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Abstract The aim of this work is to give a complete picture concerning the asymp-
totic behaviour of the solutions to fractional Ginzburg-Landau equation. In previous
works, we have shown global well-posedness for the past interval in the case where
spatial dimension is less than or equal to 3. Moreover, we have also shown blow-up
of solutions for the future interval in one dimensional case. In this work, we sum-
marise the asymptotic behaviour in the case where spatial dimension is less than or
equal to 3 by proving blow-up of solutions for a future time interval in multidimen-
sional case. The result is obtained via ODE argument by exploiting a new weighted
commutator estimate.

1 Introduction

In this paper, we consider the following complex Ginzburg – Landau (CGL) equa-
tion in a future time interval
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i∂tu+Du = i|u|p−1u, t ∈ [0,T ), T > 0, x ∈ Rn,

u(0,x) = u0(x), x ∈ Rn,
(1)

where u is a complex valued unknown function, p> 1, and D=(−∆)1/2. The choice
of D is closely connected with the recent attempts to develop fractional quantum
mechanical approach (see [23] ).

We shall observe some new interesting phenomena. On one hand, if we take a
future time interval as in (1), then we shall obtain a blow-up result. If, instead, we
take past time interval (−T,0], T > 0 in the place of the future time interval, then
global small data existence for (1) can be proved and therefore we have a similarity
to a diffusion type process.

Before giving the main results on the local and global well-posedness for (1), we
introduce some notations. For a Banach space X and 1 ≤ p ≤ ∞ let Lp(Rn;X) be a
X-valued Lebesgue space of p-th power. We abbreviate Lp(Rn;C) as Lp(Rn). For
f ,g ∈ L2(Rn), we define the inner product as

〈 f ,g〉L2(Rn) =
∫
Rn

f (x)g(x)dx.

For s ∈ R, let Hs(Rn) be the usual inhomogeneous Sobolev space defined as
Hs(Rn) = (1−∆)−s/2L2(Rn). Let Ḣs(Rn) be the usual homogeneous Sobolev space
defined as Ḣs(Rn) = (−∆)−s/2L2(Rn). Hs

rad(R
n) is the restriction to radial func-

tions of Hs(Rn). Lip refers to space of Lipschitz functions on euclidean space. For
f ,g : A⊆ Rn→ [0,∞), f . g means that there exists C > 0 such that for any a ∈ A
f (a)≤Cg(a). Given two Banach spaces X ,Y , Y ↪→ X means that Y ⊂ X with con-
tinuous embedding. Moreover, we say that a Cauchy problem is locally well-posed
forward in time in X , if for any X-valued initial data, there exists T > 0 and a Banach
space Y ↪→C([0,T ];X) such that there exists a unique solution to the Cauchy prob-
lem in Y and ‖un−u‖Y → 0 as ‖u0,n−u0‖X → 0, where un and u are solutions for
the Cauchy problem for initial data u0 and u0,n, respectively (the last property goes
under the name of continuous dependence on the initial data). We also say that a
Cauchy problem is globally well-posed forward in time in X if the Cauchy problem
is locally well-posed for any T > 0. Moreover, we also say that a Cauchy problem is
globally well-posed in X with sufficiently small data, if we have the property above
for sufficiently small data with respect to the X-norm.

Let us notice that equation (1) is invariant under the scale transformation

uλ (t,x) = λ
1/(p−1)u(λ t,λx)

with λ > 0. Then

‖u0,λ‖Ḣs(Rn) = λ
1/(p−1)+s−n/2‖u0‖Ḣs(Rn)

and with
s = sn,p := n/2−1/(p−1)< n/2,
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Ḣs norm of initial data is also invariant, for this sn,p is called scale critical exponent.
We also call pn,s = 1+ 2/(n− 2s) the Hs(Rn) scaling critical power. For any s, in
the scaling subcritical case where p < pn,s or s > sn,p, (1) is expected to have local
solution for any Hs(Rn) initial data on the analogy of scaling invariant Schrödinger
equation. For instance, we refer the reader to [4, 6, 5, 16, 17]. However, with power
type nonlinearity without gauge invariance, semirelativistic equations could be not
locally well-posed even in scaling subcritical case, see [10].

Here we recall local well-posedness results. It is worth mentioning that Borgna
and Rial [2] showed that in one dimensional case, CGL equation with cubic nonlin-
earity is locally well-posed in Hs(R) with s > 1/2. They constructed local solutions
by a contraction argument based on the unitarity of the propagator and the Sobolev
embedding Hs(R) ↪→ L∞(R). Similarly, local solutions may be constructed in the
case where uniform control of solutions holds, namely, in Hs(Rn) with s > n/2. On
the other hand, for fixed p, sn,p < n/2; therefore, the local well-posedness of (1) is
expected in wider Sobolev spaces. Indeed, we have the following results that can be
established using the approach in [12]:

Proposition 1 ([12]). Let n = 2. For p > 1 and 3/4 < s < p < p2,s, the Cauchy
problem (1) is locally well-posed in Hs(R2).

Proposition 2 ([12]). Let n ≥ 3 and u0 be radial. For 1 < p < pn,1 = 1+ 2
n−2 , the

Cauchy problem (1) is locally well-posed in H1
rad(Rn).

Proposition 3 ([12]). Let n = 3 and u0 be radial. For p = p3,1 = 3, the Cauchy
problem (1) is locally well-posed in H1

rad(R3) with sufficiently small H1
rad(R3) data.

