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Abstract. We consider a class of 1D NLS perturbed with a steplike potential.
We prove that the nonlinear solutions satisfy the double scattering channels in
the energy space. The proof is based on concentration-compactness/rigidity
method. We prove moreover that in dimension higher than one, classical
scattering holds if the potential is periodic in all but one dimension and is
steplike and repulsive in the remaining one.

1. Introduction

The main motivation of this paper is the analysis of the behavior for large
times of solutions to the following 1D Cauchy problems (see below for a suitable
generalization in higher dimensions):

(1.1)
{
i∂tu+ ∂2

xu− V u = |u|αu, (t, x) ∈ R× R, α > 4
u(0) = u0 ∈ H1(R)

,

namely we treat the L2-supercritical defocusing power nonlinearities, and V : R→ R
is a real time-independent steplike potential. More precisely we assume that V (x)
has two different asymptotic behaviors at ±∞:
(1.2) a+ = lim

x→+∞
V (x) 6= lim

x→−∞
V (x) = a−.

In order to simplify the presentation we shall assume in our treatment
a+ = 1 and a− = 0,

but of course the arguments and the results below can be extended to the general
case a+ 6= a−. Roughly speaking the Cauchy problem (1.1) looks like the following
Cauchy problems respectively for x >> 0 and x << 0:

(1.3)
{
i∂tv + ∂2

xv = |v|αv
v(0) = v0 ∈ H1(R)

and

(1.4)
{
i∂tv + (∂2

x − 1)v = |v|αv
v(0) = v0 ∈ H1(R)

.

We recall that in 1D, the long time behavior of solutions to (1.3) (and also to (1.4))
has been first obtained in the work by Nakanishi (see [N]), who proved that the
solutions to (1.3) (and also (1.4)) scatter to a free wave in H1(R) (see Definition 1.4
for a precise definition of scattering from nonlinear to linear solutions in a general
framework). The Nakanishi argument is a combination of the induction on the energy
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in conjunction with a suitable version of Morawetz inequalities with time-dependent
weights. Alternative proofs based on the use of the interaction Morawetz estimates,
first introduced in [CKSTT], have been obtained later (see [CHVZ, CGT, PV, V]
and the references therein).
As far as we know, there are not results available in the literature about the long
time behavior of solutions to NLS perturbed by a steplike potential, and this is the
main motivation of this paper.

We recall that in physics literature the steplike potentials are called barrier po-
tentials and are very useful to study the interactions of particles with the boundary
of a solid (see Gesztesy [G] and Gesztesy, Noewll and Pötz [GNP] for more details).
We also mention the paper [DS] where, in between other results, it is studied via the
twisting trick the long time behavior of solutions to the propagator eit(∂2

x−V ), where
V (x) is steplike (see below for more details on the definition of the double scattering
channels). For a more complete list of references devoted to the analysis of steplike
potentials we refer to [D’AS]. Neverthless, at the best of our knowledge, no results
are available about the long time behavior of solutions to nonlinear Cauchy problem
(1.1) with a steplike potential.

It is worth mentioning that in 1D, we can rely on the Sobolev embedding H1(R) ↪→
L∞(R). Hence it is straightforward to show that the Cauchy problem (1.1) is locally
well posed in the energy space H1(R). For higher dimensions the local well posedness
theory is still well known, see for example Cazenave’s book [CT], once the good
dispersive properties of the linear flow are established. Moreover, thanks to the
defocusing character of the nonlinearity, we can rely on the conservation of the mass
and of the energy below, valid in any dimension:

(1.5) ‖u(t)‖L2(Rd) = ‖u(0)‖L2(Rd),

and

(1.6) E(u(t)) := 1
2

∫
Rd

(
|∇u(t)|2 + V |u(t)|2 + 2

α+ 2 |u(t)|α+2
)
dx = E(u(0)),

in order to deduce that the solutions are global. Hence for any initial datum
u0 ∈ H1(Rd) there exists one unique global solution u(t, x) ∈ C(R;H1(Rd)) to (1.1)
for d = 1 (and to (1.8) below in higher dimension).

It is well-known that a key point in order to study the long time behavior of
nonlinear solutions is a good knowledge of the dispersive properties of the linear
flow, namely the so called Strichartz estimates. A lot of works have been written
in the literature about the topic, both in 1D and in higher dimensions. We
briefly mention [AY, CK, D’AF, GS, W1, W2, Y] for the one dimensional case
and [BPST, GVV, JK, JSS, R, RS] for the higher dimensional case, referring to
the bibliographies contained in these papers for a more detailed list of works on
the subject. It is worth mentioning that in all the papers mentioned above the
potential perturbation is assumed to decay at infinity, hence steplike potential are
not allowed. Concerning contributions in the literature to NLS perturbed by a
decaying potential we have several results, in between we quote the following most
recent ones: [BV, CR, CGV, GHW, H, La, Li, LZ], and all the references therein.

At the best of our knowledge, the unique paper where the dispersive properties
of the corresponding 1D linear flow perturbed by a steplike potential V (x) have
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been analyzed is [D’AS], where the L1 − L∞ decay estimate in 1D is proved:

(1.7) ‖eit(∂
2
x−V )f‖L∞(R) . |t|−1/2‖f‖L1(R), ∀ t 6= 0 ∀ f ∈ L1(R).

We point out that beside the different spatial behavior of V (x) on left and on right
of the line, other assumptions must be satisfied by the potential. There is a huge
literature devoted to those spectral properties, nevertheless we shall not focus on it
since our main point is to show how to go from (1.7) to the analysis of the long time
behavior of solutions to (1.1). We will assume therefore as black-box the dispersive
relation (1.7) and for its proof, under further assumptions on the steplike potential
V (x), we refer to Theorem 1.1 in [D’AS]. Our first aim is to provide a nonlinear
version of the double scattering channels that has been established in the literature
in the linear context (see [DS]).

Definition 1.1. Let u0 ∈ H1(R) be given and u(t, x) ∈ C(R;H1(R)) be the unique
global solution to (1.1) with V (x) that satisfies (1.2) with a− = 0 and a+ = 1. Then
we say that u(t, x) satisfies the double scattering channels provided that

lim
t→±∞

‖u(t, x)− eit∂
2
xη± − eit(∂

2
x−1)γ±‖H1(R) = 0,

for suitable η±, γ± ∈ H1(R).

We can now state our first result in 1D.

Theorem 1.2. Assume that V : R → R is a bounded, nonnegative potential
satisfying (1.2) with a− = 0 and a+ = 0, and (1.7). Furthermore, suppose that:

• |∂xV (x)| |x|→∞−→ 0;

• limx→+∞ |x|1+ε|V (x)− 1| = 0, limx→−∞ |x|1+ε|V (x)| = 0 for some ε > 0;

• x · ∂xV (x) ≤ 0.
Then for every u0 ∈ H1(R) the corresponding unique solution u(t, x) ∈ C(R;H1(Rd))
to (1.1) satisfies the double scattering channels (according to Definition 1.1).

Remark 1.3. It is worth mentioning that the assumption (1.7) it may look somehow
quite strong. However we emphasize that the knowledge of the estimate (1.7)
provides for free informations on the long time behavior of nonlinear solutions for
small data, but in general it is more complicated to deal with large data, as it is
the case in Theorem 1.2. For instance consider the case of 1D NLS perturbed by
a periodic potential. In this situation it has been established in the literature the
validity of the dispersive estimate for the linear propagator (see [Cu]) and also the
small data nonlinear scattering ([CuV]). However, at the best of our knowledge, it
is unclear how to deal with the large data scattering.

The proof of Theorem 1.2 goes in two steps. The first one is to show that
solutions to (1.1) scatter to solutions of the linear problem (see Definition 1.4 for
a rigorous definition of scattering in a general framework); the second one is the
asymptotic description of solutions to the linear problem associated with (1.1) in
the energy space H1 (see Theorem 1.8). Concerning the first step we use the
technique of concentration-compactness/rigidity pioneered by Kenig and Merle (see
[KM1, KM2]). Since this argument is rather general, we shall present it in a more
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general higher dimensional setting.
More precisely in higher dimension we consider the following family of NLS

(1.8)
{
i∂tu+ ∆u− V u = |u|αu, (t, x) ∈ R× Rd

u(0) = u0 ∈ H1(Rd)
,

where {
4
d < α < 4

d−2 if d ≥ 3
4
d < α if d ≤ 2

.

