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Abstract. We establish blow-up results for systems of NLS equations with quadratic interaction
in anisotropic spaces. We precisely show finite time blow-up or grow-up for cylindrical symmetric
solutions. With our construction, we moreover prove some polynomial lower bounds on the kinetic

energy of global solutions in the mass-critical case, which in turn implies grow-up along any
diverging time sequence. Our analysis extends to general NLS systems with quadratic interactions,
and it also provides improvements of known results in the radial case.

1. Introduction

In this paper, we investigate the existence of blowing-up solutions for the Cauchy problem for
the following system of nonlinear Schrödinger equations with quadratic interaction{

i∂tu+ 1
2m∆u = λvu,

i∂tv + 1
2M∆v = µu2,

(1.1)

where the wave functions u, v : R×Rd → C are complex scalar functions, the parameters m,M are
two real positive quantities, and λ, µ ∈ C are two complex coupling constants.

Multi-components systems of nonlinear Schrödinger equations with quadratic-type interactions
appear in the processes of waves propagation in quadratic media. They model, for example, the
Raman amplification phenomena in a plasma, or they are used to describe other phenomena in
nonlinear optics. We refer the readers to [5, 6, 20, 21] for more insights on these kind of physical
models.

In the case of the so-called mass-resonance condition, namely provided that the condition

M = 2m (1.2)

is satisfied, the system (1.1) can be viewed, see [13], as a non-relativistic limit of the following
system of nonlinear Klein-Gordon equations{

1
2c2m∂

2
t u− 1

2m∆u+ mc2

2 u = −λvu,
1

2c2M ∂2
t v − 1

2M∆v + Mc2

2 v = −µu2,

as the speed of light c tends to infinity.

To the best of our knowledge, the first mathematical study of the system (1.1) is due to Hayashi,
Ozawa, and Tanaka [13], where, among other things, they established the local well-posedness of
the system (1.1), and they proved that, in order to ensure the conservation law of the total charge,
namely the sum (up to some constant) of the L2 norm of u and v, it is natural to consider the
condition

∃ c ∈ R\{0} such that λ = cµ. (1.3)

Moreover, if we assume that λ, µ satisfy (1.3) for some c > 0 and λ, µ 6= 0, by the change of variable

ũ(t, x) =

√
c

2
|µ|u

(
t,

√
1

2m
x

)
, ṽ(t, x) = −λ

2
v

(
t,

√
1

2m
x

)
,
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2 V. D. DINH AND L. FORCELLA

the system (1.1) can be written (by dropping the tildes) as{
i∂tu+ ∆u = −2vu,
i∂tv + κ∆v = −u2,

(1.4)

where κ = m
M is the mass ratio. Note that κ = 1

2 in the mass-resonance case (1.2). The system
(1.4) satisfies the conservation of mass and energy defined respectively by

M(u(t), v(t)) = ‖u(t)‖2L2 + 2‖v(t)‖2L2 ,

E(u(t), v(t)) =
1

2
‖∇u(t)‖2L2 + κ‖∇v(t)‖2L2 − Re

ˆ
v(t)u2(t)dx.

For the purpose of our paper, we define the kinetic energy

T (f, g) := ‖∇f‖2L2 + κ‖∇g‖2L2 , (1.5)

and the potential energy by

P (f, g) := Re

ˆ
gf

2
dx, (1.6)

hence we rewrite the total energy as

E(u(t), v(t)) =
1

2
T (u(t), v(t))− P (u(t), v(t)).

We also introduce the following functional defined in terms of T and P :

G(f, g) := T (f, g)− d

2
P (f, g). (1.7)

Even if the we will use G evaluated at time-dependent solutions, it is worth mentioning that G is
the Pohozaev functional which is strictly related to the time-independent elliptic equations (1.9)
and (1.10) below.

Another crucial property of (1.4) is that (1.4) is invariant under the scaling

uλ(t, x) := λ2u(λ2t, λx), vλ(t, x) := λ2v(λ2t, λx), λ > 0. (1.8)

A direct computation gives

‖uλ(0)‖Ḣγ = λγ−
d
2 +2‖u0‖Ḣγ , ‖vλ(0)‖Ḣγ = λγ−

d
2 +2‖v0‖Ḣγ .

This shows that (1.8) leaves the Ḣγc -norm of initial data invariant, where

γc :=
d

2
− 2.

According to the conservation laws of mass and energy, (1.4) is called mass-critical, mass and energy
intercritical (or intercritical for short), and energy-critical if d = 4, d = 5, and d = 6, respectively.

In the present paper, we restrict our attention to the dimensions d = 4, 5, 6, and we are interested
in showing the formation of singularities in finite or infinite time for solutions to the initial value
problem associated to (1.4), with initial data

(u, v)|t=0 = (u0, v0) ∈ H1(Rd)×H1(Rd).

As well-known, the existence of blowing-up solutions to the Schrödinger-type equations is closely
related to the notion of standing wave or static (in the energy-critical case) solutions. Therefore, be-
fore stating our main results, we recall some basic facts about the existence of ground states for (1.4).

First of all, we recall that by standing waves solutions we mean solutions to (1.4) of the form

(u(t, x), v(t, x)) = (eitφ(x), e2itψ(x)),

where φ, ψ are real-valued functions satisfying{
−∆φ+ φ = 2φψ,
−κ∆ψ + 2ψ = φ2.

(1.9)
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In [13], Hayashi, Ozawa, and Tanaka showed the existence of ground states related to (1.9), i.e.
non-trivial solutions to (1.9) that minimizes the action functional

S(f, g) := E(f, g) +
1

2
M(f, g)

over all non-trivial solutions to (1.9). It is worth mentioning that this existence result holds
whenever d ≤ 5, and not only for d = 4, 5. When d = 6, i.e. the energy-critical case, (1.4) admits a
static solution of the form

(u(t, x), v(t, x)) = (φ(x), ψ(x)),

where φ, ψ are real-valued functions satisfying{
−∆φ = 2φψ,
−κ∆ψ = φ2.

(1.10)

The existence of ground states related to (1.10) was shown in [13] (see also [24, Section 3]). Here
by a ground state related to (1.10), we mean a non-trivial solution to (1.10) that minimizes the
energy functional over all non-trivial solutions of (1.10).

2. Main results

We are now ready to state our first result about the blow-up of solutions in the mass and energy
intercritical case in anisotropic spaces. To this aim, we introduce some notation. Denote

Σd :=
{
f ∈ H1(Rd) : f(y, xd) = f(|y|, xd), xdf ∈ L2(Rd)

}
, (2.1)

where x = (y, xd), y = (x1, . . . , xd−1) ∈ Rd−1, and xd ∈ R. Here Σd stands for the space of
cylindrical symmetric functions with finite variance in the last direction. We also introduce the
following blow-up conditions:

E(u0, v0)M(u0, v0) < E(φ, ψ)M(φ, ψ) & T (u0, v0)M(u0, v0) > T (φ, ψ)M(φ, ψ). (BC5d)

As for the usual Schrödinger equation, the conditions expressed in (BC5d) are the counterpart of
the conditions

E(u0, v0)M(u0, v0) < E(φ, ψ)M(φ, ψ) & T (u0, v0)M(u0, v0) < T (φ, ψ)M(φ, ψ), (SC5d)

in the dichotomy leading to global well-posedness & scattering ((SC5d)) or blow-up ((BC5d)). In
the energy critical case, the previous conditions in (BC5d) will be replaced by analogous inequalities,
see (BC6d) below. Since in this paper we are concerned only with the blow-up dynamics of solutions
to (1.4), we will not use the modified conditions for the scattering theory.

2.1. Intercritical case. Our first result concerns a finite time blow-up for (1.4) in the intercritical
case d = 5.

Theorem 2.1. Let d = 5, κ > 0, and (φ, ψ) be a ground state related to (1.9). Let (u0, v0) ∈ Σ5×Σ5

satisfy (BC5d). Then the corresponding solution to (1.4) blows-up in finite time.

Let us give some comments on the previously known blow-up results for the system (1.4). The
formation of singularities in finite time for negative energy and radial data was shown by Yoshida
in [28], while for non-negative energy radial data a proof was recently given by Inui, Kishimoto,
and Nishimura. Specifically, they proved in [18] the blow-up for radial initial data satisfying

E(u0, v0)M(u0, v0) < E(φ, ψ)M(φ, ψ) & G(u0, v0) < 0. (2.2)

By a variational characterization, we show in Lemma 3.1 that (BC5d) and (2.2) are indeed equivalent.
Thus a version of Theorem 2.1 for radial solutions would be an interchangeable restatement of the
result obtained in [18].