Remark 1. In Proposition 3, since the local existence result is based on a priori esti-
mate of type

‖u‖X1
rad(0,T )

≤C0 +C1‖u‖4
X1

rad(0,T )

with C1 which is independent of T , we restrict well-posedness to the small initial
data.

We recall that in three dimensional case, p= p3,1 = 3 is a critical value in view of
the result in [18]. However, the result in [18] treats non-gauge invariant nonlineari-
ties having constant sign, for which the test function method works. The question of
the existence of local and global solutions for n ≥ 3 and p ≥ 1+ 2/(n− 2) seems,
at the best of our knowledge, still open.

Proposition 1 may be justified by a Strichartz estimate introduced by Nakamura
and Ozawa in [26] or Ginibre and Velo [14]. We remark that they introduced the esti-
mate to study Klein-Gordon equation and it was sufficient to consider Klein-Gordon
equation in scaling subcritical case (see Lemma 1 below). On the other hand, for (1),
local solutions cannot be constructed based on their Strichartz estimates in general
subcritical case. Therefore, in order to consider the well-posedness in H1(Rn) for
n≥ 3, we put radial assumption and apply another Strichartz estimate introduced in
[1] by the third author, Bellazzini and Visciglia. For details, see Section 2.
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Next, we review the known blow-up result. In [11], the authors studied the blow-
up of solutions to (1) in one dimensional case, by an ordinary differential equation
(ODE) argument. In order to review their argument, we define a function space
hL2(Rn) by

hL2(Rn) = { f : mesurable and ‖1
h

f‖L2(Rn) < ∞},

where h is a mesurable function. In their argument, an ordinary differential inequal-
ity (ODI) for the hL2(R) norm of solutions with some h are shown. In particular, we
have the following:

Proposition 4. Let h be a Lipschitz function satisfying 1/h ∈ L∞(R)∩L2(R) and∥∥∥∥ 1
h(·)

∫
R
〈·− y〉−2h(y) f (y)dy

∥∥∥∥
L2(R)

≤C‖ f‖L2(R). (2)

Let u0 ∈ L2(R) satisfy

‖1
h

u0‖L2(R) ≥C
1

p−1
1 ‖1

h
‖L2(R), (3)

where C1 = ‖1/h · [D,h]‖L2(R)→L2(R). If there is a solution u ∈C([0,T );hL2(R)) to
(1), then

‖1
h

u(t)‖L2(R) ≥ e−C1t/2
(
‖1

h
u0‖−p+1

L2(R) +C−1
1 ‖

1
h
‖−p+1

L2(R)

{
e−C1(p−1)t/2−1

})− 1
p−1

.

(4)

Therefore, the lifespan is estimated by

T ≤− 2
p−1

C−1
1 log

(
1−C1‖

1
h
‖p−1

L2(R)‖
1
h

u0‖−p+1
L2(R)

)
.

Moreover, by scaling argument, the following statement is shown.

Corollary 1 ([11, Corollary 1]). If p < 3, then any solutions to (1) with non trivial
L2(R) initial data cannot stay in L2(R) globally.

Remark 2. In the Corollary above, p < 3 stands for the condition in one dimensional
case of the Fujita exponent generally defined in Rn by pF := 1 + 2/n (see also
Corollary 2). Then the assumption of Corollary 1 is rewritten by p < pF . Under this
assumption, by scaling h, (3) holds for any non trivial L2(R) initial data u0.

Remark 3. Condition (2) was required to guarantee the commutator estimate:

‖[D,h] f‖L2(R) ≤C‖ f‖L2(R), ∀ f ∈ L2(R). (5)

We remark that Lenzmann and Schikorra [24, Theorem 6.1] showed that (5) holds
for any Lipschitz function h, therefore, the assumption (2) can be omitted.
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The commutator estimate (5) implies blow-up for solutions to (1) in the follow-
ing manner. Let v(t,x) = u(t,x)/h(x), where u is a solution to (1). Then, a straight
computation shows that v satisfies

i∂tv+Dv+
1
h
[D,h]v = i

1
h

∂tu+
1
h

Du

= i
1
h
|u|p−1u

= i|h|p−1|v|p−1v. (6)

Therefore,

d
dt
‖v(t)‖2

L2(R) = 2Re〈v(t),∂tv(t)〉L2(R)

=−2Im〈v(t), i∂tv(t)〉L2(R)

=−2Im〈v(t),−Dv(t)− 1
h
[D,h]v(t)+ i|h|p−1|v(t)|p−1v(t)〉L2(R)

= 2‖|h|(p−1)/(p+1)v(t)‖p+1
Lp+1(R)+2Im〈v(t), 1

h
[D,h]v(t)〉L2(R). (7)

By the Hölder inequality,

‖v(t)‖L2(R) ≤ ‖
1
h
‖(p−1)/(p+1)