The potential V (x) is assumed to satisfy, uniformly in x̄ ∈ Rd−1,

(1.9) a− = lim
x1→−∞

V (x1, x̄) 6= lim
x1→+∞

V (x1, x̄) = a+, where x = (x1, x̄).

Moreover we assume V (x) periodic w.r.t. the variables x̄ = (x2, . . . , xd). Namely
we assume the existence of d− 1 linear independent vectors P2, . . . , Pd ∈ Rd−1 such
that for any fixed x1 ∈ R, the following holds:

(1.10)
V (x1, x̄) = V (x1, x̄+ k2P2 + · · ·+ kdPd),

∀ x̄ = (x2, . . . , xd) ∈ Rd−1, ∀ (k2, . . . , kd) ∈ Zd−1.

Some comments about this choice of assumptions on V (x) are given in Remark 1.6.

Exactly as in 1D case mentioned above, we assume as a black-box the dispersive
estimate
(1.11) ‖eit(∆−V )f‖L∞(Rd) . |t|−d/2‖f‖L1(Rd), ∀ t 6= 0 ∀ f ∈ L1(Rd).

Next we recall the classical definition of scattering from nonlinear to linear
solutions in a general setting. We recall that by classical arguments we have that
once (1.11) is granted, then the local (and also the global, since the equation
is defocusing) existence and uniqueness of solutions to (1.8) follows by standard
arguments.

Definition 1.4. Let u0 ∈ H1(Rd) be given and u(t, x) ∈ C(R;H1(Rd)) be the
unique global solution to (1.8). Then we say that u(t, x) scatters to a linear solution
provided that

lim
t→±∞

‖u(t, x)− eit(∆−V )ψ±‖H1(Rd) = 0

for suitable ψ± ∈ H1(Rd).

In the sequel we will also use the following auxiliary Cauchy problems that
roughly speaking represent the Cauchy problems (1.8) in the regions x1 << 0 and
x1 >> 0 (provide that we assume a− = 0 and a+ = 1 in (1.9)):

(1.12)
{
i∂tu+ ∆u = |u|αu (t, x) ∈ R× Rd

u(0) = ψ ∈ H1(Rd)
,

and

(1.13)
{
i∂tu+ (∆− 1)u = |u|αu (t, x) ∈ R× Rd

u(0) = ψ ∈ H1(Rd)
.

Notice that those problems are respectively the analogue of (1.3) and (1.4) in higher
dimensional setting.
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We can now state our main result about scattering from nonlinear to linear
solutions in general dimension d ≥ 1.

Theorem 1.5. Let V ∈ C1(Rd;R) be a bounded, nonnegative potential which satisfies
(1.9) with a− = 0, a+ = 1, (1.10) and assume moreover:

• |∇V (x1, x̄)| |x1|→∞−→ 0 uniformly in x̄ ∈ Rd−1;

• the decay estimate (1.11) is satisfied;

• x1 · ∂x1V (x) ≤ 0 for any x ∈ Rd.
Then for every u0 ∈ H1(Rd) the unique corresponding global solution u(t, x) ∈
C(R;H1(Rd)) to (1.8) scatters.

Remark 1.6. Next we comment about the assumptions done on the potential V (x)
along Theorem 1.5. Roughly speaking we assume that the potential V (x1, . . . , xd)
is steplike and repulsive w.r.t. x1 and it is periodic w.r.t. (x2, . . . , xd). The main
motivation of this choice is that this situation is reminiscent, according with [DS], of
the higher dimensional version of the 1D double scattering channels mentioned above.
Moreover we highlight the fact that the repulsivity of the potential in one unique
direction is sufficient to get scattering, despite to other situations considered in the
literature where repulsivity is assumed w.r.t. the full set of variables (x1, . . . , xd).
Another point is that along the proof of Theorem 1.5 we show how to deal with
a partially periodic potential V (x), despite to the fact that, at the best of our
knowledge, the large data scattering for potentials periodic w.r.t. the full set of
variables has not been established elsewhere, either in the 1D case (see Remark 1.3).

Remark 1.7. Next we comment about the repulsivity assumption on V (x). As
pointed out in [H], this assumption on the potential plays the same role of the
convexity assumption for the obstacle problem studied by Killip, Visan and Zhang
in [KVZ]. The author highlights the fact that both strict convexity of the obstacle
and the repulsivity of the potential prevent wave packets to refocus once they are
reflected by the obstacle or by the potential. From a technical point of view the
repulsivity assumption is done in order to control the right sign in the virial identities,
and hence to conclude the rigidity part of the Kenig and Merle argument. In this
paper, since we assume repulsivity only in one direction we use a suitable version
of the Nakanishi-Morawetz time-dependent estimates in order to get the rigidity
part in the Kenig and Merle road map. Of course it is a challenging mathematical
question to understand whether or not the repulsivity assumption (partial or global)
on V (x) is a necessary condition in order to get scattering.

When we specialize in 1D, we are able to complete the theory of double scattering
channels in the energy space. Therefore how to concern the linear part of our work,
we give the following result, that in conjunction with Theorem 1.5 where we fix
d = 1, provides the proof of Theorem 1.2.

Theorem 1.8. Assume that V (x) ∈ C(R;R) satisfies the following space decay rate:
(1.14) lim

x→+∞
|x|1+ε|V (x)− 1| = lim

x→−∞
|x|1+ε|V (x)| = 0 for some ε > 0.

Then for every ψ ∈ H1(R) we have

lim
t→±∞

‖eit(∂
2
x−V )ψ − eit∂

2
xη± − eit(∂

2
x−1)γ±‖H1(R) = 0
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for suitable η±, γ± ∈ H1(R).

Notice that Theorem 1.8 is a purely linear statement. The main point (compared
with other results in the literature) is that the asymptotic convergence is stated
with respect to the H1 topology and not with respect to the weaker L2 topology.
Indeed we point out that the content of Theorem 1.8 is well-known and has been
proved in [DS] in the L2 setting. However, it seems natural to us to understand, in
view of Theorem 1.5, whether or not the result can be extended in the H1 setting.
In fact according with Theorem 1.5 the asymptotic convergence of the nonlinear
dynamic to linear dynamic occurs in the energy space and not only in L2. As far as
we know the issue of H1 linear scattering has not been previously discussed in the
literature, not even in the case of a potential which decays in both directions ±∞.

For this reason we have decided to state Theorem 1.8 as an independent result.

1.1. Notations. The spaces LpILq = Lpt (I;Lqx(Rd)) are the usual time-space Lebesgue
mixed spaces endowed with norm defined by

‖u‖Lpt (I;Lqx(Rd)) =
(∫

I

∣∣∣∣ ∫
Rd
|u(t, x)|q dx

∣∣∣∣p/q dt)1/p

and by the context it will be clear which interval I ⊆ R, bounded or unbounded, is
considered. If I = R we will lighten the notation by writing LpLq. The operator τz
will denote the translation operator τzf(x) := f(x − z). If z ∈ C, <z and =z are
the common notations for the real and imaginary parts of a complex number and z̄
is its complex conjugate.

In what follows, when dealing with a dimension d ≥ 2, we write Rd 3 x := (x1, x̄)
with x̄ ∈ Rd−1. For x ∈ Rd the quantity |x| will denote the usual norm in Rd.

With standard notation, the Hilbert spaces L2(Rd), H1(Rd), H2(Rd) will be
denoted simply by L2, H1, H2 and likely for all the Lebesgue Lp(Rd) spaces. By
(·, ·)L2 we means the usual L2-inner product, i.e. (f, g)L2 =

∫
Rd fḡ dx, ∀ f, g ∈ L

2,
while the energy norm H is the one induced by the inner product (f, g)H :=
(f, g)Ḣ1 + (V f, g)L2 .

Finally, if d ≥ 3, 2∗ = 2d
d−2 is the Sobolev conjugate of 2 (2∗ being +∞ in

dimension d ≤ 2), while if 1 ≤ p ≤ ∞ then p′ is the conjugate exponent given by
p′ = p

p−1 .