Despite our approach relies on the classical virial identities, we need to precisely construct
suitable cylindrical cut-off functions enabling us to get enough decay (by means of some Sobolev
embedding for partially radial functions) to close our estimates. With respect to the classical NLS
equation, we will use an ODE argument instead of a concavity argument to prove our results, by
only using the first derivative in time of suitable localized quantity, see Section 3. We refer the
reader to the early work of Martel [22] in the context of the NLS equation in anisotropic spaces,



4 V. D. DINH AND L. FORCELLA

and the more recent papers [2, 15,16].

For sake of completeness, we report now known blow-up and long time dynamics results for (1.4)
in the intercritical case.

If κ = 1
2 , Hayashi, Ozawa, and Tanaka in [13] showed a blow-up result with negative energy and

finite variance data, i.e. initial data belonging to Σ×Σ := (H1 ×H1) ∩ (L2(|x|2 dx)× L2(|x|2 dx)).
Hamano, see [11], proved the scattering below the mass energy ground state. More precisely, he
proved that if (u0, v0) ∈ H1 ×H1 satisfies (SC5d) then the corresponding solution to (1.4) exists
globally in time and scatters in H1 ×H1 in both directions, i.e. there exist (u±, v±) ∈ H1 ×H1

such that
‖(u(t), v(t))− (eit∆u±, e

iκt∆v±)‖H1×H1 → 0

as t→ ±∞. Here eitc∆ denotes the classical Schrödinger free propagator. In addition, if (u0, v0) ∈
H1 ×H1 satisfies (BC5d), then the corresponding solution to (1.4) either blows-up in finite time
or there exists |tn| → ∞ such that ‖(u(tn), v(tn))‖H1×H1 → ∞ as n → ∞. Furthermore, if
(u0, v0) ∈ Σ×Σ or (u0, v0) is radial, then the solution blows-up in finite time. The first author, see
[8], established the strong instability by blow-up for ground state standing waves of (1.4).

If κ 6= 1
2 , Hamano, Inui, and Nishimura [12] established the scattering for radial data below the

mass-energy threshold. The proof is based on the concentration/compactness and rigidity scheme in
the spirit of Kenig and Merle [19]. Wang and Yang [27] extended the result of [12] to the non-radial
case provided that κ belongs to a small neighbourhood of 1

2 . Their proof made use of a recent
method of Dodson and Murphy [10] using the interaction Morawetz inequality. Noguera and Pastor
[25] proved that if (u0, v0) ∈ H1 ×H1 satisfies (SC5d), then the corresponding solution to (1.4)
exists globally in time.

Remark 2.1. From a pure mathematical perspective, distinguishing the cases κ = 1
2 and 0 < κ 6= 1

2
plays a role in the virial identities related to (1.4). Under the mass-resonance condition, namely
κ = 1

2 , some terms in the virial identities disappear, and the study of the dynamics of solutions is
easier due to these cancellations. This is no more the case in the non-mass-resonance setting, i.e.
when κ 6= 1

2 . We refer the reader to [24, Introduction] for an exhaustive list of references in which
the effects of the mass and non-mass resonance conditions on the dynamics of solutions to systems
similar to (1.4) were studied.

2.2. Energy-critical case. Our next Theorem deals with a blow-up result in the energy-critical
case d = 6.

Theorem 2.2. Let d = 6, κ > 0, and (φ, ψ) be a ground state related to (1.10). Let (u0, v0) ∈
Σ6 × Σ6 satisfy

E(u0, v0) < E(φ, ψ), T (u0, v0) > T (φ, ψ). (BC6d)

Then the corresponding solution to (1.4) blows-up in finite time.

It is worth mentioning that finite time blow-up with negative energy radial data was established
in [28], while for non-negative energy radial data, the blow-up result was shown in [18] for data
satisfying

E(u0, v0) < E(φ, ψ), G(u0, v0) < 0. (2.3)

Since we will prove in Lemma 3.3 that (BC6d) is equivalent to (2.3), our result restricted to a radial
framework, would be equivalent to the one in [18].

Remark 2.2. If κ = 1
2 , the blow-up result with negative energy and finite variance data was shown

in Hayashi, Ozawa, and Tanaka, see [13].

2.3. Mass-critical case. In the mass-critical case, we have the following blow-up or grow-up
results for (1.4).

Theorem 2.3. Let d = 4 and 0 < κ 6= 1
2 . Let (u0, v0) ∈ H1 ×H1 be radially symmetric satisfying

E(u0, v0) < 0. Then the corresponding solution to (1.4) either blows-up forward in finite time, i.e.
T ∗ <∞, or it blows-up in infinite time in the sense that T ∗ =∞ and

T (u(t), v(t)) ≥ Ct2 (2.4)
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for all t ≥ t0, where C > 0 and t0 � 1 depend only on κ,M(u0, v0), and E(u0, v0). A similar
statement holds for negative times.

Under the assumption of Theorem 2.3, the blow-up or grow-up result along one time sequence
was proved in [18, Theorem 1.2]. More precisely, if T ∗ = ∞, then there exists a time sequence
tn →∞ such that ‖(u(tn), v(tn))‖H1×H1 →∞ as n→∞.

By performing a more careful analysis, our argument yields to a stronger result with respect to
the one in [18]. Indeed, we are able to show a growth rate for the kinetic energy of the form (2.4)
which in turn implies the grow-up result along an arbitrary diverging sequence of times. We would
like to mention that this grow-up result along any diverging time sequence, is also an interesting
open problem related to the usual mass-supercritical focusing cubic 3D NLS, see the weak conjecture
of Holmer and Roudenko in [14].

Remark 2.3. In the case κ = 1
2 and for radial data with negative energy, the finite time blow-up

was shown by the first author in [7]. For the long time dynamics in the mass-critical case we refer
to [17].

We give now the following blow-up or grow-up result for anisotropic solutions to (1.4).

Theorem 2.4. Let d = 4 and 0 < κ 6= 1
2 . Let (u0, v0) ∈ Σ4 × Σ4 satisfy E(u0, v0) < 0. Then the

corresponding solution to (1.4) either blows-up forward in finite time, i.e. T ∗ < ∞, or T ∗ = ∞
and there exists a time sequence tn →∞ such that ‖(u(tn), v(tn))‖H1×H1 →∞ as n→∞. If we
assume κ = 1

2 , then either T ∗ <∞ or T ∗ =∞ and there exists a time sequence tn →∞ such that
‖∂4u(tn)‖L2 →∞ as n→∞. A similar statement holds for negative times.

2.4. Extensions to a general system of NLS with quadratic interactions. We conclude
this section by listing some extensions of the previous Theorems for general NLS systems with
quadratic interactions.

In dimension d = 5 and d = 6, namely in the mass-supercritical and the energy-critical case,
respectively, the results above can be extended – provided that some structural hypothesis are
satisfied – to the following initial value problem for general system of NLS with quadratic interactions:{

iaj∂tuj + bj∆uj − cjuj = −fj(u1, . . . , uN ), j ∈ {1, . . . , N},
(u1, . . . , uN )|t=0 = (u0,1, . . . , u0,N ) ∈ H1(Rd)× · · · ×H1(Rd),

(2.5)

where uj : Rd → C, the parameters aj , bj , cj are real coefficients satisfying aj > 0, bj > 0 and
cj ≥ 0, and the functions fj grow quadratically for all j = 1, . . . , N . More precisely, under the
assumptions (H1)–(H8) in [24], Theorems 2.1 and 2.2 can be stated for (2.5) as well, with the
necessary modifications. In particular, the set of conditions (H1)–(H8) in [24] (see also [23])
ensure that (2.5) is local well-posed, there exist ground states (along with stability and instability
properties), and the mass and the energy are conserved. Here the mass is defined by

M(~u(t)) :=

N∑
j=1

ajsj
2
‖uj(t)‖2L2 ,

where the real parameters sj > 0 satisfy

Im

N∑
j=1

sjfj(z)z̄j = 0, ∀z = (z1, . . . , zN ) ∈ CN ,

and ~u is the compact notation for (u1, . . . , uN ). The energy is instead defined by

E(~u(t)) :=
1

2

N∑
j=1

bj‖∇uj(t)‖2L2 +
1

2

N∑
j=1

cj‖uj(t)‖2L2 − Re

ˆ
F (~u(t))dx,

where F : CN → C is such that fj = ∂z̄jF + ∂zjF for any j ∈ {1, . . . , N}.