L2(R) ‖|h|(p−1)/(p+1)v(t)‖Lp+1(R),

which together with (7) implies

d
dt
‖v(t)‖2

L2(R) ≥ ‖
1
h
‖−p+1

L2(R)‖v(t)‖
p+1
L2(R)−‖

1
h
[D,h]‖L2(R)→L2(R)‖v(t)‖

2
L2(R). (8)

Estimate (8) and Lemma 7 in Section 3 imply that if (3) holds and

‖1
h
· [D,h]‖L2(R)→L2(R) < ∞, (9)

then ‖v(t)‖L2(R) = ‖u(t)/h‖L2(R) blows-up at a finite time. Therefore, if there exists
1/h ∈ L2(R) satisfying (9), then the argument above works and blow-up of solu-
tions to (1) is shown. In [11], (9) was shown by the boundedness assumption of
1/h and (5). We remark that (5) holds in more general situation; for example, in
multidimensional case. We also remark that in [9] a generalization of (5) taking the
form

‖[(−A )1/2,h]‖L2(Rn)→L2(Rn) ≤C‖h‖Ḃ1
∞,1

is shown, where Ḃ1
∞,1 is the standard homogeneous Besov space and

A :=−∇ ·A∇+V.
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Here A is a smooth positive-definite n× n matrix and the real-valued potential V
satisfies some weak integrability conditions. On the other hand, h ∈ Lip is a natural
condition for (5). However, there exists some Lipschitz function h satisfying 1/h ∈
L2(Rn) only when n = 1. This means, we cannot consider blow-up phenomena in
multi dimensional case based on (5).

In this paper, we show (9) with polynomial weights which are not Lipschitz in
general. In particular, we show the following estimate:

Proposition 5. Let n ≥ 1 and n/2 < q < n/2+ 1. Then 〈·〉−q[D,〈·〉q] is bounded
operator on L2(Rn), where 〈·〉= (1+ |x|2)1/2.

Remark 4. Obviously, if n≥ 1 and n/2 < q < n/2+1, then 〈·〉−q ∈ L2(Rn). More-
over, only when n = 1, q can be 1.

Then, we have the following blow-up statement:

Proposition 6. Let n≥ 1 and n/2 < q < n/2+1. Let u0 ∈ 〈·〉qL2(Rn) satisfy

‖〈x〉−qu0‖L2(Rn) ≥C
1

p−1
2 ‖〈x〉−q‖L2(Rn), (10)

where
C2 = ‖〈·〉−q[D,〈·〉q]‖L2(Rn)→L2(Rn).

If there is a solution u ∈C([0,T );〈·〉qL2(Rn)) to (1), then

‖〈·〉−qu(t)‖L2(Rn) (11)

≥ e−C2t/2
(
‖〈·〉−qu0‖−p+1

L2(Rn)
+C−1

2 ‖〈·〉
−q‖−p+1

L2(Rn)

{
e−(p−1)C2t/2−1

})− 1
p−1

.

Therefore, the lifespan is estimated by

T ≤− 2
p−1

C−1
2 log

(
1−C2‖〈·〉−q‖p−1

L2(Rn)
‖〈·〉−qu0‖−p+1

L2(Rn)

)
. (12)

Corollary 2. Let n ≥ 1. If p < pF := 1+ 2/n, then any solutions to (1) with non
trivial L2(Rn) initial data cannot exist globally.

Remark 5. As Remark 2, under the condition, p < pF , by scaling h, (10) holds for
any non trivial L2(Rn) data.

In [11], so as to show (5), higher frequency part of D is handled by the Coifman-
Meyer estimate and lower frequency part is estimated by (2). We remark that (5)
is regarded as a Kato-Ponce inequality. For related subjects, we refer the reader to
[15, 19, 20, 25] and we remark that Fourier multiplier argument plays a critical role
in these references. On the other hand, it seems not easy to obtain (9) based on a
Fourier multiplier argument because of the weight function. Therefore, we show
Proposition 5 by using the following representation of the commutator:
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([D,〈·〉q] f )(x) =C ·P.V.
∫
Rn

(〈x〉q−〈x+ y〉q) f (x+ y)
|y|n+1 dy, (13)

where P.V. stands for Principal Value (for detail, we refer the reader to [8]). Combin-
ing (13) and the Calderón-Zygmund theory, we show (9) with non-Lipschitz weight
functions.

Our next step is to study the global existence result for negative times of the
following Cauchy problem:{

i∂tu+Du = i|u|p−1u, t ∈ (−T,0], T > 0, x ∈ Rn,

u(0,x) = u0(x), x ∈ Rn.
(14)

Making the change of variables t →−t, we reduce this problem to the future time
interval for the Cauchy problem{

i∂tu−Du =−i|u|p−1u, t ∈ [0,T ), T > 0, x ∈ Rn,

u(0,x) = u0(x), x ∈ Rn.
(15)

At least formally, (15) may be rewritten in the following integral equation:

u(t) =U(−t)u0−
∫ t

0
U(−t + t ′)|u(t ′)|p−1u(t ′)dt ′, (16)

where U(t) = eitD.
Then, Propositions 1, 2, and 3 are valid for (15). Moreover, for (16), we can

obtain the following a priori estimates that we include for completeness but detailed
proofs can be found in [12].

Proposition 7 ([12]). Let n ∈ N and p > 1. Let u0 ∈ L2(Rn) and T > 0. Let u ∈
L∞(0,T ;L2(Rn))∩Lp(0,T ;L2p(Rn)) be a solution to the integral equation (16) for
the initial data u0. Then, for any t1, t2 with 0 < t1 < t2 < T ,

‖u(t2)‖2
L2(Rn)+2‖u‖p+1

Lp+1(t1,t2;Lp+1(Rn))
= ‖u(t1)‖2

L2(Rn).