2. Strichartz Estimates

The well known Strichartz estimates are a basic tool in the studying of the
nonlinear Schrödinger equation and we will assume the validity of them in our
context. Roughly speaking, we can say that these essential space-time estimates
arise from the so-called dispersive estimate for the Schrödinger propagator

(2.1) ‖eit(∆−V )f‖L∞ . |t|−d/2‖f‖L1, ∀ t 6= 0 ∀ f ∈ L1,

which is proved in 1D in [D’AS], under suitable assumptions on the steplike potential
V (x), and we take for granted by hypothesis.
As a first consequence we get the following Strichartz estimates

‖eit(∆−V )f‖LaLb . ‖f‖L2
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where a, b ∈ [1,∞] are assumed to be Strichartz admissible, namely

(2.2) 2
a

= d

(
1
2 −

1
b

)
.

We recall, as already mentioned in the introduction, that along our paper we
are assuming the validity of the dispersive estimate (2.1) also in higher dimensional
setting.

We fix from now on the following Lebesgue exponents

r = α+ 2, p = 2α(α+ 2)
4− (d− 2)α, q = 2α(α+ 2)

dα2 − (d− 2)α− 4 .

(where α is given by the nonlinearity in (1.8)). Next, we give the linear estimates
that will be fundamental in our study:

‖eit(∆−V )f‖
L

4(α+2)
dα Lr

. ‖f‖H1 ,(2.3)

‖eit(∆−V )f‖
L

2(d+2)
d L

2(d+2)
d
. ‖f‖H1 ,(2.4)

‖eit(∆−V )f‖LpLr . ‖f‖H1 .(2.5)

The last estimate that we need is (some in between) the so-called inhomogeneous
Strichartz estimate for non-admissible pairs:∥∥∥∥∫ t

0
ei(t−s)(∆−V )g(s) ds

∥∥∥∥
LpLr

. ‖g‖Lq′Lr′ ,(2.6)

whose proof is contained in [CW].

Remark 2.1. In the unperturbed framework, i.e. in the absence of the potential,
and for general dimensions, we refer to [FXC] for comments and references about
Strichartz estimates (2.3), (2.4), (2.5) and (2.6).

3. Perturbative nonlinear results

The results in this section are quite standard and hence we skip the complete
proofs which can be found for instance in [BV, CT, FXC]. In fact the arguments
involved are a compound of dispersive properties of the linear propagator and a
standard perturbation argument.

Along this section we assume that the estimate (1.11) is satisfied by the propagator
associated with the potential V (x). We do not need for the moment to assume the
other assumptions done on V (x).

We also specify that in the sequel the couple (p, r) is the one given in Section 2.

Lemma 3.1. Let u0 ∈ H1 and assume that the corresponding solution to (1.8)
satisfies u(t, x) ∈ C(R;H1)∩LpLr. Then u(t, x) scatters to a linear solution in H1.

Proof. It is a standard consequence of Strichartz estimates. �

Lemma 3.2. There exists ε0 > 0 such that for any u0 ∈ H1 with ‖u0‖H1 ≤ ε0, the
solution u(t, x) to the Cauchy problem (1.8) scatters to a linear solution in H1.

Proof. It is a simple consequence of Strichartz estimates. �
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Lemma 3.3. For every M > 0 there exist ε = ε(M) > 0 and C = C(M) > 0
such that: if u(t, x) ∈ C(R;H1) is the unique global solution to (1.8) and w ∈
C(R;H1) ∩ LpLr is a global solution to the perturbed problem{

i∂tw + ∆w − V w = |w|αw + e(t, x)
w(0, x) = w0 ∈ H1

satisfying the conditions ‖w‖LpLr ≤ M , ‖
∫ t

0 e
i(t−s)(∆−V )e(s) ds‖LpLr ≤ ε and

‖eit(∆−V )(u0 − w0)‖LpLr ≤ ε, then u ∈ LpLr and ‖u− w‖LpLr ≤ Cε.

Proof. The proof is contained in [FXC], see Proposition 4.7, and it relies on (2.6). �

4. Profile decomposition

The main content of this section is the following profile decomposition theorem.

Theorem 4.1. Let V (x) ∈ L∞ satisfies: V ≥ 0, (1.10), (1.9) with a− = 0 and
a+ = 1, the dispersive relation (1.11) and suppose that |∇V (x1, x̄)| → 0 as |x1| → ∞
uniformly in x̄ ∈ Rd−1. Given a bounded sequence {vn}n∈N ⊂ H1, ∀ J ∈ N and
∀ 1 ≤ j ≤ J there exist two sequences {tjn}n∈N ⊂ R, {xjn}n∈N ⊂ Rd and ψj ∈ H1

such that, up to subsequences,

vn =
∑

1≤j≤J
eit

j
n(∆−V )τxjnψ

j +RJn

with the following properties:
• for any fixed j we have the following dichotomy for the time parameters tjn:

either tjn = 0 ∀n ∈ N or tjn
n→∞−→ ±∞;

• for any fixed j we have the following scenarios for the space parameters
xjn = (xjn,1, x̄jn) ∈ R× Rd−1:

either xjn = 0 ∀n ∈ N

or |xjn,1|
n→∞−→ ∞

or xjn,1 = 0, x̄jn =
d∑
l=2

kjn,lPl with kjn,l ∈ Z and
d∑
l=2
|kjn,l|

n→∞−→ ∞,

where Pl are given in (1.10);

• (orthogonality condition) for any j 6= k

|xjn − xkn|+ |tjn − tkn|
n→∞−→ ∞;

• (smallness of the remainder) ∀ ε > 0 ∃ J = J(ε) such that

lim sup
n→∞

‖eit(∆−V )RJn‖LpLr ≤ ε;

• by defining ‖v‖2H =
∫

(|∇v|2 + V |v|2)dx we have, as n→∞,

‖vn‖2L2 =
∑

1≤j≤J
‖ψj‖2L2 + ‖RJn‖2L2 + o(1), ∀ J ∈ N,

‖vn‖2H =
∑

1≤j≤J
‖τxjnψ

j‖2H + ‖RJn‖2H + o(1), ∀ J ∈ N;
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• ∀ J ∈ N and ∀ 2 < q < 2∗ we have, as n→∞,

‖vn‖qLq =
∑

1≤j≤J
‖eit

j
n(∆−V )τxjnψ

j‖qLq + ‖RJn‖
q
Lq + o(1);

• with E(v) = 1
2
∫ (
|∇v|2 + V |v|2 + 2

α+2 |v|
α+2)dx, we have, as n→∞,

(4.1) E(vn) =
∑

1≤j≤J
E(eit

j
n(∆−V )τxjnψ

j) + E(Rjn) + o(1), ∀ J ∈ N.

First we prove the following lemma.

Lemma 4.2. Given a bounded sequence {vn}n∈N ⊂ H1(Rd) we define

Λ =
{
w ∈ L2 | ∃{xk}k∈N and {nk}k∈N s. t. τxkvnk

L2

⇀ w

}
and

λ = sup{‖w‖L2 , w ∈ Λ}.
Then for every q ∈ (2, 2∗) there exists a constant M = M(supn ‖vn‖H1) > 0 and an
exponent e = e(d, q) > 0 such that

lim sup
n→∞

‖vn‖Lq ≤Mλe.

Proof. We consider a Fourier multiplier ζ where ζ is defined as

C∞c (Rd;R) 3 ζ(ξ) =
{

1 if |ξ| ≤ 1
0 if |ξ| > 2

.