In d = 5, we denote by ~φ = (φ1, . . . , φN ) the ground state related to the system of elliptic
equations

−bj∆φj +
(ajsj

2
ω + cj

)
φj = fj(~φ), j ∈ {1, . . . , N}, ω ∈ R, (2.6)



6 V. D. DINH AND L. FORCELLA

i.e. ~φ is a non-trivial real-valued solution of (2.6) that minimizes the action functional

S(~φ) =
1

2
T (~φ) +Q(~φ)− P(~φ)

over all non-trivial real-valued solutions to (2.6), where

T (~g) :=

N∑
j=1

bj‖∇gj‖2L2 , Q(~g) :=

N∑
j=1

(ajsj
2
ω + cj

)
‖gj‖2L2 , P(~g) := Re

ˆ
F (~g)dx.

Under the assumptions (H1)–(H8) in [24] , ground states related to (2.6) do exist if

ajsj
2
ω + cj > 0, ∀j ∈ {1, . . . , N}. (2.7)

If we denote by G(ω, c) the set of ground states related to (2.6), where c = (c1, . . . , cN ), then
G(ω, c) 6= ∅ provided that (2.7) is satisfied. In particular, G(1,0) 6= ∅. Moreover, the following
Gagliardo-Nirenberg inequality

P (~g) ≤ Copt [Q(~g)]
6−d
4 [T (~g)]

d
4 (2.8)

is achieved by a ground state ~φ ∈ G(ω, c). We refer the reader to [23, Section 4] for more details on
ground states related to (2.6).
By adapting the arguments presented in this paper, we can prove the result in Theorem 2.1 provided
that we replace (BC5d) with

M(~u0)E(~u0) <M(~φ)E0(~φ) & M(~u0)T (~u0) >M(~φ)T (~φ), (BC′5d)

where ~φ ∈ G(1,0) and

E0(~g) :=
1

2
T (~g)− P(~g).

Similarly, in d = 6, we can prove the result in Theorem 2.2 provided that we replace (BC6d) with

E(~u0) < E0(~ϕ) & T (~u0) > T (~ϕ), (BC′6d)

where ~ϕ = (ϕ1, . . . , ϕN ) is the ground state related to

−bj∆ϕj = fj(~ϕ), j ∈ {1, . . . , N}. (2.9)

Here ~ϕ is a ground state related to (2.9) if it is a non-trivial real valued solution to (2.9) that
minimizes the functional E0 over all non-trivial real-valued solutions of (2.9). Note that blow-up
results similar to Theorems 2.1 and 2.2 for radial solutions to (2.5) were established in [24]. Thus
our extensions are for anisotropic solutions.
As pointed-out in [24], the non-mass-resonance condition 0 < κ 6= 1

2 for (1.4) in Theorems 2.1 and
2.2, corresponds to the following analogous condition for (2.5):

Im

N∑
j=1

aj
2bj

fj(z)z̄j 6= 0, ∀z = (z1, . . . , zN ) ∈ CN . (2.10)

In the mass-critical case d = 4, we have the following blow-up results for (2.5).

Theorem 2.5. Let d = 4 and assume that (2.10) holds. Let ~u0 = (u0,1, . . . , u0,N ) ∈ H1 × · · · ×H1

be radially symmetric satisfying E(~u0) < 0. Then the corresponding solution to (2.5) either blows-up
forward in finite time, i.e. T ∗ <∞, or it blows-up in infinite time in the sense that T ∗ =∞ and

T (~u(t)) ≥ Ct2

for all t ≥ t0, where C > 0 and t0 � 1 depend only on M(~u0), and E(~u0). Moreover, if we assume

Im

N∑
j=1

aj
2bj

fj(z)z̄j = 0, ∀z = (z1, . . . , zN ) ∈ CN (2.11)

instead of (2.10), then the corresponding solution to (2.5) blows-up in finite time.
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The proof of this result follows from a similar argument as that for Theorem 2.3 using a refined
localized virial estimates (see Lemma A.1). Our result is new even under the mass-resonance
condition (2.11). Note that the finite time blow-up for (2.5) in the mass-critical case d = 4 was
proved in [23, Theorem 5.11] only for finite variance solutions.

Theorem 2.6. Let d = 4 and assume that (2.10) holds. Let ~u0 = (u0,1, . . . , u0,N ) ∈ Σ4 ×
· · · × Σ4 satisfy E(~u0) < 0. Then the corresponding solution to (2.5) either blows-up forward
in finite time, i.e. T ∗ < ∞, or T ∗ = ∞ and there exists a time sequence tn → ∞ such that
‖(u1(tn), . . . , uN (tn))‖H1×···×H1 → ∞ as n → ∞. If we assume (2.11) instead of (2.10), then
either T ∗ <∞ or T ∗ =∞ and ‖(∂4u1(tn), . . . , ∂4uN (tn))‖L2×···×L2 →∞ for some diverging time
sequence tn →∞.

Similarly to Theorem 2.4, the proof of Theorem 2.6 is based on refined localized virial estimates
for anisotropic solutions to (2.5) (see Lemma A.2). Therefore, we will omit the details of the proof.

The paper is organized as follows. In Section 3, we recall some useful properties of ground
states related to (1.9) and (1.10). We also prove some variational estimates associated to blow-up
conditions given in Theorems 2.1 and 2.2. Section 4 is devoted to various localized virial estimates
for radial and anisotropic solutions to (1.4). The proofs of our main results are given in Section 5.
Finally, we prove in Appendix A some localized virial estimates for the general system (2.5) of NLS
with quadratic interactions.

3. Variational analysis

In this section, we report some useful properties of ground states related to (1.9) and (1.10).
Then we use them to get some a-priori uniform-in-time estimates for the Pohozaev functional
evaluated at the solutions to the corresponding time-dependent equations.

3.1. Variational inequalities. We first recall the following Gagliardo-Nirenberg type inequalities
due to [13] (see also [25]): for 1 ≤ d ≤ 5,

P (f, g) ≤ CGN[M(f, g)]
6−d
4 [T (f, g)]

d
4 , (f, g) ∈ H1 ×H1. (3.1)

The optimal constant in (3.1) is attained by any ground state (φ, ψ) related to (1.9), i.e.

CGN =
P (φ, ψ)

[M(φ, ψ)]
6−d
4 [T (φ, ψ)]

d
4

.

This result was first shown by Hayashi, Ozawa, and Tanaka [13, Theorem 5.1] (for d = 4), and
recently by Noguera and Pastor [25, Corollary 2.10] (for 1 ≤ d ≤ 5). We also have the following
Pohozaev’s identity:

M(φ, ψ) =
6− d
d

T (φ, ψ) =
6− d

2
P (φ, ψ). (3.2)

It follows that

CGN =
2

d[M(φ, ψ)]
6−d
4 [T (φ, ψ)]

d−4
4

.

When d = 4, we have

CGN =
1

2
[M(φ, ψ)]−

1
2 . (3.3)

Although the uniqueness (up to symmetries) of ground states related to (1.9) is not known yet,
(3.3) shows that the mass of ground states does not depend on the choice of a ground state (φ, ψ).

In the case d = 5, we have

CGN =
2

5
[M(φ, ψ)T (φ, ψ)]−

1
4 (3.4)

and

E(φ, ψ) =
1

10
T (φ, ψ) =

1

4
P (φ, ψ). (3.5)
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In particular, the quantities

E(φ, ψ)M(φ, ψ), T (φ, ψ)M(φ, ψ), P (φ, ψ)M(φ, ψ) (3.6)

do not depend on the choice of a ground state (φ, ψ).

When d = 6, we have the following Sobolev type inequality:

P (f, g) ≤ CSob[T (f, g)]
3
2 , (f, g) ∈ Ḣ1 × Ḣ1. (3.7)

It was shown in [24, Theorem 3.3] that the sharp constant in (3.7) is achieved by a ground state
(φ, ψ) related to (1.10), i.e.

CSob =
P (φ, ψ)

[T (φ, ψ)]
3
2

.

Using the following identity

T (φ, ψ) = 3P (φ, ψ),

we see that

CSob =
1

3
[T (φ, ψ)]−

1
2 (3.8)

and

E(φ, ψ) =
1

6
T (φ, ψ). (3.9)

This shows in particular that E(φ, ψ) and T (φ, ψ) do not depend on the choice of a ground state
(φ, ψ).

3.2. Variational estimates. In this section, we characterize the blow-up region defined in (BC5d)
(see (BC6d) for the energy critical case) in terms of the sign of the Pohozaev functional G defined
in (1.7). For similar analysis in the context of the classical NLS equation, we refer to our previous
works [1, 9].