Proposition 8 ([12]). Let n ∈ N and p > 1. Let u0 ∈ H1(Rn) and T > 0. Let u ∈
L∞(0,T ;H1(Rn))∩Lp−1(0,T ;L∞(Rn)) be a solution to the integral equation (16)
for the initial data u0. Then, for any t1, t2 with 0≤ t1 < t2 ≤ T ,

‖∇u(t2)‖2
L2(Rn)+2‖|u|

p−1
2 ∇u‖2

L2(t1,t2;L2(Rn))+
p−1

2
‖|u|

p−3
2 ∇|u|2‖2

L2(t1,t2;L2(Rn))

= ‖∇u(t1)‖2
L2(Rn). (17)

Proposition 9 ([12]). Let n = 1,2, p > 1, n/2 < s < min{2, p}, and T > 0. Let
u0 ∈ Hs(Rn) and u ∈ L∞(0,T ;Hs(Rn))∩L2(0,T ;L∞(Rn)) be a solution to (16) for
the initial data u0. Then for any t1, t2 with 0 < t1 < t2 < T ,
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‖u(t2)‖2
Ḣs(Rn) ≤ ‖u(t1)‖

2
Ḣs(Rn)+C

∫ t2

t1
‖u(t)‖p−1

L∞(Rn)
‖u(t)‖2

Ḣs(Rn)dt.

Proposition 10 ([12]). Let 1≤ n≤ 3, u0 ∈H2(Rn) and T > 0. Let u∈C((0,T );H2(Rn)∩
L∞(Rn)) be a solution to the integral equation (16) for the initial data u0. Then, for
any t1, t2 with 0 < t1 < t2 < T ,

‖u(t2)‖2
Ḣ2(Rn)+2

n

∑
j,k=1

∫ t2

t1
‖u(t)∂ j∂ku(t)‖2

L2(Rn)dt

≤ ‖u(t1)‖2
Ḣ2(Rn)+2n2(n+1)

∫ t2

t1
‖u(t)‖4−n

Ḣ1(Rn)
‖u(t)‖n

Ḣ2(Rn)
dt. (18)

Therefore, for (14) we have the following:

Proposition 11. Under the conditions of Propositions 1, 2, and 3, (14) is globally
well-posed.

This paper is composed as follows. In Section 2, we show local well-posedness
of (1) by means of Strichartz estimates of [1, 14, 26]. In Section 3, blow-up for (1)
is shown with a weighted commutator estimate. In Section 4, a priori estimates for
(14) are shown by a direct approach leading to the global well-posedness results.

2 Local well-posedness of (1)

This section is devoted to the proof of the local well-posedness for the Cauchy
problem of (1), where u0(x) = u(0,x) is considered as initial datum. The proof is
essentially the same as [12] but for the reader’s convenience, we give a proof for
Propositions 1, 2, and 3. Here we consider the corresponding integral equation:

u(t) = Φ(u)(t) =U(t)u0 +
∫ t

0
U(t− t ′)|u(t ′)|p−1u(t ′)dt ′. (19)

where U(t) = eitD.

2.1 Two dimensional case

In two dimensional case, the local well-posedness may be obtained by the following
Strichartz estimates:

Lemma 1 ([26, Lemma 2.1], [14, Remark 3.2]). Let (q1,r1) and (q2,r2) satisfy

1
r j

=
1
2
− 2

q j
, 2≤ r j ≤ ∞, 4≤ q j ≤ ∞
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for j = 1,2. Then for s ∈ R,

‖U(t)φ‖
Lq1 (0,T ;B

s− 3
q1

r1 (R2))

. ‖φ‖Hs(R2),∥∥∥∥∫ t

0
U(t− t ′)h(t ′)dt ′

∥∥∥∥
Lq1 (0,T ;B

s− 3
q1

r1 (R2))

. ‖h‖
Lq′2 (0,T ;B

s+ 3
q2

r′2
(R2))

,

where Bs
p(R2) = Bs

p,2(R2) is the usual inhomogeneous Besov space.

Lemma 2 ([12, Lemma 3.2]). Let r > 2, and T > 0. If

s >
3
4
+

1
2r

,

then B
s− 3

2 (
1
2−

1
r )

r (R2) ↪→ L∞(R2).

We can now proceed with the proof of Proposition 1.

Proof (Proof of Proposition 1). At first we fix 3/4 < s < p < p2,s. Let (q1,r1) sat-
isfy the conditions of Lemma 1, Lemma 2 and q1 > p− 1. We remark that such a
pair exists under the assumption s < p < p2,s. Let X s(0,T ) = L∞(0,T ;Hs(R2))∩
Lq1(0,T ;Bs−3/q1

r1 (R2)). Then, for a fixed T ,

‖Φ(u)‖Xs(0,T ) ≤ ‖u0‖Hs(R2)+C‖|u|p−1u‖L1(0,T ;Hs(R2))

≤ ‖u0‖Hs(R2)+CT 1−(p−1)/q1‖u‖p
Xs(0,T ), (20)

and

‖Φ(u)−Φ(v)‖Xs(0,T )

≤C‖|u|p−1u−|v|p−1v‖L1(0,T ;Hs(R2))

≤CT 1−(p−1)/q1(‖u‖Xs(0,T )+‖v‖Xs(0,T ))
p−1‖u− v‖Xs(0,T )

+CT 1−(p−1)/q1(‖u‖Xs(0,T )+‖v‖Xs(0,T ))
max(1,p−1)‖u− v‖min{1,p−1}

Xs(0,T ) .