By setting ζR(ξ) = ζ(ξ/R), we define the pseudo-differential operator with symbol
ζR, classically given by ζR(|D|)f = F−1(ζRFf)(x) and similarly we define the
operator ζ̃R(|D|) with the associated symbol given by ζ̃R(ξ) = 1− ζR(ξ). Here by
F ,F−1 we mean the Fourier transform operator and its inverse, respectively. For
any q ∈ (2, 2∗) there exists a ε ∈ (0, 1) such that Hε ↪→ L

2d
d−2ε =: Lq. Then

‖ζ̃R(|D|)vn‖Lq . ‖〈ξ〉εζ̃R(ξ)v̂n‖L2
ξ

= ‖〈ξ〉ε−1〈ξ〉ζ̃R(ξ)v̂n‖L2
ξ

. R−(1−ε)

where we have used the boundedness of {vn}n∈N in H1 at the last step. For the
localized part we consider instead a sequence {yn}n∈N ⊂ Rd such that

‖ζR(|D|)vn‖L∞ ≤ 2|ζR(|D|)vn(yn)|
and we have that up to subsequences, by using the well-known properties F−1(fg) =
F−1f ∗ F−1g and F−1 (f ( ·r )) = rd(F−1f)(r·),

lim sup
n→∞

|ζR(|D|)vn(yn)| = Rd lim sup
n→∞

∣∣∣∣∫ η(Rx)vn(x− yn) dx
∣∣∣∣ . Rd/2λ

where we denoted η = F−1ζ and we used Cauchy-Schwartz inequality. Given
θ ∈ (0, 1) such that 1

q = 1−θ
2 , by interpolation follows that

‖ζR(|D|)vn‖Lq ≤ ‖ζR(|D|)vn‖θL∞‖ζR(|D|)vn‖1−θL2 . R
dθ
2 λθ

lim sup
n→∞

‖vn‖Lq .
(
R
dθ
2 λθ +R−1+ε

)



10 L. FORCELLA AND N. VISCIGLIA

and the proof is complete provided we select as radius R = λ−β with 0 < β =
θ
(
1− ε+ dθ

2
)−1 and so e = θ(1− ε)

(
1− ε+ dθ

2
)−1

. �

Based on the previous lemma we can prove the following result.

Lemma 4.3. Let {vn}n∈N be a bounded sequence in H1(Rd). There exists, up to
subsequences, a function ψ ∈ H1 and two sequences {tn}n∈N ⊂ R, {xn}n∈N ⊂ Rd
such that

(4.2) τ−xne
itn(∆−V )vn = ψ +Wn,

where the following conditions are satisfied:

Wn
H1

⇀ 0,

lim sup
n→∞

‖eit(∆−V )vn‖L∞Lq ≤ C
(

sup
n
‖vn‖H1

)
‖ψ‖eL2

with the exponent e > 0 given in Lemma 4.2. Furthermore, as n→∞, vn fulfills
the Pythagorean expansions below:

(4.3) ‖vn‖2L2 = ‖ψ‖2L2 + ‖Wn‖2L2 + o(1);

(4.4) ‖vn‖2H = ‖τxnψ‖2H + ‖τxnWn‖2H + o(1);

(4.5) ‖vn‖qLq = ‖eitn(∆−V )τxnψ‖
q
Lq + ‖eitn(∆−V )τxnWn‖qLq + o(1), q ∈ (2, 2∗).

Moreover we have the following dichotomy for the time parameters tn:

either tn = 0 ∀n ∈ N or tn
n→∞−→ ±∞.(4.6)

Concerning the space parameters xn = (xn,1, x̄n) ∈ R× Rd−1 we have the following
scenarios:

either xn = 0 ∀n ∈ N(4.7)

or |xn,1|
n→∞−→ ∞

or xn,1 = 0, x̄jn =
d∑
l=2

kn,lPl with kn,l ∈ Z and

d∑
l=2
|kn,l|

n→∞−→ ∞.

Proof. We choose a sequences of times {tn}n∈N such that

(4.8) ‖eitn(∆−V )vn‖Lq >
1
2‖e

it(∆−V )vn‖L∞Lq .

According to Lemma 4.2 we can choose a sequence of space translations such that

τ−xn(eitn(∆−V )vn) H
1

⇀ ψ,

obtaining (4.2). Let us remark that the choice of the time sequence in (4.8) is
possible since the norms H1 and H are equivalent. Then

lim sup
n→∞

‖eitn(∆−V )vn‖Lq . ‖ψ‖eL2 ,

which in turn implies by (4.8) that

lim sup
n→∞

‖eit(∆−V )vn‖L∞Lq . ‖ψ‖eL2 ,
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where the exponent is the one given in Lemma 4.2. From the definition of ψ we can
write

(4.9) τ−xne
itn(∆−V )vn = ψ +Wn, Wn

H1

⇀ 0
and the Hilbert structure of L2 gives (4.3).
Next we prove (4.4). We have

vn = e−itn(∆−V )τxnψ + e−itn(∆−V )τxnWn, Wn
H1

⇀ 0
and we conclude provided that we show
(4.10) (e−itn(∆−V )τxnψ, e

−itn(∆−V )τxnWn)H
n→∞−→ 0.

Since we have
(e−itn(∆−V )τxnψ, e

−itn(∆−V )τxnWn)H

= (ψ,Wn)Ḣ1 +
∫
V (x+ xn)ψ(x)W̄n(x) dx

and Wn
H1

⇀ 0, it is sufficient to show that

(4.11)
∫
V (x+ xn)ψ(x)W̄n(x) dx n→∞−→ 0.

If (up to subsequence) xn
n→∞−→ x∗ ∈ Rd or |xn,1|

n→∞−→ ∞, where we have splitted
xn = (xn,1, x̄n) ∈ R×Rd−1, then we have that the sequence τ−xnV (x) = V (x+ xn)
pointwise converges to the function Ṽ (x) ∈ L∞ defined by

Ṽ (x) =


1 if xn,1

n→∞−→ +∞
V (x+ x∗) if xn

n→∞−→ x∗ ∈ Rd

0 if xn,1
n→∞−→ −∞

and hence∫
V (x+ xn)ψ(x)W̄n(x) dx =

∫
[V (x+ xn)− Ṽ (x)]ψ(x)W̄n(x) dx

+
∫
Ṽ (x)ψ(x)W̄n(x) dx.

The function Ṽ (x)ψ(x) belongs to L2 since Ṽ is bounded and ψ ∈ H1, and since
Wn ⇀ 0 in H1 (and then in L2) we have that∫

Ṽ (x)ψ(x)W̄n(x) dx n→∞−→ 0.

Moreover by using Cauchy-Schwartz inequality∣∣∣∣ ∫ [V (x+ xn)− Ṽ (x)]ψ(x)W̄n(x) dx
∣∣∣∣ ≤ sup

n
‖Wn‖L2‖[V (·+ xn)− Ṽ (·)]ψ(·)‖L2 ;

since
∣∣[V (·+ xn)− Ṽ (·)]ψ(·)

∣∣2 . |ψ(·)|2 ∈ L1 we have by dominated convergence
theorem that also ∫

[V (x+ xn)− Ṽ (x)]ψ(x)W̄n(x) dx n→∞−→ 0,

and we conclude (4.11) and hence (4.10). It remains to prove (4.10) in the case
when, up to subsequences, xn,1

n→∞−→ x∗1 and |x̄n|
n→∞−→ ∞. Up to subsequences we

can assume therefore that x̄n = x̄∗ +
∑d
l=2 kn,lPl + o(1) with x̄∗ ∈ Rd−1, kn,l ∈ Z
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and
∑d
l=2 |kn,l|

n→∞−→ ∞. Then by using the periodicity of the potential V w.r.t. the
(x2, . . . , xd) variables we get:

(e−itn(∆−V )τxnψ, e
−itn(∆−V )τxnWn)H =

(e−itn(∆−V )τ(x∗1 ,x̄n)ψ, e
−itn(∆−V )τ(x∗1 ,x̄n)Wn)H + o(1) =

(τ(x∗1 ,x̄∗)ψ, τ(x∗1 ,x̄∗)Wn)H + o(1) =

(ψ,Wn)Ḣ1 +
∫
V (x+ (x∗1, x̄∗))ψ(x)W̄n dx = o(1)

where we have used the fact that Wn
H1

⇀ 0.
We turn now our attention to the orthogonality of the non quadratic term of the
energy, namely (4.5). The proof is almost the same of the one carried out in [BV],
with some modification.

Case 1. Suppose |tn|
n→∞−→ ∞. By (2.1) we have ‖eit(∆−V )‖L1→L∞ . |t|−d/2 for any

t 6= 0.We recall that for the evolution operator eit(∆−V ) the L2 norm is conserved, so
the estimate ‖eit(∆−V )‖Lp′→Lp . |t|−d(

1
2−

1
p ) holds from Riesz-Thorin interpolation

theorem, thus we have the conclusion provided that ψ ∈ L1 ∩ L2. If this is not the
case we can conclude by a straightforward approximation argument. This implies
that if |tn| → ∞ as n→∞ then for any p ∈ (2, 2∗) and for any ψ ∈ H1

‖eitn(∆−V )τxnψ‖Lp
n→∞−→ 0.