Lemma 3.1. Let d = 5, κ > 0, and (φ, ψ) be a ground state related (1.9). Denote

A :=

{
(f, g) ∈ H1 ×H1

∣∣∣ E(f, g)M(f, g) < E(φ, ψ)M(φ, ψ)
T (f, g)M(f, g) > T (φ, ψ)M(φ, ψ)

}
(3.10)

and

Ã :=

{
(f, g) ∈ H1 ×H1

∣∣∣ E(f, g)M(f, g) < E(φ, ψ)M(φ, ψ)
G(f, g) < 0

}
. (3.11)

Then A ≡ Ã.

Proof. Let (f, g) ∈ A. We will show that G(f, g) < 0, hence (f, g) ∈ Ã. We have

G(f, g)M(f, g) =

(
5

2
E(f, g)− 1

4
T (f, g)

)
M(f, g) <

5

2
E(φ, ψ)M(φ, ψ)− 1

4
T (φ, ψ)M(φ, ψ),

hence G(f, g) < 0 by using (3.5).

Now let (f, g) ∈ Ã. We will show that T (f, g)M(f, g) > T (φ, ψ)M(φ, ψ), so (f, g) ∈ A. Indeed, as
G(f, g) < 0, we use (3.1) to have

T (f, g) <
5

2
P (f, g) ≤ 5

2
CGN[M(f, g)]

1
4 [T (f, g)]

5
4 .

In particular, we have

(T (f, g)M(f, g))
1
4 >

2

5
C−1

GN

which, by (3.4), implies that

T (f, g)M(f, g) > T (φ, ψ)M(φ, ψ).

The proof is complete. �
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Lemma 3.2. Let d = 5, κ > 0, and (φ, ψ) be a ground state related to (1.9). Let (u0, v0) ∈ H1×H1

satisfy (BC5d). Let (u, v) be the corresponding solution to (1.4) defined on the maximal forward
time interval [0, T ∗). Then there exist positive constants ε and c such that

G(u(t), v(t)) + εT (u(t), v(t)) ≤ −c (3.12)

for all t ∈ [0, T ∗).

Proof. In case of negative energy the proof is straightforward: indeed, if E(u0, v0) < 0, the
conservation of energy yields

G(u(t), v(t)) =
5

2
E(u(t), v(t))− 1

4
T (u(t), v(t)) =

5

2
E(u0, v0)− 1

4
T (u(t), v(t)).

This shows (3.12) with ε = 1
4 and c = − 5

2E(u0, v0) > 0.

Let us now focus on the case E(u0, v0) ≥ 0. By (3.1), we have for all t ∈ [0, T ∗),

E(u(t), v(t))M(u(t), v(t)) =
1

2
T (u(t), v(t))M(u(t), v(t))− P (u(t), v(t))M(u(t), v(t))

≥ 1

2
T (u(t), v(t))M(u(t), v(t))− CGN (T (u(t), v(t))M(u(t), v(t)))

5
4

=: F (T (u(t), v(t))M(u(t), v(t))) ,

(3.13)
where

F (λ) :=
1

2
λ− CGNλ

5
4 .

Using (3.4) and (3.5), we see that

F (T (φ, ψ)M(φ, ψ)) =
1

2
T (φ, ψ)M(φ, ψ)− CGN (T (φ, ψ)M(φ, ψ))

5
4

=
1

10
T (φ, ψ)M(φ, ψ) = E(φ, ψ)M(φ, ψ).

Thanks to the first condition in (BC5d) and the conservation laws of mass and energy, we can
continue the estimate (3.13) as

F (T (u(t), v(t))M(u(t), v(t))) ≤ E(u0, v0)M(u0, v0)

< E(φ, ψ)M(φ, ψ) = F (T (φ, ψ)M(φ, ψ)) , ∀ t ∈ [0, T ∗).

By the continuity argument and the second condition in (BC5d), we infer that

T (u(t), v(t))M(u(t), v(t)) > T (φ, ψ)M(φ, ψ) (3.14)

for all t ∈ [0, T ∗). Next we use the first condition in (BC5d) to pick ρ := ρ(u0, v0, φ, ψ) > 0 so that

E(u0, v0)M(u0, v0) ≤ (1− ρ)E(φ, ψ)M(φ, ψ). (3.15)

It follows that

F (T (u(t), v(t))M(u(t), v(t))) ≤ (1− ρ)E(φ, ψ)M(φ, ψ).

Using the fact that

E(φ, ψ)M(φ, ψ) =
1

10
T (φ, ψ)M(φ, ψ) =

1

4
CGN (T (φ, ψ)M(φ, ψ))

5
4 ,

we infer that

5
T (u(t), v(t))M(u(t), v(t))

T (φ, ψ)M(φ, ψ)
− 4

(
T (u(t), v(t))M(u(t), v(t))

T (φ, ψ)M(φ, ψ)

) 5
4

≤ 1− ρ (3.16)

for all t ∈ [0, T ∗). We consider g(λ) := 5λ− 4λ
5
4 for λ > 1. Note that the condition λ > 1 is due to

(3.14). We see that g(1) = 0 and g is strictly decreasing on (1,∞). It follows from (3.16) that there
exists ν := ν(ρ) > 0 such that λ > 1 + ν. In particular, we have

T (u(t), v(t))M(u(t), v(t)) ≥ (1 + ν)T (φ, ψ)M(φ, ψ) (3.17)
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for all t ∈ [0, T ∗). Now let ε > 0 to be chosen later. By the conservation of mass and energy, (3.5),
(3.15), and (3.17), we have for all t ∈ [0, T ∗),(

G(u(t), v(t)) + εT (u(t), v(t))
)
M(u(t), v(t))

=
5

2
E(u(t), v(t))M(u(t), v(t))−

(
1

4
− ε
)
T (u(t), v(t))M(u(t), v(t))

=
5

2
E(u0, v0)M(u0, v0)−

(
1

4
− ε
)
T (u(t), v(t))M(u(t), v(t))

≤ 5

2
(1− ρ)E(φ, ψ)M(φ, ψ)−

(
1

4
− ε
)

(1 + ν)T (φ, ψ)M(φ, ψ)

=

(
−1

4
(ρ+ ν) + ε(1 + ν)

)
T (φ, ψ)M(φ, ψ).

By taking 0 < ε < ρ+ν
4(1+ν) and using the conservation of mass, we have (3.12) with

c =

(
1

4
(ρ+ ν)− ε(1 + ν)

)
T (φ, ψ)

M(φ, ψ)

M(u0, v0)
> 0.

The proof is complete. �

Lemma 3.3. Let d = 6, κ > 0, and (φ, ψ) be a ground state related (1.10). Denote

B :=

{
(f, g) ∈ H1 ×H1

∣∣∣ E(f, g) < E(φ, ψ)
T (f, g) > T (φ, ψ)

}
(3.18)

and

B̃ :=

{
(f, g) ∈ H1 ×H1

∣∣∣ E(f, g) < E(φ, ψ)
G(f, g) < 0

}
. (3.19)

Then B ≡ B̃.

Proof. Let (f, g) ∈ B. We will show that G(f, g) < 0. Indeed, by (3.9), we have

G(f, g) = 3E(f, g)− T (f, g) < 3E(φ, ψ)− 1

2
T (φ, ψ) = 0.

Let us consider now (f, g) ∈ B̃. As G(f, g) < 0, we have from (3.7) that

T (f, g) < 3P (f, g) ≤ 3CSob[T (f, g)]
3
2

or equivalently [T (f, g)]
1
2 > 1

3C
−1
Sob. This shows that T (f, g) > T (φ, ψ) thanks to (3.8). �

Lemma 3.4. Let d = 6, κ > 0, and (φ, ψ) be a ground state related (1.10). Let (u0, v0) ∈ H1×H1

satisfy (BC6d). Let (u, v) be the corresponding solution to (1.4) defined on the maximal forward
time interval [0, T ∗). Then there exist positive constants ε and c such that

G(u(t), v(t)) + εT (u(t), v(t)) ≤ −c (3.20)

for all t ∈ [0, T ∗).

Proof. The proof is similar to that of Lemma 3.2 using (3.8) and (3.9). We thus omit the details. �

4. Localized virial estimates

In this section we prove the preliminary and fundamental estimates we need for the proof of our
main Theorems. We start with the following virial identity (see e.g. [27, (4.34)]).