This means that if T is sufficiently small, then Φ is a map from

BXs(0,T )(2‖u0‖Hs(R2)) :=
{

f ∈ X s(0,T ) | ‖ f‖Xs(0,T ) ≤ 2‖u0‖Hs(R2)

}
.

into itself. Moreover, if p≥ 2, Φ is a contraction map in X s(0,T ). If p < 2, Φ may
not be a contraction map on X s(0,T ) for any T > 0. On the other hand, it is not
difficult to see that

‖Φ(u)−Φ(v)‖L∞(0,T ;L2(R2))

. T 1−(p−1)/q1(‖u‖Xs(0,T )+‖v‖Xs(0,T ))
p−1‖u− v‖L∞(0,T ;L2(R2)). (21)
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Therefore (20) and (21) imply that if u1 ∈ BXs(0,T )(2‖u0‖Hs(R2)) and uk = Φ(uk−1)

for k ≥ 2, then there exists u∗ = limk→∞ uk in L∞(0,T ;L2(R2)). Since Φ(uk)→
Φ(u∗) in L∞(0,T ;L2(R2)) as k → ∞, u∗ is a solution of (19). Moreover, since
X s(0,T ) ↪→ L∞(0,T ;Hs(R2)), u∗ is also in L∞(0,T ;Hs(R2)), which and (20) im-
ply

u∗ ∈ Lq1(0,T ;B
s− 3

q1
r1 (R2)).

If s > 1, by the Gagliardo-Nirenberg inequality, for some 0 < θ < 1,

‖u− v‖L∞(0,T ;L∞(R2)) . ‖u− v‖θ

L∞(0,T ;L2(R2))
‖u− v‖1−θ

L∞(0,T ;Hs(R2))

and therefore the solution map depends continuously on the initial data in Hs(R2).
In the case where s ≤ 1, by (21), the solution map depends continuously on the
initial data in L2(R2). We define s3,s4 > 0 so that they satisfy the following:

max
{

3
4
+

1
2r1

,s4−
3
4
(p−1)

}
< s3 < s4 < min

{
s,s3 +

3
4

}
,

r3 =
3
2

(
s3− s4 +

3
4

)−1

,

and q3 = 3
s4−s3

, where (q3,r3) satisfy the condition of Lemma 1. Let u and v be
solutions of (1) for initial data u0 and v0, respectively. Then by Lemma 1,

‖u− v‖
Lq1 (0,T ;B

s3−
3

q1
r1 (R2))

≤ ‖u0− v0‖Hs3 (R2)+C‖|u|p−1u−|v|p−1v‖
Lq′3 (0,T ;B

s4
r′3
(R2))

. (22)

For z j ∈ C with j = 1,2,3,4, with w1 = z2− z1 and w2 = z4− z3,

|z4|p−1z4−|z3|p−1z3−|z2|p−1z2 + |z1|p−1z1

=
p+1

2

∫ 1

0
|z3 +θw2|p−1dθw2−

p+1
2

∫ 1

0
|z1 +θw1|p−1dθw1

+
p−1

2

∫ 1

0
|z3 +θw2|p−3(z3 +θw2)

2dθw2

− p−1
2

∫ 1

0
|z1 +θw1|p−3(z1 +θw1)

2dθw1.

Then a direct computation implies that
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∣∣

. (|z3|p−1 + |z4|p−1)|w2−w1|

+
p+1

p
|w1||z3− z1|p−1 +

1
p
|w1||z4− z2|p−1 +(|z3|p−1 + |z4|p−1)|w2−w1|

+ |w1||z3− z1|p−1 + |w1||z4− z2|p−1.

Therefore,∥∥|u(t, ·+h)|p−1u(t, ·+h)−|v(t, ·+h)|p−1v(t, ·+h)

−|u(t)|p−1u(t)+ |v(t)|p−1v(t)
∥∥

Lr′3 (R2)

=
∥∥|u(t, ·+h)|p−1u(t, ·+h)−|u(t)|p−1u(t)

− |v(t, ·+h)|p−1v(t, ·+h)+ |v(t)|p−1v(t)
∥∥

Lr′3 (R2)

≤ 4‖u(t)‖p−1

L
2r3(p−1)

r3−2 (R2)

‖u(t, ·+h)− v(t, ·+h)−u(t)+ v(t)‖L2(R2)

+
2(p+2)

p
‖v(t, ·+h)− v(t)‖L2(R2)‖u(t)− v(t)‖p−1

L
2r3(p−1)

r3−2 (R2)

,

and this means

‖|u|p−1u−|v|p−1v‖
Lq′3 (0,T ;B

s4
r′3
(R2))

. ‖‖u‖p−1

L
2r3(p−1)

r3−2 (R2)

‖u− v‖Hs4 (R2)+‖v‖Hs4 (R2)‖u− v‖p−1

L
2r3(p−1)

r3−2 (R2)

‖
Lq′3 (0,T )

≤ ‖‖u‖
p−1− r3−2

r3
L∞(R2)

‖u‖
r3−2

r3
L2(R2)

‖u− v‖Hs4 (R2)‖Lq′3 (0,T )

+‖‖v‖Hs4 (R2)‖u− v‖
p−1− r3−2

r3
L∞(R2)