Thus we conclude by (4.9).

Case 2. Suppose now that tn
n→∞−→ t∗ ∈ R and xn

n→∞−→ x∗ ∈ Rd. In this case the
proof relies on a combination of the Rellich-Kondrachov theorem and the Brezis-Lieb
Lemma contained in [BL], provided that

‖eitn(∆−V )(τxnψ)− eit
∗(∆−V )(τx∗ψ)‖H1

n→∞−→ 0, ∀ψ ∈ H1.

But this is a straightforward consequence of the continuity of the linear propagator
(see [BV] for more details).

Case 3. It remains to consider tn
n→∞−→ t∗ ∈ R and |xn|

n→∞−→ ∞. Also here we can
proceed as in [BV] provided that for any ψ ∈ H1 there exists a ψ∗ ∈ H1 such that

‖τ−xn(eitn(∆−V )(τxnψ))− ψ∗‖H1
n→∞−→ 0.

Since translations are isometries in H1, it suffices to show that for some ψ∗ ∈ H1

‖eitn(∆−V )τxnψ − τxnψ∗‖H1
n→∞−→ 0.

We decompose xn = (xn,1, x̄n) ∈ R × Rd−1 and we consider the two scenarios:
|xn,1|

n→∞−→ ∞ and supn |xn,1| <∞.
If xn,1

n→∞−→ −∞, by continuity in H1 of the flow, it is enough to prove that

‖eit
∗(∆−V )τxnψ − eit

∗∆τxnψ‖H1
n→∞−→ 0.

We observe that

eit
∗(∆−V )τxnψ − eit

∗∆τxnψ =
∫ t∗

0
ei(t

∗−s)(∆−V )(V e−is∆τxnψ)(s) ds
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and hence,

‖eit
∗(∆−V )τxnψ − eit

∗∆τxnψ‖H1 ≤
∫ t∗

0
‖(τ−xnV )eis∆ψ‖H1ds.

We will show that

(4.12)
∫ t∗

0
‖(τ−xnV )eis∆ψ‖H1ds

n→∞−→ 0.

Since we are assuming xn,1
n→∞−→ −∞, for fixed x ∈ Rd we get V (x + xn) n→∞−→

0, namely (τ−xnV )(x) n→∞−→ 0 pointwise; since V ∈ L∞, |τ−xnV |2|eit∆ψ|2 ≤
‖V ‖2L∞ |eit∆ψ|2 and |eit∆ψ|2 ∈ L1, by the dominated convergence theorem we
get that

‖(τ−xnV )eit∆ψ‖L2
n→∞−→ 0.

Analogously, since |xn,1|
n→∞−→ ∞ implies |∇τ−xnV (x)| n→∞−→ 0, we get

‖∇(τ−xnV eit∆ψ)‖L2 ≤ ‖(eit∆ψ)∇τ−xnV ‖L2 + ‖(τ−xnV )∇(eit∆ψ)‖L2
n→∞−→ 0.

We conclude (4.12) by using the dominated convergence theorem w.r.t the measure
ds.

For the case xn,1
n→∞−→ ∞ we proceed similarly.

If supn∈N |xn,1| < ∞, then up to subsequence xn,1
n→∞−→ x∗1 ∈ R. The thesis

follows by choosing ψ∗ = eit
∗(∆−V )τ(x∗1 ,x̄∗)ψ, with x̄∗ ∈ Rd−1 defined as follows

(see above the proof of (4.4)): x̄n = x̄∗ +
∑d
l=2 kn,lPl + o(1) with kn,l ∈ Z and∑d

l=2 |kn,l|
n→∞→ ∞.

Finally, it is straightforward from [BV] that the conditions on the parameters (4.6)
and (4.7) hold.

�

Proof of Theorem 4.1. The proof of the profile decomposition theorem can be carried
out as in [BV] iterating the previous lemma. �

5. Nonlinear profiles

The results of this section will be crucial along the construction of the minimal
element. We recall that the couple (p, r) is the one given in Section 2. Moreover for
every sequence xn ∈ Rd we use the notation xn = (xn,1, x̄n) ∈ R× Rd−1.

Lemma 5.1. Let ψ ∈ H1 and {xn}n∈N ⊂ Rd be such that |xn,1|
n→∞−→ ∞. Up to

subsequences we have the following estimates:

(5.1) xn,1
n→∞−→ −∞ =⇒ ‖eit∆ψn − eit(∆−V )ψn‖LpLr

n→∞−→ 0,

(5.2) xn,1
n→∞−→ +∞ =⇒ ‖eit(∆−1)ψn − eit(∆−V )ψn‖LpLr

n→∞−→ 0,

where ψn := τxnψ.

Proof. Assume xn,1
n→∞−→ −∞ (the case xn,1

n→∞−→ +∞ can be treated similarly).
We first prove that

(5.3) sup
n∈N
‖eit(∆−V )ψn‖Lp(T,∞)L

r
T→∞−→ 0.
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Let ε > 0. By density there exists ψ̃ ∈ C∞c such that ‖ψ̃ − ψ‖H1 ≤ ε, then by the
estimate (2.5)

‖eit(∆−V )(ψ̃n − ψn)‖LpLr . ‖ψ̃n − ψn‖H1 = ‖ψ̃ − ψ‖H1 . ε.

Since ψ̃ ∈ Lr
′ , by interpolation between the dispersive estimate (2.1) and the

conservation of the mass along the linear flow, we have

‖eit(∆−V )ψ̃n‖Lr . |t|−d(
1
2−

1
r )‖ψ̃‖Lr′ ,

and since f(t) = |t|−d(
1
2−

1
r ) ∈ Lp(|t| > 1), there exists T > 0 such that

sup
n
‖eit(∆−V )ψ̃n‖Lp|t|≥TLr ≤ ε,

hence we get (5.3). Now to obtain (5.1), we are reduced to show that for a fixed
T > 0

‖eit∆ψn − eit(∆−V )ψn‖Lp(0,T )L
r
n→∞−→ 0.

Since wn = eit∆ψn − eit(∆−V )ψn is the solution of the following linear Schrödinger
equation {

i∂twn + ∆wn − V wn = −V eit∆ψn
wn(0) = 0

,

by combining (2.5) with the Duhamel formula we get

‖eit∆ψn − eit(∆−V )ψn‖Lp(0,T )L
r . ‖(τ−xnV )eit∆ψ‖L1

(0,T )H
1 .

The thesis follows from the dominated convergence theorem. �

Lemma 5.2. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1
n→∞−→ −∞, (resp.

xn,1
n→∞−→ +∞) and v ∈ C(R;H1) be the unique solution to (1.12) (resp. (1.13)).

Define vn(t, x) := v(t, x− xn). Then, up to a subsequence, the followings hold:

(5.4)
∥∥∥∥∫ t

0
[ei(t−s)∆ (|vn|αvn)− ei(t−s)(∆−V ) (|vn|αvn)]ds

∥∥∥∥
LpLr

n→∞−→ 0;

(5.5)(
resp.

∥∥∥∥∫ t

0
[ei(t−s)(∆−1) (|vn|αvn)− ei(t−s)(∆−V ) (|vn|αvn)]ds

∥∥∥∥
LpLr

n→∞−→ 0
)
.

Proof. Assume xn,1
n→∞−→ −∞ (the case xn,1

n→∞−→ +∞ can be treated similarly).
We start by showing that

(5.6) lim
T→∞

(
sup
n

∥∥∥∥∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) ds

∥∥∥∥
Lp(T,∞)L

r

)
= 0.

By Minkowski inequality and the interpolation of the dispersive estimate (2.1) with
the conservation of the mass, we have∥∥∥∥ ∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) ds

∥∥∥∥
Lrx

.
∫ t

0
|t− s|−d(

1
2−

1
r )‖|vn|αvn‖Lr′x ds

.
∫
R
|t− s|−d(

1
2−

1
r )‖|v|αv‖Lr′x ds = |t|−d(

1
2−

1
r ) ∗ g
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with g(s) = ‖|v|αv(s)‖Lr′x . We conclude (5.6) provided that we show |t|−d(
1
2−

1
r ) ∗

g(t) ∈ Lpt . By using the Hardy-Littlewood-Sobolev inequality (see for instance
Stein’s book [ST], p. 119) we get:∥∥|t|−1+ (2−d)α+4

2(α+2) ∗ g(t)
∥∥
Lpt
. ‖|v|αv‖

L
2α(α+2)

((2−d)α+4)(α+1) Lr′
= ‖v‖α+1

LpLr .