Lemma 4.1. Let d ≥ 1 and κ > 0. Let ϕ : Rd → R be a sufficiently smooth and decaying function.
Let (u, v) be a H1-solution to (1.4) defined on the maximal forward time interval [0, T ∗). Define

Mϕ(t) := 2 Im

ˆ
∇ϕ(x) · (∇u(t, x)u(t, x) +∇v(t, x)v(t, x)) dx. (4.1)
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Then we have for all t ∈ [0, T ∗),

d

dt
Mϕ(t) = −

ˆ
∆2ϕ(x)

(
|u(t, x)|2 + κ|v(t, x)|2

)
dx

+4

d∑
j,k=1

Re

ˆ
∂2
jkϕ(x) (∂ju(t, x)∂ku(t, x) + κ∂jv(t, x)∂kv(t, x)) dx

−2 Re

ˆ
∆ϕ(x)v(t, x)u2(t, x)dx.

The above identity can be checked by formal computations. The rigorous proof can be done by
performing a standard approximation trick (see e.g. [3, Section 6.5]).

Remark 4.1. From now on we denote r = |x|.
(1) If ϕ(x) = |x|2, then

d

dt
M|x|2(t) = 8G(u(t), v(t)),

where G is as in (1.7).
(2) If ϕ is radially symmetric, then using the fact that

∂j =
xj
r
∂r, ∂2

jk =

(
δjk
r
− xjxk

r3

)
∂r +

xjxk
r2

∂2
r ,

we have
d∑

j,k=1

Re

ˆ
∂2
jkϕ(x)∂ju(t, x)∂ku(t, x)dx

=

ˆ
ϕ′(r)

r
|∇u(t, x)|2dx+

ˆ (
ϕ′′(r)

r2
− ϕ′(r)

r3

)
|x · ∇u(t, x)|2dx,

where r = |x|. In particular, we have

d

dt
Mϕ(t) = −

ˆ
∆2ϕ(x)

(
|u(t, x)|2 + κ|v(t, x)|2

)
dx

+4

ˆ
ϕ′(r)

r

(
|∇u(t, x)|2 + κ|∇v(t, x)|2

)
dx

+4

ˆ (
ϕ′′(r)

r2
− ϕ′(r)

r3

)(
|x · ∇u(t, x)|2 + κ|x · ∇u(t, x)|2

)
dx

−2 Re

ˆ
∆ϕ(x)v(t, x)u2(t, x)dx.

(3) If ϕ is radial and (u, v) is also radial, then

d

dt
Mϕ(t) = −

ˆ
∆2ϕ(x)

(
|u(t, x)|2 + κ|v(t, x)|2

)
dx

+4

ˆ
ϕ′′(r)

(
|∇u(t, x)|2 + κ|∇v(t, x)|2

)
dx

−2 Re

ˆ
∆ϕ(x)v(t, x)u2(t, x)dx.

(4) Let d ≥ 3 and denote x = (y, xd) with y = (x1, . . . , xd−1) ∈ Rd−1 and xd ∈ R. Let ψ : Rd−1 → R
be a sufficiently smooth and decaying function. Set ϕ(x) = ψ(y) + x2

d. We have

d

dt
Mϕ(t) = −

ˆ
∆2
yψ(y)

(
|u(t, x)|2 + κ|v(t, x)|2

)
dx

+4

d−1∑
j,k=1

Re

ˆ
∂2
jkψ(y) (∂ju(t, x)∂ku(t, x) + κ∂jv(t, x)∂kv(t, x)) dx

−2 Re

ˆ
∆yψ(y)v(t, x)u2(t, x)dx

+8
(
‖∂du(t)‖2L2 + κ‖∂dv(t)‖2L2

)
− 4P (u(t), v(t)).
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Moreover, if (u(t), v(t)) ∈ Σd × Σd for all t ∈ [0, T ∗), then we have

d

dt
Mϕ(t) = −

ˆ
∆2
yψ(y)

(
|u(t, x)|2 + κ|v(t, x)|2

)
dx

+4

ˆ
ψ′′(ρ)

(
|∇yu(t, x)|2 + κ|∇yv(t, x)|2

)
dx

−2 Re

ˆ
∆yψ(y)v(t, x)u2(t, x)dx

+8
(
‖∂du(t)‖2L2 + κ‖∂dv(t)‖2L2

)
− 4P (u(t), v(t)),

where ρ = |y|.

Let χ : [0,∞)→ [0,∞) be a sufficiently smooth function satisfying

χ(s) :=

{
s2 if 0 ≤ s ≤ 1,

const. if s ≥ 2,
χ′′(s) ≤ 2, ∀s ≥ 0. (4.2)

Given R > 1, we define, by rescaling, the radial function ϕR : Rd → R by

ϕR(x) = ϕR(r) := R2χ(r/R). (4.3)

In the mass-critical case, we have the following refined (with respect to the one in [18]) radial
localized virial estimate.

Lemma 4.2. Let d = 4 and κ > 0. Let (u, v) be a radial H1-solution to (1.4) defined on the
maximal forward time interval [0, T ∗). Let ϕR be as in (4.3) and denote MϕR(t) as in (4.1). Then
we have for all t ∈ [0, T ∗),

d

dt
MϕR(t) ≤ 16E(u(t), v(t))− 4

ˆ (
θ1,R(r)− CR− 3

2 (θ2,R(x))2
)
|∇u(t, x)|2dx+ oR(1) (4.4)

for some constant C > 0 depending only on κ and M(u0, v0), where

θ1,R(r) := 2− ϕ′′R(r), θ2,R(x) = 8−∆ϕR(x). (4.5)

Proof. By Item (3) of Remark 4.1, we have for all t ∈ [0, T ∗),

d

dt
MϕR(t) = −

ˆ
∆2ϕR(x)

(
|u(t, x)|2 + κ|v(t, x)|2

)
dx+ 4

ˆ
ϕ′′R(r)

(
|∇u(t, x)|2 + κ|∇v(t, x)|2

)
dx

−2 Re

ˆ
∆ϕRv(t, x)u2(t, x)dx

= 8G(u(t), v(t))− 4

ˆ
(2− ϕ′′R(r))

(
|∇u(t, x)|2 + κ|∇v(t, x)|2

)
dx

−
ˆ

∆2ϕR(x)
(
|u(t, x)|2 + κ|v(t, x)|2

)
dx+ 2 Re

ˆ
(2d−∆ϕR(x))v(t, x)u2(t, x)dx.

(4.6)
By the fact that ‖∆2ϕR‖L∞ . R−2 together with the conservation of mass, we get the decay∣∣∣∣ˆ ∆2ϕR(x)

(
|u(t, x)|2 + κ|v(t, x)|2

)
dx

∣∣∣∣ . R−2.

Furthermore, by using that ϕ′′R(r) ≤ 2, and by noting that G(u(t), v(t)) = 2E(u(t), v(t)) if d = 4,
(4.6) can be controlled by

d

dt
MϕR(t) ≤ 16E(u(t), v(t))− 4

ˆ
θ1,R(r)|∇u(t, x)|2dx+ 2 Re

ˆ
θ2,R(x)v(t, x)u2(t, x)dx+ CR−2.

We estimate∣∣∣∣Re

ˆ
θ2,R(x)v(t, x)u2(t, x)dx

∣∣∣∣ ≤ sup
|x|≥R

|θ2,R(x)u(t, x)|‖v(t)‖L2‖u(t)‖L2

. R−
3
2 ‖∇(θ2,Ru(t))‖

1
2

L2‖θ2,Ru(t)‖
1
2

L2‖v(t)‖L2‖u(t)‖L2

. R−
3
2 ‖∇(θ2,Ru(t))‖

1
2

L2 ,
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where we have used the conservation of mass in the last estimate. Note that θ2,R(x) = 0 for |x| ≤ R.
As ‖∇θ2,R‖L∞ . 1, the conservation of mass implies that

‖∇(θ2,Ru(t))‖L2 . ‖∇θ2,R‖L∞‖u(t)‖L2 + ‖θ2,R∇u(t)‖L2 . ‖θ2,R∇u(t)‖L2 + 1.

It follows that ∣∣∣∣Re

ˆ
θ2,R(x)v(t, x)u2(t, x)dx

∣∣∣∣ . R− 3
2 (‖θ2,R∇u(t)‖L2 + 1)

1
2

. R−
3
2

(
‖θ2,R∇u(t)‖2L2 + 1

)
.

Therefore, we obtain

d

dt
MϕR(t) ≤ 16E(u(t), v(t))− 4

ˆ (
θ1,R(r)− CR− 3

2 (θ2,R(x))2
)
|∇u(t, x)|2dx+ CR−2 + CR−

3
2 .

