλ‖2
L2 +λ(‖φλ‖2

L2 −‖u‖2
L2) + Γλα|q|2. Note that∣∣‖u‖2

L2 − ‖φλ‖2
L2

∣∣ =

∣∣∣∣|q|2‖G‖2
L2 + 2 Re

ˆ
φλq̄Gdx

∣∣∣∣ . (‖φλ‖2
L2 + |q|2).

Then |F (u)| . (‖∇φλ‖2
L2 + ‖φλ‖2

L2 + |q|2) ∼ ‖u‖2
H1
α
, while the Sobolev embedding

(2.7) gives ‖u‖Lp+1 . ‖u‖H1
α
. Therefore, if we suppose that there exists a sequence

of times {tn}n ⊂ (−Tmin, Tmax) such that ‖u(tn)‖H1
α
→ 0 as n → ∞, then also

|P (u(tn))| . ‖u(tn)‖2
H1
α

+ ‖u(tn)‖p+1
H1
α
→ 0 which is a contradiction with respect to the

conclusion of Proposition 2.9. �

Proof of Theorem 1.2. We can now conclude with the proof of Theorem 1.2. It follows
by a convexity argument after (4.14), (4.19), and (4.20) �

Remark 4.7. We also remark that, as for the classical NLS with free Laplacian, we
have global existence of solutions:
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(i) provided p < 3 (mass-subcritical case) and no matter the size of the initial data.

Indeed, by the interpolation inequality ‖u‖Lp+1 ≤ CGN‖u‖
2
p+1

L2 ‖u‖
1− 2

p+1

H1
α

, where CGN is

the Gagliardo-Nirenberg optimal constant, we have

‖u‖2
H1
α

= ‖∇φλ‖2
L2 + λ‖φλ‖2

L2 + Γλα|q|2 = F (u) + λ‖u‖2
L2

= 2E(u) + λM(u) +
2

p+ 1
‖u‖p+1

Lp+1 . 1 + ‖u‖p−1
H1
α
,

hence we have a uniform bound on the H1
α-norm of the solution;

(ii) p = 3 (mass-critical case) provided ‖u0‖L2 is sufficiently small. Indeed, as above
we estimate

‖u‖2
H1
α

= 2E(u) + λM(u) +
2

p+ 1
‖u‖p+1

Lp+1

≤ 2E(u) + λM(u) +
1

2
C4

GNM(u)‖u‖2
H1
α
,

so
M(u) < 2C−4

GN

guarantees a uniform bound on the H1
α and the proof is complete.
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Bruno Pontecorvo, 5, 56127, Pisa, Italy, and Faculty of Science and Engineering,
Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan, and Institute
of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. Georgi
Bonchev Str., Block 8, 1113 Sofia, Bulgaria

Email address: vladimir.simeonov.gueorguiev@unipi.it


	1. Introduction
	2. Preliminary tools
	2.1. Properties of the singular Laplacian operator
	2.2. Sobolev and Logarithmic Hardy inequalities
	2.3. Ground states

	3. LWP theory
	4. Blow-up
	References