Since v scatters, then it belongs to LpLr, and so we can claim the validity of (5.6).

Consider now T fixed: we have to show that∥∥∥∥∫ t

0
[ei(t−s)∆ (|vn|αvn)− ei(t−s)(∆−V ) (|vn|αvn)]ds

∥∥∥∥
Lp(0,T )L

r

n→∞−→ 0.

As usual we observe that

wn(t, x) =
∫ t

0
ei(t−s)∆ (|vn|αvn) ds−

∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) ds

is the solution of the following linear Schrödinger equation i∂twn + ∆wn − V wn = −V
∫ t

0
ei(t−s)∆ (|vn|αvn) ds

wn(0) = 0

and likely for Lemma 5.1 we estimate∥∥∥∥∫ t

0
ei(t−s)∆ (|vn|αvn) ds−

∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) ds

∥∥∥∥
Lp(0,T )L

r

. ‖(τ−xnV )|v|αv‖L1
(0,T )H

1 .

By using the dominated convergence theorem we conclude the proof.
�

The previous results imply the following useful corollaries.

Corollary 5.3. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1
n→∞−→ −∞, and let

v ∈ C(R;H1) be the unique solution to (1.12) with initial datum v0 ∈ H1. Then

vn(t, x) = eit(∆−V )v0,n − i
∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) ds+ en(t, x)

where v0,n(x) := τxnv0(x), vn(t, x) := v(t, x− xn) and ‖en‖LpLr
n→∞−→ 0.

Proof. It is a consequence of (5.1) and (5.4). �

Corollary 5.4. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1
n→∞−→ +∞, and let

v ∈ C(R;H1) be the unique solution to (1.13) with initial datum v0 ∈ H1. Then

vn(t, x) = eit(∆−V )v0,n − i
∫ t

0
ei(t−s)(∆−V ) (|vn|αvn) ds+ en(t, x)

where v0,n(x) := τxnv0(x), vn(t, x) := v(t, x− xn) and ‖en‖LpLr
n→∞−→ 0.

Proof. It is a consequence of (5.2) and (5.5). �
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Lemma 5.5. Let v(t, x) ∈ C(R;H1) be a solution to (1.12) (resp. (1.13)) and let
ψ± ∈ H1 (resp. ϕ± ∈ H1) be such that

‖v(t, x)− eit∆ψ±‖H1
t→±∞−→ 0(

resp. ‖v(t, x)− eit(∆−1)ϕ±‖H1
t→±∞−→ 0

)
.

Let {xn}n∈N ⊂ Rd, {tn}n∈N ⊂ R be two sequences such that xn,1
n→∞−→ −∞ (resp.

xn,1
n→∞−→ +∞) and |tn|

n→∞−→ ∞. Let us define moreover vn(t, x) := v(t− tn, x−xn)
and ψ±n (x) := τxnψ±(x) (resp. ϕ±n (x) = τxnϕ±(x)). Then, up to subsequence, we
get

tn → ±∞ =⇒ ‖ei(t−tn)∆ψ±n − ei(t−tn)(∆−V )ψ±n ‖LpLr
n→∞−→ 0 and∥∥∥∥∫ t

0
[ei(t−s)∆

(
|vn|αvn

)
ds− ei(t−s)(∆−V )(|vn|αvn)]ds∥∥∥∥

LpLr

n→∞−→ 0(5.7)

(
resp. tn → ±∞ =⇒ ‖ei(t−tn)(∆−1)ϕ±n − ei(t−tn)(∆−V )ϕ±n ‖LpLr

n→∞−→ 0 and∥∥∥∥∫ t

0
[ei(t−s)(∆−1)(|vn|αvn)ds− ei(t−s)(∆−V )(|vn|αvn)]ds∥∥∥∥

LpLr

n→∞−→ 0
)
.

Proof. It is a multidimensional suitable version of Proposition 3.6 in [BV]. Neverth-
less, since in [BV] the details of the proof are not given, we expose below the proof
of the most delicate estimate, namely the second estimate in (5.7). After a change
of variable in time, proving (5.7) is clearly equivalent to prove∥∥∥∥∫ t

−tn
ei(t−s)∆τxn(|v|αv)(s)ds−

∫ t

−tn
ei(t−s)(∆−V )τxn(|v|αv)(s)ds

∥∥∥∥
LpLr

n→∞−→ 0.

We can focus on the case tn →∞ and xn,1
n→∞−→ +∞, being the other cases similar.

The idea of the proof is to split the estimate above in three different regions, i.e.
(−∞,−T )×Rd, (−T, T )×Rd, (T,∞)×Rd for some fixed T which will be chosen in
an appropriate way below. The strategy is to use translation in the space variable
to gain smallness in the strip (−T, T ) × Rd while we use smallness of Strichartz
estimate in half spaces (−T, T )c × Rd. Actually in (T,∞) the situation is more
delicate and we will also use the dispersive relation.

Let us define g(t) = ‖v(t)‖α+1
L(α+1)r′ and for fixed ε > 0 let us consider T = T (ε) > 0

such that:

(5.8)



‖|v|αv‖
Lq
′

(−∞,−T )L
r′ < ε

‖|v|αv‖
Lq
′

(T,+∞)L
r′ < ε

‖|v|αv‖L1
(−∞,−T )H

1 < ε∥∥∥|t|−d( 1
2−

1
r ) ∗ g(t)

∥∥∥
Lp(T,+∞)

< ε

.

The existence of such a T is guaranteed by the integrability properties of v and its
decay at infinity (in time). We can assume without loss of generality that |tn| > T.
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We split the term to be estimated as follows:∫ t

−tn
ei(t−s)∆τxn(|v|αv)(s)ds−

∫ t

−tn
ei(t−s)(∆−V )τxn(|v|αv)(s)ds

= eit∆
∫ −T
−tn

e−is∆τxn(|v|αv)(s)ds− eit(∆−V )
∫ −T
−tn

e−is(∆−V )τxn(|v|αv)(s)ds

+
∫ t

−T
ei(t−s)∆τxn(|v|αv)(s)ds−

∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv)(s)ds.

By Strichartz estimate (2.5) and the third one of (5.8), we have, uniformly in n,∥∥∥∥eit∆ ∫ −T
−tn

e−is∆τxn(|v|αv)(s)ds
∥∥∥∥
LpLr

. ε,∥∥∥∥eit(∆−V )
∫ −T
−tn

e−is(∆−V )τxn(|v|αv)(s)ds
∥∥∥∥
LpLr

. ε.

Thus, it remains to prove∥∥∥∥ ∫ t

−T
ei(t−s)∆τxn(|v|αv)(s)ds−

∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv)(s)ds

∥∥∥∥
LpLr

n→∞−→ 0.

and we split it by estimating it in the regions mentioned above. By using (2.6) and
the first one of (5.8) we get uniformly in n the following estimates:∥∥∥∥∫ t

−T
ei(t−s)∆τxn(|v|αv)(s)ds

∥∥∥∥
Lp(−∞,−T )L

r

. ‖|v|αv‖
Lq
′

(−∞,−T )L
r′ . ε,∥∥∥∥∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv)(s)ds

∥∥∥∥
Lp(−∞,−T )L

r

. ‖|v|αv‖
Lq
′

(−∞,−T )L
r′ . ε.

The difference wn =
∫ t
−T e

i(t−s)∆τxn(|v|αv)(s)ds−
∫ t
−T e

i(t−s)(∆−V )τxn(|v|αv)(s)ds
satisfies the following Cauchy problem i∂twn + (∆− V )wn = −V

∫ t

−T
ei(t−s)∆τxn(|v|αv)(s) ds

wn(−T ) = 0
,

then wn satisfies the integral equation

wn(t) =
∫ t

−T
ei(t−s)(∆−V )

(
− V

∫ s

−T
ei(s−σ)∆τxn(|v|αv)(σ) dσ

)
ds

which we estimate in the region (−T, T )× Rd. By Sobolev embedding H1 ↪→ Lr,
Hölder and Minkowski inequalities we have therefore∥∥∥∥∫ t

−T
ei(t−s)(∆−V )

(
− V

∫ s

−T
ei(s−σ)∆τxn(|v|αv)(σ) dσ

)
ds

∥∥∥∥
Lp(−T,T )L

r

.