The proof is complete. �

Next we derive localized virial estimates for cylindrically symmetric solutions. To this end, we
introduce

ψR(y) = ψR(ρ) := R2χ(ρ/R), ρ = |y| (4.7)

and set

ϕR(x) := ψR(y) + x2
d. (4.8)

Lemma 4.3 (Cylindrical localized virial estimate I). Let d = 5, 6, and κ > 0. Let (u, v) be a
Σd-solution to (1.4) defined on the maximal forward time interval [0, T ∗). Let ϕR be as in (4.8)
and denote MϕR(t) as in (4.1). Then we have for all t ∈ [0, T ∗),

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−

d−2
2 ‖∇u(t)‖2L2 + oR(1) (4.9)

for some constant C > 0 depending only on d, κ, and M(u0, v0).

Proof. By Item (4) of Remark 4.1, we have for all t ∈ [0, T ∗),

d

dt
MϕR(t) = −

ˆ
∆2
yψR(y)

(
|u(t, x)|2 + κ|v(t, x)|2

)
dx

+4

ˆ
ψ′′R(ρ)

(
|∇yu(t, x)|2 + κ|∇yv(t, x)|2

)
dx

−2 Re

ˆ
∆yψR(y)v(t, x)u2(t, x)dx

+8
(
‖∂du(t)‖2L2 + κ‖∂dv(t)‖2L2

)
− 4P (u(t), v(t)).

It follows that

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−2 − 4

ˆ
(2− ψ′′R(ρ))

(
|∇yu(t, x)|2 + κ|∇yv(t, x)|2

)
dx

+2 Re

ˆ
(2(d− 1)−∆yψR(y))v(t, x)u2(t, x)dx.

As ψ′′R(ρ) ≤ 2 and ‖∆yψR‖L∞x . 1, we have

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−2 + C

ˆ
|y|≥R

|v(t, x)u2(t, x)|dx. (4.10)

By the conservation of mass, we have

ˆ
|y|≥R

|v(t, x)u2(t, x)|dx ≤

(ˆ
|y|≥R

|u(t, x)|4dx

)1/2(ˆ
|y|≥R

|v(t, x)|2dx

)1/2

.

(ˆ
|y|≥R

|u(t, x)|4dx

)1/2

. (4.11)
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Next we estimateˆ
|y|≥R

|u(t, x)|4dx ≤
ˆ
R
‖u(t, xd)‖2L2

y
‖u(t, xd)‖2L∞y (|y|≥R)dxd

≤ sup
xd∈R

‖u(t, xd)‖2L2
y

(ˆ
R
‖u(t, xd)‖2L∞y (|y|≥R)dxd

)
.

Set g(xd) := ‖u(t, xd)‖2L2
y
, we have

g(xd) =

ˆ xd

−∞
∂sg(s)ds = 2

ˆ xd

−∞
Re

ˆ
Rd−1

u(t, y, s)∂su(t, y, s)dyds

≤ 2‖u(t)‖L2
x
‖∂du(t)‖L2

x

which, by the conservation of mass, implies that

sup
xd∈R

‖u(t, xd)‖2L2
y
. ‖∂du(t)‖L2

x
. (4.12)

We next use the radial Sobolev embedding, see [4],

sup
x 6=0
|x|

d−1
2 |f(x)| ≤ C(d)‖∇f‖

1
2

L2‖f‖
1
2

L2 , (4.13)

to haveˆ
R
‖u(t, xd)‖2L∞y (|y|≥R)dxd . R

−d+2

ˆ
R
‖∇yu(t, xd)‖L2

y
‖u(t, xd)‖L2

y
dxd

. R−d+2

(ˆ
R
‖∇yu(t, xd)‖2L2

y
dxd

)1/2(ˆ
R
‖u(t, xd)‖2L2

y
dxd

)1/2

. R−d+2‖∇yu(t)‖L2
x
‖u(t)‖L2

x

. R−d+2‖∇yu(t)‖L2
x
. (4.14)

Collecting (4.11), (4.12), and (4.14), we getˆ
|y|≥R

|v(t, x)u2(t, x)|dx . R−
d−2
2 ‖∇yu(t)‖1/2L2

x
‖∂du(t)‖1/2L2

x

. R−
d−2
2

(
‖∇yu(t)‖L2

x
+ ‖∂du(t)‖L2

x

)
. R−

d−2
2

(
‖∇u(t)‖2L2

x
+ 1
)
.

This together with (4.10) prove (4.9). The proof is complete. �

We also have the following refined localized virial estimate which will be used in the mass-critical
problem.

Lemma 4.4 (Cylindrical localized virial estimate II). Let d = 4 and κ > 0. Let (u, v) be a
Σ4-solution to (1.4) defined on the maximal forward time interval [0, T ∗). Let ϕR be as in (4.8)
and denote MϕR(t) as in (4.1). Then we have for all t ∈ [0, T ∗),

d

dt
MϕR(t) ≤ 16E(u(t), v(t))− 4

ˆ (
ϑ1,R(ρ)− CR−1(ϑ2,R(y))2

)
|∇yu(t, x)|2dx

+CR−1‖∂4u(t)‖2L2 + oR(1) (4.15)

for some constant C > 0 depending only on κ and M(u0, v0), where

ϑ1,R(ρ) := 2− ψ′′R(ρ), ϑ2,R(y) := 6−∆yψR(y). (4.16)

Proof. Estimating as in the proof of Lemma 4.3, we have

d

dt
MϕR(t) ≤ 16E(u(t), v(t)) + CR−2 − 4

ˆ
ϑ1,R(ρ)

(
|∇yu(t, x)|2 + κ|∇yv(t, x)|2

)
dx

+2 Re

ˆ
ϑ2,R(y)v(t, x)u2(t, x)dx.
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By the conservation of mass, we see that∣∣∣∣Re

ˆ
ϑ2,R(y)v(t, x)u2(t, x)dx

∣∣∣∣ ≤ (ˆ (ϑ2,R(y))2|u(t, x)|4dx
)1/2(ˆ

|v(t, x)|2dx
)1/2

.

(ˆ
(ϑ2,R(y))2|u(t, x)|4dx

)1/2

.

By the Hölder’s inequality, we haveˆ
(ϑ2,R(y))2|u(t, x)|4dx ≤

ˆ
R
‖u(t, x4)‖2L2

y
‖ϑ2,Ru(t, x4)‖2L∞y dx4

≤ sup
x4∈R

‖u(t, x4)‖2L2
y

(ˆ
R
|ϑ2,Ru(t, x4)‖2L∞y dx4

)
.

The first term is treated in (4.12). For the second term, as ϑ2,R(y) = 0 for |y| ≤ R, we use the
radial Sobolev embedding (4.13) to haveˆ

R
‖ϑ2,Ru(t, x4)‖2L∞y dx4 . R

−2

ˆ
R
‖∇y(ϑ2,Ru(t, x4))‖L2

y
‖ϑ2,Ru(t, x4)‖L2

y
dx4

. R−2

(ˆ
R
‖∇y(ϑ2,Ru(t, x4))‖2L2

y
dx4

)1/2(ˆ
R
‖ϑ2,Ru(t, x4)‖2L2

y
dx4

)1/2

. R−2‖∇y(ϑ2,Ru(t))‖L2
x
‖ϑ2,Ru(t)‖L2

x

. R−2‖∇y(ϑ2,Ru(t))‖L2
x
.

It follows that∣∣∣∣Re

ˆ
ϑ2,R(y)v(t, x)u2(t, x)dx

∣∣∣∣ . R−1‖∇y(ϑ2,Ru(t))‖1/2L2
x
‖∂4u(t)‖1/2L2

x

. R−1
(
‖∇y(ϑ2,Ru(t))‖L2

x
+ ‖∂4u(t)‖L2

x

)
. R−1

(
‖∇y(ϑ2,Ru(t))‖2L2

x
+ ‖∂4u(t)‖2L2

x
+ 1
)

. R−1
(
‖ϑ2,R∇yu(t)‖2L2

x
+ ‖∂4u(t)‖2L2

x
+ 1
)
,

where we have used the conservation of mass and ‖∇ϑ2,R‖L∞x . 1 to get the last estimate. Collecting
the above estimates, we prove (4.15). �

5. Proof of the main results

We are now able to prove the main results stated in Section 2.

5.1. The intercritical case. The proof of Theorem 2.1 is done by performing an ODE argument,
by using the a-priori estimates we proved in the previous Section.