‖u− v‖
r3−2

r3
L2(R2)

‖
Lq′3 (0,T )

≤ ‖u‖
p−1− r3−2

r3

L
q′3(p−1− r3−2

r3
)
(0,T ;L∞(R2))

‖u‖
r3−2

r3
L∞(0,T ;L2(R2))

‖u− v‖L∞(0,T ;Hs4 (R2))

+‖v‖L∞(0,T ;Hs4 (R2))‖u− v‖
p−1− r3−2

r3

L
q′3(p−1− r3−2

r3
)
(0,T ;L∞(R2))

‖u− v‖
r3−2

r3
L∞(0,T ;L2(R2))

≤ ‖u‖
p−1− r3−2

r3
Lq1 (0,T ;L∞(R2))

‖u‖
r3−2

r3
L∞(0,T ;L2(R2))

‖u− v‖L∞(0,T ;Hs4 (R2))

+‖v‖L∞(0,T ;Hs4 (R2))‖u− v‖
p−1− r3−2

r3
Lq1 (0,T ;L∞(R2))

‖u− v‖
r3−2

r3
L∞(0,T ;L2(R2))

,

where q1,q3 > 4 > q′3 > q′3
(

p−1− r3−2
r3

)
. This and (22) imply that u → v in

Lq1(0,T ;B
s3− 3

q1
r1 (R2)) as u0 → v0 in Hs(R2) because u→ v in (L∞(0,T ;L2(R2)))
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and u, v are uniformly bounded in (L∞(0,T ;Hs(R2))) as u0→ v0 in Hs(R2). More-
over,

‖u− v‖L∞(0,T ;Hs(R2))

. ‖u0− v0‖Hs(R2)+(‖u0‖Hs(R2)+‖v0‖Hs(R2))‖u− v‖p−1
Lp−1(0,T ;L∞(R2))

. ‖u0− v0‖Hs(R2)+(‖u0‖Hs(R2)+‖v0‖Hs(R2))‖u− v‖p−1

Lq1 (0,T ;B
s3−

3
q1

r1 (R2))

.

Therefore, the solution map is also continuously dependent in L∞(0,T ;Hs(R2)).

2.2 The case n≥ 3. Local H1 existence result

In the case where n ≥ 3, the Strichartz estimate Lemma 1 doesn’t seem sufficient
to obtain a uniform control of solutions in the H1(R3) setting. So here, we consider
radial data and use the following Strauss lemma.

Lemma 3 ([28, Theorems 1,2], [7, Proposition 1]). Let n ≥ 2 and let 1/2 < s <
n/2. Then for a radial function f

‖| · |
n
2−s f‖L∞(Rn) . ‖ f‖Ḣs

rad(Rn).

Since solutions are not uniformly controlled at the origin by the Strauss lemma
above, we apply the following weighted Strichartz estimate:

Lemma 4 ([1, Propositions 2.2 and 2.3]). Let n ∈N. Let δ > 0 and [x]δ = |x|1−δ +
|x|1+δ . The for any q1 ∈ [2,∞] and q2 ∈ (2,∞],

‖[x]−1/q1
δ

U(t) f‖Lq1 (R;L2(Rn)) . ‖ f‖L2(Rn),∥∥∥∥[x]−1/q1
δ

∫ t

0
U(t− t ′)F(t ′)dt ′

∥∥∥∥
Lq1 (0,T ;L2(Rn))

. ‖[x]1/q2
δ

F‖
Lq′2 (0,T ;L2(Rn))

.

We can now prove Proposition 2.

Proof (Proof of Proposition 2). By using the uniform H1(Rn) control obtained in
(17), we reduce the proof to the local well-posedness in H1(Rn). Let δ > 0, 1/2 <
s < 1, and 2 < q1,q2 < ∞ satisfy

−(p−1)
(n

2
− s
)
+

1−δ

q2
=−1−δ

q1
. (23)

We remark that there exist δ ,q1,q2,s if 1 < p < 1+2/(n−2) since,

(p−1)
(n

2
− s
)
< 1 =⇒ p < 1+

2
n−2s

< 1+
2

n−2
.
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We define the norm Y 1(T ) as

‖u‖Y 1(T ) = ‖u‖L∞(0,T ;H1
rad(Rn))

+
∥∥∥[x]−1/q1

δ
u
∥∥∥

Lq1 (0,T ;L2
rad(Rn))

+
∥∥∥[x]−1/q1

δ
∇u
∥∥∥

Lq1 (0,T ;L2
rad(Rn))

.

Let ψ ∈S (Rn; [0,1]) be radial and satisfy

ψ(x) =

{
1 if |x| ≤ 1,
0 if |x| ≥ 2.