. T 1/p
∫ T

−T

∥∥∥∥(τ−xnV )
∫ s

−T
ei(s−σ)∆|v|αv(σ) dσ

∥∥∥∥
H1

ds . ε
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by means of Lebesgue’s theorem.
It remains to estimate in the region (T,∞)× Rd the terms∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv) ds and

∫ t

−T
ei(t−s)∆τxn(|v|αv) ds.

We consider only one term being the same for the other. Let us split the estimate
as follows: ∥∥∥∥∫ t

−T
ei(t−s)(∆−V )τxn(|v|αv) ds

∥∥∥∥
Lp(T,∞)L

r

≤

≤
∥∥∥∥ ∫ T

−T
ei(t−s)(∆−V )τxn(|v|αv) ds

∥∥∥∥
Lp(T,∞)L

r

+
∥∥∥∥∫ t

T

ei(t−s)(∆−V )τxn(|v|αv) ds
∥∥∥∥
Lp(T,∞)L

r

.

The second term is controlled by Strichartz estimates, and it is . ε since we are
integrating in the region where ‖|v|αv‖Lq′ ((T,∞);Lr′ ) < ε (by using the second of
(5.8)), while the first term is estimated by using the dispersive relation. More
precisely ∥∥∥∥∫ T

−T
ei(t−s)(∆−V )τxn(|v|αv) ds

∥∥∥∥
Lp(T,∞)L

r

.

.

∥∥∥∥∫ T

−T
|t− s|−d(

1
2−

1
r )‖v‖α+1

L(α+1)r′ds

∥∥∥∥
Lp(T,∞)

.

∥∥∥∥∫
R
|t− s|−d(

1
2−

1
r )‖v‖α+1

L(α+1)r′ds

∥∥∥∥
Lp(T,∞)

. ε

where in the last step we used Hardy-Sobolev-Littlewood inequality and the fourth
of (5.8).

�

As consequences of the previous lemma we obtain the following corollaries.

Corollary 5.6. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1
n→∞−→ −∞ and let

v ∈ C(R;H1) be a solution to (1.12) with initial datum ψ ∈ H1. Then for a sequence
{tn}n∈N such that |tn|

n→∞−→ ∞

vn(t, x) = eit(∆−V )ψn − i
∫ t

0
ei(t−s)(∆−V )(|vn|αvn)ds+ en(t, x)

where ψn := e−itn(∆−V )τxnψ, vn := v(t− tn, x− xn) and ‖en‖LpLr
n→∞−→ 0.

Corollary 5.7. Let {xn}n∈N ⊂ Rd be a sequence such that xn,1
n→∞−→ +∞ and let

v ∈ C(R;H1) be a solution to (1.13) with initial datum ψ ∈ H1. Then for a sequence
{tn}n∈N such that |tn|

n→∞−→ ∞

vn(t, x) = eit(∆−V )ψn − i
∫ t

0
ei(t−s)(∆−V )(|vn|αvn)ds+ en(t, x)

where ψn := e−itn(∆−V )τxnψ, vn := v(t− tn, x− xn) and ‖en‖LpLr
n→∞−→ 0.

We shall also need the following results, for whose proof we refer to [BV].
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Proposition 5.8. Let ψ ∈ H1. There exists Û± ∈ C(R±;H1) ∩ LpR±L
r solution to

(1.8) such that
‖Û±(t, ·)− e−it(∆−V )ψ‖H1

t→±∞−→ 0.
Moreover, if tn → ∓∞, then

Û±,n = eit(∆−V )ψn − i
∫ t

0
ei(t−s)(∆−V )(|Û±,n|αÛ±,n)ds+ h±,n(t, x)

where ψn := e−itn(∆−V )ψ, Û±,n(t, ·) =: Û±(t− tn, ·) and ‖h±,n(t, x)‖LpLr
n→∞−→ 0.

6. Existence and extinction of the critical element

In view of the results stated in Section 3, we define the following quantity
belonging to (0,∞]:

Ec = sup
{
E > 0 such that if ϕ ∈ H1 with E(ϕ) < E

then the solution of (1.8) with initial data ϕ is in LpLr
}
.

Our aim is to show that Ec =∞ and hence we get the large data scattering.

6.1. Existence of the Minimal Element.

Proposition 6.1. Suppose Ec <∞. Then there exists ϕc ∈ H1, ϕc 6≡ 0, such that
the corresponding global solution uc(t, x) to (1.8) does not scatter. Moreover, there
exists x̄(t) ∈ Rd−1 such that {uc(t, x1, x̄− x̄(t))}t∈R+ is a relatively compact subset
in H1.

Proof. If Ec <∞, there exists a sequence ϕn of elements of H1 such that

E(ϕn) n→∞−→ Ec,

and by denoting with un ∈ C(R;H1) the corresponding solution to (1.1) with initial
datum ϕn then

un /∈ LpLr.
We apply the profile decomposition to ϕn :

(6.1) ϕn =
J∑
j=1

e−it
j
n(−∆+V )τxjnψ

j +RJn.

Claim 6.2. There exists only one non-trivial profile, that is J = 1.

Assume J > 1. For j ∈ {1, . . . , J} to each profile ψj we associate a nonlinear
profile U jn. We can have one of the following situations, where we have reordered
without loss of generality the cases in these way:

(1) (tjn, xjn) = (0, 0) ∈ R× Rd,
(2) tjn = 0 and xjn,1

n→∞−→ −∞,
(3) tjn = 0, and xjn,1

n→∞−→ +∞,
(4) tjn = 0, xjn,1 = 0 and |x̄jn|

n→∞−→ ∞,
(5) xjn = ~0 and tjn

n→∞−→ −∞,
(6) xjn = ~0 and tjn

n→∞−→ +∞,
(7) xjn,1

n→∞−→ −∞ and tjn
n→∞−→ −∞,
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(8) xjn,1
n→∞−→ −∞ and tjn

n→∞−→ +∞,
(9) xjn,1

n→∞−→ +∞ and tjn
n→∞−→ −∞,

(10) xjn,1
n→∞−→ +∞ and tjn

n→∞−→ +∞,
(11) xjn,1 = 0, tjn

n→∞−→ −∞ and |x̄jn|
n→∞−→ ∞,

(12) xjn,1 = 0, tjn
n→∞−→ +∞ and |x̄jn|

n→∞−→ ∞.

Notice that despite to [BV] we have twelve cases to consider and not six (this is
because we have to consider a different behavior of V (x) as |x| → ∞). Since the
argument to deal with the cases above is similar to the ones considered in [BV] we
skip the details. The main point is that for instance in dealing with the cases (2) and
(3) above we have to use respectively Corollary 5.3 and Corollary 5.4. When instead
|x̄jn|

n→∞−→ ∞ and xj1,n = 0 we use the fact that this sequences can be assumed,
according with the profile decomposition Theorem 4.1 to have components which
are integer multiples of the periods, so the translations and the nonlinear equation
commute and if |tn|

n→∞−→ ∞ we use moreover Proposition 5.8. We skip the details.
Once it is proved that J = 1 and

ϕn = eitn(∆−V )ψ +Rn

with ψ ∈ H1 and lim sup
n→∞

‖eit(∆−V )Rn‖LpLr = 0, then the existence of the critical

element follows now by [FXC], ensuring that up to subsequence ϕn converges to
ψ in H1 and so ϕc = ψ. We define by uc the solution to (1.8) with Cauchy datum
ϕc, and we call it critical element. This is the minimal (with respect to the energy)
non-scattering solution to (1.8). We can assume therefore with no loss of generality
that ‖uc‖Lp((0,+∞);Lr) =∞. The precompactenss of the trajectory up to translation
by a path x̄(t) follows again by [FXC].