Proof of Theorem 2.1. Let (u0, v0) ∈ Σ5 × Σ5 satisfy (BC5d). We will show that T ∗ <∞. Assume
by contradiction that T ∗ =∞. By Lemma 3.2, there exist positive constants ε and c such that

G(u(t), u(t)) + εT (u(t), v(t)) ≤ −c (5.1)

for all t ∈ [0,∞). On the other hand, by Lemma 4.3, we have for all t ∈ [0,∞),

d

dt
MϕR(t) ≤ 8G(u(t), v(t)) + CR−

3
2 ‖∇u(t)‖2L2 + oR(1), (5.2)

where ϕR is as in (4.3) and MϕR(t) is as in (4.1). It follows from (5.1) and (5.2) that for all
t ∈ [0,∞),

d

dt
MϕR(t) ≤ −8c− 8εT (u(t), v(t)) + CR−

3
2 ‖∇u(t)‖2L2 + oR(1).

By choosing R > 1 sufficiently large, we get

d

dt
MϕR(t) ≤ −4c− 4εT (u(t), v(t)) (5.3)
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for all t ∈ [0,∞). Integrating the above inequality, we see that MϕR(t) < 0 for all t ≥ t0 with some
t0 > 0 sufficiently large. We infer from (5.3) that

MϕR(t) ≤ −4ε

ˆ t

t0

T (u(s), v(s))ds (5.4)

for all t ≥ t0. On the other hand, by the Hölder’s inequality and the conservation of mass, we have

|MϕR(t)| ≤ C‖∇ϕR‖L∞ (‖∇u(t)‖L2‖u(t)‖L2 + ‖∇v(t)‖L2‖v(t)‖L2)

≤ C(ϕR, κ,M(u0, v0))
√
T (u(t), v(t)). (5.5)

From (5.4) and (5.5), we get

MϕR(t) ≤ −A
ˆ t

t0

|MϕR(s)|2ds (5.6)

for all t ≥ t0, where A = A(ε, ϕR, κ,M(u0, v0)) > 0. Set

z(t) :=

ˆ t

t0

|MϕR(s)|2ds, t ≥ t0. (5.7)

We see that z(t) is non-decreasing and non-negative. Moreover,

z′(t) = |MϕR(t)|2 ≥ A2z2(t), ∀t ≥ t0.

For t1 > t0, we integrate (5.7) over [t1, t] to obtain

z(t) ≥ z(t1)

1−A2z(t1)(t− t1)
, ∀t ≥ t1.

This shows that z(t)→ +∞ as t↗ t∗, where

t∗ := t1 +
1

A2z(t1)
> t1.

In particular, we have

MϕR(t) ≤ −Az(t)→ −∞
as t↗ t∗. Thus the solution cannot exist for all time t ≥ 0. Therefore it must blow-up in finite
time. 2

5.2. The energy-critical case. The proof is done by an ODE argument as well, similarly to the
intercritical case.

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1 using (3.20) and (4.9). Thus we
omit the details. 2

5.3. The mass-critical case. In this subsection, we give the proofs of the blow-up/grow-up results
given in Theorems 2.3 and 2.4.

Proof of Theorem 2.3. Let (u0, v0) ∈ H1 ×H1 be radially symmetric satisfying E(u0, v0) < 0. Let
(u, v) be the corresponding solution to (1.4) defined on the maximal forward time interval [0, T ∗).
If T ∗ <∞, then we are done. Suppose that T ∗ =∞. We will show that there exists a constant
C > 0 depending only on κ,M(u0, v0), and E(u0, v0) such that

T (u(t), v(t)) ≥ Ct2

for all t ≥ t0, where t0 � 1, namely that (2.4) holds true. Let ϕR be as in (4.3) and MϕR(t) as in
(4.1). By Lemma 4.2 and the conservation of energy, we have for all t ∈ [0,∞),

d

dt
MϕR(t) ≤ 16E(u0, v0)− 4

ˆ (
θ1,R(r)− CR− 3

2 (θ2,R(x))
2
)
|∇u(t, x)|2dx+ oR(1),

where θ1,R and θ2,R are as in (4.5).

If we can show that

θ1,R(r)− CR− 3
2 (θ2,R(x))

2 ≥ 0, ∀r = |x| ≥ 0, (5.8)
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then, by taking R > 1 large enough, we get

d

dt
MϕR(t) ≤ 8E(u0, v0) < 0

for all t ∈ [0,∞). Integrating the above estimate, we have

MϕR(t) ≤MϕR(0) + 8E(u0, v0)t

which implies
MϕR(t) ≤ 4E(u0, v0)t < 0

for all t ≥ t0, where t0 :=
|MϕR

(0)|
−4E(u0,v0) . By (5.5), we have

−4E(u0, v0)t ≤ −MϕR(t) = |MϕR(t)| ≤ C(ϕR, κ,M(u0, v0))
√
T (u(t), v(t))

for all t ≥ t0. This shows (2.4).

It remains to find a suitable cut-off function χ (as defined in (4.2)) so that (5.8) holds. For the
choice of such a function, we are inspired by [26]. Let

ζ(s) :=


2s if 0 ≤ s ≤ 1,

2[s− (s− 1)3] if 1 < s ≤ 1 + 1/
√

3,

ζ ′(s) < 0 if 1 + 1/
√

3 < s < 2,
0 if s ≥ 2,

and

χ(r) :=

ˆ r

0

ζ(s)ds. (5.9)

It is easy to see that χ satisfies (4.2). Define ϕR as in (4.3). We will show that (5.8) is satisfied for
this choice of ϕR. Indeed, we have θ1,R(r) = 2− ϕ′′R(r) and

θ2,R(x) = 8−∆ϕR(x) = 2− ϕ′′R(r) + 3

(
2− ϕ′R(r)

r

)
,

where the latter follows from the fact that

∆ϕR(x) = ϕ′′R(r) +
3

r
ϕ′R(r).

We infer, from the definition of ϕR, that

ϕ′R(r) = Rχ′(r/R) = Rζ(r/R), ϕ′′R(r) = χ′′(r/R) = ζ ′(r/R).

• For 0 ≤ r = |x| ≤ R, we have θ1,R(r) = θ2,R(x) = 0.

• For R < r = |x| ≤ (1 + 1/
√

3)R, we have

θ1,R(r) = 6(r/R− 1)2

and

θ2,R(x) = 2(r/R− 1)2

(
3 + 2

r/R− 1

r/R

)
< 2

(
3 +

2√
3

)
(r/R− 1)2.

By choosing R > 1 sufficiently large, we see that (5.8) is fulfilled.

• When r > (1 + 1/
√

3)R, we see that ζ ′(r/R) ≤ 0, so θ1,R(r) = 2− ϕ′′R(r) ≥ 2. We also have
θ2,R(r) ≤ C for some constant C > 0. Thus by choosing R > 1 sufficiently large, we have (5.8).

The proof is complete by glueing together (2.4) and (5.8). 2

We can now proceed with the proof of the cylindrical case.

Proof of Theorem 2.4. Let (u0, v0) ∈ Σ4 ×Σ4 satisfy E(u0, v0) < 0. Let (u, v) be the corresponding
solution to (1.4) defined on the maximal forward time interval [0, T ∗).
First we consider the non-mass-resonance case, i.e. 0 < κ 6= 1

2 . If T ∗ < ∞, then we are done.
Suppose that T ∗ = ∞. We will show that there exists a time sequence tn → ∞ such that
‖(u(tn), v(tn))‖H1×H1 →∞ as n→∞. Assume by contradiction that it is not true, that is,

sup
t∈[0,∞)

‖(u(t), v(t))‖H1×H1 ≤ C <∞. (5.10)
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Let ϕR be as in (4.8) and MϕR(t) as in (4.1). By Lemma 4.4 and the conservation of energy, we
have for all t ∈ [0,∞),

d

dt
MϕR(t) ≤ 16E(u0, v0)− 4

ˆ (
ϑ1,R(ρ)− CR−1(ϑ2,R(y))2

)
|∇yu(t, x)|2dx

+CR−1‖∂4u(t)‖2L2 + oR(1) (5.11)

for some constant C > 0 depending only on κ and M(u0, v0), where ϑ1,R and ϑ2,R are as in (4.16).
This, together with (5.10), gives

d

dt
MϕR(t) ≤ 16E(u0, v0)− 4

ˆ (
ϑ1,R(ρ)− CR−1(ϑ2,R(y))2

)
|∇yu(t, x)|2dx

+CR−1 + oR(1).

for all t ∈ [0,∞).

Provided that we prove

ϑ1,R(ρ)− CR−1(ϑ2,R(y))2 ≥ 0, ∀ρ = |y| ≥ 0, (5.12)

then we can choose R > 1 large enough so that for all t ∈ [0,∞),

d

dt
MϕR(t) ≤ 4E(u0, v0).