(24)

Then by Lemmas 3 and 4 and (23),

‖Φ(u)‖Y 1(T )

. ‖u0‖H1
rad(Rn)+

∥∥∥∥∫ t

0
U(t− t ′)

(
ψ|u(t ′)|p−1u(t ′)

)
dt ′
∥∥∥∥

Y 1(T )

+

∥∥∥∥∫ t

0
U(t− t ′)

(
(1−ψ)|u(t ′)|p−1u(t ′)

)
dt ′
∥∥∥∥

Y 1(T )

. ‖u0‖H1
rad(Rn)

+‖|x|−(p−1)( n
2−s)+ 1−δ

q2 ||x|
n
2−su|p−1u‖

Lq′2 (0,T ;L2
rad(|x|≤2))

+‖|x|−(p−1)( n
2−s)+ 1−δ

q2 ||x|
n
2−su|p−1

∇u‖
Lq′2 (0,T ;L2

rad(|x|≤2))

+‖|u|p−1u‖L1(0,T ;L2
rad(|x|>1))+‖∇(|u|p−1u)‖L1(0,T ;L2

rad(|x|>1))

. ‖u0‖H1
rad(Rn)+T 1− 1

q1
− 1

q2 ‖u‖p
Y 1(T )

and therefore for some T and R, Φ is a map from BY 1(T )(R) into itself. Moreover,

‖Φ(u)−Φ(v)‖Y 1(T )

. ‖|x|−
1−δ
q1 (||x|

n
2−su|p−1−||x|

n
2−sv|p−1)(|∇u|+ |u|)‖

Lq′2 (0,T ;L2
rad(|x|≤2))

+‖|x|−
1−δ
q1 ||x|

n
2−sv|p−1(|∇(u− v)|+ |u− v|)‖

Lq′2 (0,T ;L2
rad(|x|≤2))

+‖(||x|
n
2−su|p−1−||x|

n
2−sv|p−1)|x|−

1+δ
q1 (|∇u|+ |u|)‖L1(0,T ;L2

rad(|x|>1))

+‖||x|
n
2−sv|p−1|x|−

1+δ
q1 (|∇(u− v)|+ |u− v|)‖L1(0,T ;L2

rad(|x|>1)). (25)

Then for p ≥ 2, Φ is a contraction map on BY 1(T )(R). Similarly, for 1 < p < 2, we
define the auxiliary norm Y 0(T ) as

‖u‖Y 0(T ) := ‖u‖L∞(0,T ;L2
rad(Rn))+‖[x]

−1/q1
δ

u‖Lq1 (0,T ;L2
rad(Rn)).
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Then for 1 < p < 2,

‖(Φ(u)−Φ(v))‖Y 0(T )

.

∥∥∥∥[x]−1/q1
δ

(∣∣∣|x| n2−sv
∣∣∣+ ∣∣∣|x| n2−sv

∣∣∣)p−1
|u− v|

∥∥∥∥
Lq′2 (0,T ;L2

rad(|x|≤2))

+

∥∥∥∥(∣∣∣|x| n2−sv
∣∣∣+ ∣∣∣|x| n2−sv

∣∣∣)p−1
|u− v|

∥∥∥∥
L1(0,T ;L2

rad(|x|>1))

. T 1− 1
q1
− 1

q2 (‖u‖Y 1(T )+‖v‖Y 1(T ))
p−1‖u− v‖Y 0(T ).

Therefore Φ is a contraction map on Y 0(T ) for some T and R, which implies that
(1) posses a unique solution in Y 1(T ). Moreover, by Lemma 3 and (25), with some
0 < θ < 1, for solutions u and v of (4) for initial data u0 and v0, respectively,

‖u− v‖Y 1(T )

. ‖u0− v0‖H1
rad(Rn)+T 1− 1

q1
− 1

q2 (‖u‖Y 1(T )+‖v‖Y 1(T ))
p−1‖u− v‖Y 1(T )

+T 1− 1
q1
− 1

q2 (‖u‖Y 1(T )+‖v‖Y 1(T ))
∥∥∥|x| n2−s(u− v)

∥∥∥p−1

L∞(0,T ;L∞
rad(Rn))

. ‖u0− v0‖H1
rad(Rn)+T 1− 1

q1
− 1

q2 (‖u‖Y 1(T )+‖v‖Y 1(T ))
p−1‖u− v‖Y 1(T )

+T (‖u‖Y 1(T )+‖v‖Y 1(T ))‖u− v‖p−1
Y 1(T )

and therefore ‖u− v‖Y 1(T )→ 0 as ‖u0− v0‖H1
rad(Rn)→ 0.

2.3 Three dimensional case, small H1 data solutions for p = 3

In the three dimensional scaling critical case, the weighted Strichartz estimate
Lemma 4 doesn’t seem sufficient to control solutions uniformly. So here, we trans-
form (1) into the corresponding wave equation.

The Cauchy problem (1) with initial data u(0) = u0 is rewritten as the following:

�u = i(−i∂t +D)|u|p−1u

= i
p+1

2
|u|p−1(Du− i|u|p−1u)

− i
p−1

2
|u|p−3u2(Du− i|u|p−1u)+ iD(|u|p−1u)

= i
(

D(|u|p−1u)+
p+1

2
|u|p−1Du− p−1

2
|u|p−3u2Du

)
+ p|u|2p−2u

=: Fp(u).
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Then the corresponding integral equation is the following:

u(t) = cos(tD)u0 +
sin(tD)

D
(iDu0 + |u0|p−1u0) (26)

+
∫ t

0

sin((t− t ′)D)

D
Fp(u)(t ′)dt ′.

For any radially symmetric function f , we define f̃ as f̃ (|x|) = f (x). Then for any
radial data, (26) is rewritten as

ũ(t) = ∂tJ[u0](t)+ J[iDu0 + |u0|p−1u0](t)+
∫ t

0
J[Fp(u)(t ′)](t− t ′)dt ′ (27)

where

J[ f ](t,r) =
1
2r

∫ r+t

|r−t|
λ f̃ (λ )dλ .