�

6.2. Extinction of the Minimal Element. Next we show that the unique solu-
tion that satisfies the compactness properties of the minimal element uc(t, x) (see
Proposition 6.1) is the trivial solution. Hence we get a contradiction and we deduce
that necessarily Ec =∞.

The tool that we shall use is the following Nakanishi-Morawetz type estimate.

Lemma 6.3. Let u(t, x) be the solution to (1.8), where V (x) satisfies x1 ·∂x1V (x) ≤
0 for any x ∈ Rd, then

(6.2)
∫
R

∫
Rd−1

∫
R

t2|u|α+2

(t2 + x2
1)3/2 dx1 dx̄ dt <∞.

Proof. The proof follows the ideas of [N]; we shall recall it shortly, with the obvious
modifications of our context. Let us introduce

m(u) = a∂x1u+ gu

with

a = −2x1

λ
, g = − t

2

λ3 −
it

λ
, λ = (t2 + x2

1)1/2
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and by using the equation solved by u(t, x) we get

(6.3)

0 = <{(i∂tu+ ∆u− V u− |u|αu)m̄)}

= 1
2∂t
(
− 2x1

λ
={ū∂x1u} −

t|u|2

λ

)
+ ∂x1<{∂x1um̄− alV (u)− ∂x1g

|u|2

2 }

+ t2G(u)
λ3 + |u|

2

2 <{∂
2
x1
g}

+ |2it∂x1u+ x1u|2

2λ3 − x1∂x1V
|u|2

λ
+ divx̄<{m̄∇x̄u}.

with G(u) = α
α+2 |u|

α+2, lV (u) = 1
2

(
−<{iū∂tu}+ |∂x1u|2 + 2|u|α+2

α+2 + V |u|2
)
and

divx̄ is the divergence operator w.r.t. the (x2, . . . , xd) variables. Making use of
the repulsivity assumption in the x1 direction, we get (6.2) by integrating (6.3) on
{1 < |t| < T} × Rd, obtaining∫ T

1

∫
Rd−1

∫
R

t2|u|α+2

(t2 + x2
1)3/2 dx1 dx̄ dt ≤ C,

where C = C(M,E) depends on mass and energy and then letting T →∞. �

Lemma 6.4. Let u(t, x) be a nontrivial solution to (1.8) such that for a suitable
choice x̄(t) ∈ Rd−1 we have that {u(t, x1, x̄ − x̄(t))} ⊂ H1 is a precompact set. If
ū ∈ H1 is one of its limit points, then ū 6= 0.

Proof. This property simply follows from the conservation of the energy. �

Lemma 6.5. If u(t, x) is an in Lemma 6.4 then for any ε > 0 there exists R > 0
such that

(6.4) sup
t∈R

∫
Rd−1

∫
|x1|>R

(|u|2 + |∇xu|2 + |u|α+2) dx̄ dx1 < ε.

Proof. This is a well-known property implied by the precompactness of the sequence.
�

Lemma 6.6. If u(t, x) is an in Lemma 6.4 then there exist R0 > 0 and ε0 > 0 such
that

(6.5)
∫
Rd−1

∫
|x1|<R0

|u(t, x1, x̄− x̄(t))|α+2 dx̄ dx1 > ε0 ∀ t ∈ R+.

Proof. It is sufficient to prove that inft∈R+ ‖u(t, x1, x̄ − x̄(t))‖Lα+2 > 0, then the
result follows by combining this fact with Lemma 6.5. If by the absurd it is not
true then there exists a sequence {tn}n∈N ⊂ R+ such that u(tn, x1, x̄− x̄(tn)) n→∞−→
0 in Lα+2. On the other hand by the compactness assumption, it implies that
u(tn, x1, x̄− x̄(tn)) n→∞−→ 0 in H1, and it is in contradiction with Lemma 6.4.

�
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We now conclude the proof of scattering for large data, by showing the extinction
of the minimal element. Let R0 > 0 and ε0 > 0 be given by Lemma 6.6, then∫

R

∫
Rd−1

∫
R

|u|α+2t2

(t2 + x2
1)3/2 dx1 dx̄ dt ≥

∫
R

∫
Rd−1

∫
|x1|<R0

t2|u(t, x1, x̄− x̄(t))|α+2

(t2 + x2
1)3/2 dx1 dx̄ dt

≥ ε
∫ T

1

t2

(t2 +R2
0)3/2 dt→∞ if T →∞.

Hence we contradict (6.2) and we get that the critical element cannot exist.

7. Double scattering channels in 1D

This last section is devoted to prove Theorem 1.8. Following [DS] (see Example
1, page 283) we have the following property:

(7.1)
∀ψ ∈ L2 ∃ η±, γ± ∈ L2 such that

‖eit(∂
2
x−V )ψ − eit∂

2
xη± − eit(∂

2
x−1)γ±‖L2

t→±∞−→ 0.

Our aim is now to show that (7.1) actually holds in H1 provided that ψ ∈ H1.
We shall prove this property for t→ +∞ (the case t→ −∞ is similar).

7.1. Convergence (7.1) occurs in H1 provided that ψ ∈ H2. In order to do
that it is sufficient to show that

(7.2) ψ ∈ H2 =⇒ η+, γ+ ∈ H2.

Once it is proved then we conclude the proof of this first step by using the following
interpolation inequality

‖f‖H1 ≤ ‖f‖1/2L2 ‖f‖1/2H2

in conjunction with (7.1) and with the bound

sup
t∈R
‖eit(∂

2
x−V )ψ − eit∂

2
xη+ − eit(∂

2
x−1)γ+‖H2 <∞

(in fact this last property follows by the fact that D(∂2
x − V (x)) = H2 is preserved

along the linear flow and by (7.2)). Thus we show (7.2). Notice that by (7.1) we get

‖e−it∂
2
xeit(∂

2
x−V )ψ − η+ − e−itγ+‖L2

t→∞−→ 0,

and by choosing as subsequence tn = 2πn we get

‖e−itn∂
2
xeitn(∂2

x−V )ψ − η+ − γ+‖L2
n→∞−→ 0.

By combining this fact with the bound supn ‖e−itn∂
2
xeitn(∂2

x−V )ψ‖H2 < ∞ we get
η+ + γ+ ∈ H2. Arguing as above but by choosing tn = (2n + 1)π we also get
η+ − γ+ ∈ H2 and hence necessarily η+, γ+ ∈ H2.

7.2. The map H2 3 ψ 7→ (η+, γ+) ∈ H2×H2 satisfies ‖γ+‖H1 +‖η+‖H1 . ‖ψ‖H1 .
Once this step is proved then we conclude by a straightforward density argument.
By a linear version of the conservation laws (1.5), (1.6) we get

(7.3) ‖eit(∂
2
x−V )ψ‖H1

V
= ‖ψ‖H1

V

where
‖w‖2H1

V
=
∫
|∂xw|2dx+

∫
V |w|2dx+

∫
|w|2dx.
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Notice that this norm is clearly equivalent to the usual norm of H1.
Next notice that by using the conservation of the mass we get

‖η+ + γ+‖2L2 = ‖η+ + e−2nπiγ+‖2L2 = ‖ei2πn∂
2
xη+ + ei2πn(∂2

x−1)γ+‖2L2

and by using (7.1) we get

‖η+ + γ+‖2L2 = lim
t→∞

‖eit(∂
2
x−V )ψ‖2L2 = ‖ψ‖2L2

Moreover we have
‖∂x(η+ + γ+)‖2L2 = ‖∂x(η+ + e−2nπiγ+)‖2L2 = ‖∂x(ei2πn∂

2
x(η+ + e−i2πnγ+))‖2L2

= ‖∂x(ei2πn∂
2
xη+ + ei2πn(∂2

x−1)γ+)‖2L2

and by using the previous step and (7.3) we get

‖∂x(η+ + γ+)‖2L2 = lim
t→+∞

‖∂x(eit(∂
2
x−V )ψ)‖2L2

≤ lim
t→∞

‖eit(∂
2
x−V )ψ‖2H1

V
= ‖ψ‖2H1

V
. ‖ψ‖2H1 .

Summarizing we get
‖η+ + γ+‖H1 . ‖ψ‖H1 .

By a similar argument and by replacing the sequence tn = 2πn by tn = (2n+ 1)π
we get

‖η+ − γ+‖H1 . ‖ψ‖H1 .

The conclusion follows.
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