Arguing as in the proof of Theorem 2.3, we have

−4E(u0, v0)t ≤ C(ϕR, κ,M(u0, v0))
√
T (u(t), v(t))

for all t ≥ t0, where t0 � 1. In particular, we have

T (u(t), v(t)) ≥ C(ϕR, κ,M(u0, v0), E(u0, v0))t2

for all t ≥ t0 which contradicts (5.10) for t sufficiently large.

Next we consider the mass-resonance case, i.e. κ = 1
2 . If T ∗ <∞, then we are done. Suppose

that T ∗ =∞. We will show that there exists a time sequence tn →∞ such that ‖∂4u(tn)‖L2 →∞
as n→∞. Assume by contradiction that it does not hold, i.e.

sup
t∈[0,∞)

‖∂4u(t)‖L2 ≤ C <∞.

Thanks to (5.11), we have for all t ∈ [0,∞),

d

dt
MϕR(t) ≤ 16E(u0, v0)− 4

ˆ (
ϑ1,R(ρ)− CR−1(ϑ2,R(y))2

)
|∇yu(t, x)|2dx

+CR−1 + oR(1).

Provided that (5.12) holds true, we can choose R > 1 sufficiently large to get for all t ∈ [0,∞),

d

dt
MϕR(t) ≤ 4E(u0, v0).

As κ = 1
2 , we see that

d

dt
VϕR(t) = MϕR(t),

where

VϕR(t) :=

ˆ
ϕR(x)

(
|u(t, x)|2 + 2|v(t, x)|2

)
dx.

It follows that, for all t ∈ [0,∞),

d2

dt2
VϕR(t) ≤ 4E(u0, v0) < 0.

Integrating the above inequality, there exists t0 > 0 sufficiently large so that VϕR(t0) < 0 which is
impossible.
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Finally, let us choose a suitable cut-off function ϕR so that (5.12) is fulfilled. Let χ be as in
(5.9). It is easy to see that χ satisfies (4.2). Define

ψR(y) := ψR(ρ) = R2χ(ρ/R), ρ = |y|

and let ϕR be as in (4.8), namely ϕR(x) = ψR(y) + x2
4. For ϑ1,R(ρ) = 2− ψ′′R(ρ) and

ϑ2,R(y) = 6−∆yψR(y) = 2− ψ′′R(ρ) + 2

(
2− ψ′R(ρ)

ρ

)
since ∆yψR(y) = ψ′′R(ρ) + 2

ρψ
′
R(ρ), we can infer that (5.12) is satisfied for this choice of ψR. The

proof is similar to the one for (5.8), so we omit the details. The proof is complete. 2

Appendix A. Localized virial estimates for the 4D general quadratic system

In this appendix, we provide some localized virial estimates related to a generalized system of
NLS with quadratic interactions (2.5) in the mass-critical case d = 4.

Lemma A.1. Let d = 4 and ~u be a radial H1-solution to (2.5) defined on the maximal forward
time interval [0, T ∗). Let ϕR be as in (4.3) and denote

MϕR(t) := 2 Im

N∑
j=1

aj

ˆ
∇ϕR(x) · ∇uj(t, x)uj(t, x)dx. (A.1)

Then we have for all t ∈ [0, T ∗),

d

dt
MϕR(t) ≤ 16E(~u(t))− 4

ˆ (
θ1,R(r)− CR− 3

2 (θ2,R(x))
2
) N∑

j=1

aj |∇uj(t, x)|2
 dx+ oR(1)

for some constant C > 0 depending only on κ, a = (a1, . . . , aN ), and M(u0, v0), where θ1,R and
θ2,R are as in (4.5).

Proof. Arguing as in the proof of [24, Theorem 4.1], we have for all t ∈ [0, T ∗),

d

dt
MϕR(t) = 16E(~u(t))− 4

ˆ
(2− ϕ′′R)

 N∑
j=1

aj |∇uj(t)|2
 dx

−
ˆ

∆2ϕR

 N∑
j=1

aj |uj(t)|2
 dx+ 2 Re

ˆ
(8−∆ϕR)F (~u(t))dx.

By the conservation of mass, we have∣∣∣∣∣∣
ˆ

∆2ϕR

 N∑
j=1

aj |uj(t)|2
 dx

∣∣∣∣∣∣ . R−2.

Thus we get

d

dt
MϕR(t) ≤ 16E(~u(t))− 4

ˆ
θ1,R

 N∑
j=1

aj |∇uj(t)|2
 dx+ 2 Re

ˆ
θ2,RF (~u(t))dx+ CR−2, (A.2)
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where θ1,R and θ2,R are as in (4.5). By the assumption (H6) in [24], the radial Sobolev embedding
and the conservation of mass, we estimate∣∣∣∣Re

ˆ
θ2,RF (~u(t))dx

∣∣∣∣ ≤ ˆ θ2,R|F (~u(t))|dx

≤
ˆ
θ2,R

 N∑
j=1

|uj(t)|3
 dx

≤
N∑
j=1

sup
|x|≥R

|θ2,R(x)uj(t, x)|‖uj(t)‖2L2

. R−
3
2

N∑
j=1

‖∇(θ2,Ruj(t))‖
1
2

L2‖θ2,Ruj(t)‖
1
2

L2‖uj(t)‖2L2

. R−
3
2

N∑
j=1

‖∇(θ2,Ruj(t))‖
1
2

L2 .

Thanks to the conservation of mass and the fact that ‖∇θ2,R‖L∞ . 1, we have

‖∇(θ2,Ruj(t))‖L2 . ‖θ2,R∇ju(t)‖L2 + 1

which implies that

∣∣∣∣Re

ˆ
θ2,RF (~u(t))dx

∣∣∣∣ . R− 3
2

N∑
j=1

(
‖θ2,R∇uj(t)‖2L2 + 1

)

. R−
3
2

ˆ
(θ2,R)

2

 N∑
j=1

aj |∇uj(t)|2
 dx+R−

3
2 .

(A.3)

Collecting (A.2) and (A.3), we finish the proof. �

Lemma A.2. Let d = 4 and ~u be a Σ4-solution to (2.5) defined on the maximal forward time
interval [0, T ∗). Let ϕR be as in (4.8) and denote MϕR(t) as in (A.1). Then we have for all
t ∈ [0, T ∗),

d

dt
MϕR(t) ≤ 16E(~u(t))− 4

ˆ (
ϑ1,R(ρ)− CR−1(ϑ2,R(y))2

) N∑
j=1

aj |∇yuj(t, x)|2
 dx

+CR−1
N∑
j=1

‖∂4uj(t)‖2L2 + oR(1)

for some constant C > 0 depending only on κ, a = (a1, . . . , aN ), and M(u0, v0), where ϑ1,R and
ϑ2,R are as in (4.16).

Proof. Using localized virial identities similar to Item (4) of Remark 4.1 (see also Lemma 4.4), we
have for all t ∈ [0, T ∗),

d

dt
MϕR(t) = 16E(~u(t)) + CR−2 − 4

ˆ
ϑ1,R(ρ)

 N∑
j=1

aj |∇yuj(t, x)|2
 dx

+2 Re

ˆ
ϑ2,R(y)F (~u(t, x))dx,
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where ϑ1,R and ϑ2,R are as in (4.16). We estimate∣∣∣∣Re

ˆ
ϑ2,R(y)F (~u(t, x))dx

∣∣∣∣ ≤ ˆ ϑ2,R(y)|F (~u(t, x))|dx

≤
ˆ
ϑ2,R(y)

 N∑
j=1

|uj(t, x)|3
 dx

≤
N∑
j=1

(ˆ
(ϑ2,R(y))

2 |uj(t, x)|4dx
)1/2

‖uj(t)‖L2
x

.
N∑
j=1

(ˆ
(ϑ2,R(y))

2 |uj(t, x)|4dx
)1/2

.

Estimating as in Lemmas 4.3 and 4.4, we have(ˆ
(ϑ2,R(y))

2 |uj(t, x)|4dx
)1/2

. R−1‖∇y(ϑ2,Ruj(t))‖1/2L2
x
‖∂4uj(t)‖1/2L2

x

. R−1
(
‖∇y(ϑ2,Ruj(t)‖L2

x
+ ‖∂4uj(t)‖L2

x

)
. R−1

(
‖∇y(ϑ2,Ruj(t))‖2L2

x
+ ‖∂4uj(t)‖2L2

x
+ 1
)

. R−1
(
‖ϑ2,R∇yuj(t)‖2L2

x
+ ‖∂4uj(t)‖2L2

x
+ 1
)
.

The proof is complete by collecting the above estimates. �
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