This transformation is justified as follows:

Lemma 5 ([12, Lemma 3.5]). Let 1< p≤ 3 and u0 ∈H1
rad(R3) and u∈C(0,T ;H1

rad(R3))
be the solution of (16). Then u is also the solution of (27).

To obtain the uniform control, we use the estimates below regarding J. For any
f : [0,∞)→ C, we define A[ f ] : R→ C as A[ f ](λ ) = f (|λ |). See also [21].

Lemma 6 ([12, Lemma 3.6]). Let f : [0,∞)→ C. Then∥∥∥∥ 1
2·

∫ ·+t

|·−t|
f (λ )dλ

∥∥∥∥
L∞(0,∞)

≤M[A[ f ]](t),

where M is the Hardy-Littlewood-Maximal operator defined by

M[h](x) = sup
r>0

1
2r

∫
|x−y|<r

|h(y)|dy

for h : R→ C.

Corollary 3 ([12, Corollary 3.7]). Let f : R3→ C be radial. Then

‖J[ f ]‖L2(0,T ;L∞(R3)) ≤C‖ f‖L2
rad(R3).

Corollary 4 ([12, Corollary 3.8]). Let h : [0,∞)×R3→ C be radial. Then∥∥∥∥∫ t

0
J[h(t ′)](t− t ′)dt ′

∥∥∥∥
L2(0,T ;L∞(0,∞))

≤C‖h‖L1(0,T ;L2
rad(R3)).

Corollary 5 (Hardy, [12, Corollary 3.9]). Let f ∈C1([0,∞);C). Then∥∥∥∥ d
dt

(
1
2r

∫ r+t

|r−t|
λ f (λ )dλ

)∥∥∥∥
L2(0,∞;L∞(0,∞))

≤C‖r f ′‖L2(0,∞).
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Proof. Let g be even extension of f .

d
dt

(
1
2r

∫ r+t

|r−t|
λ f (λ )dλ

)
=

(r+ t) f (r+ t)− (t− r) f (|r− t|)
2r

=
(r+ t) f (r+ t)− (t− r)g(t− r)

2r

=
1
2r

∫ r

−r
{g(t + τ)+(t + τ)g′(t + τ)}dτ.

Then∥∥∥∥ d
dt

(
1
2r

∫ r+t

|r−t|
λ f (λ )dλ

)∥∥∥∥
L2(0,∞;L∞(0,∞))

≤ ‖M[g]‖L2(R)+‖M[·g′]‖L2(R). (28)

Therefore, (28) and the following Hardy estimate([22, (0.2)]) imply Corollary 5:

‖g‖L2(R) . ‖ ·g
′‖L2(R).

We can now give the proof of Proposition 3.

Proof (Proof of Proposition 3). Let

X1
rad(0,T ) = L∞(0,T ;H1

rad(R3))∩L2(0,T ;L∞
rad(R3)).

For 0 < T < 1 and p = 3, By Corollaries 3, 4, 5, and the Hölder and Gagliardo-
Nirenberg inequalities imply that, if initial data u0 sufficiently small, then Φ maps
BX1

rad(0,T )
(R) into itself with some T and R. Since

|F3(u)−F3(v)|
=
∣∣i(D(|u|2u)−2|u|2Du−u2Du

)
+3|u|4u

− i
(
D(|v|2v)−2|v|2Dv− v2Dv

)
−3|v|4v

∣∣
. |D(|u|2u−|v|2v)|+ |u|2|D(u− v)|
+
(∣∣|u|2−|v|2∣∣+ ∣∣u2− v2∣∣) |Dv|+

∣∣|u|4u−|v|4v
∣∣ ,

we have

‖F3(u)−F3(v)‖L1(0,T ;L2
rad(R3))

. (‖u‖X1
rad(0,T )

+‖v‖X1
rad(0,T )

)2‖u− v‖X1
rad(0,T )

+(‖u‖X1
rad(0,T )

+‖v‖X1
rad(0,T )

)4‖u− v‖X1
rad(0,T )

.

This means Φ is a contraction map on BX1
rad(0,T )

(R) for sufficiently small u0.
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3 Blow-up for (1)

At first, we recall the following ODE argument:

Lemma 7 ([11, Lemma 2.1]). Let C1,C2 > 0 and q> 1. If f ∈C1([0,T );R) satisfies
f (0)> 0 and

f ′+C1 f =C2 f q on [0,T ) for some T > 0,

then

f (t) = e−C1t
(

f (0)−(q−1)+C−1
1 C2e−C1(q−1)t −C−1

1 C2

)− 1
q−1

.

Moreover, if f (0)>C
1

q−1
1 C

− 1
q−1

2 , then T <− 1
C1(q−1) log(1−C1C−1

2 f (0)−q+1).

Next, we recall Calderón-Zygmund argument. We call K, a mesurable function
on Rn, Calderón-Zygmund (CZ) kernel if K satisfies

|K(x)| ≤ |x|−n, |∇K(x)| ≤ |x|−n+1,
∫

ε<|x|<R
K(x) = 0, 0 < ∀ε < ∀R.

Then CZ kernel is known to give a Lp(Rn) bounded operator as follows:

Lemma 8 ([3, Theorem 1]). Let K be a CZ kernel. Then for 1 < p < ∞, there exists
a positive constant C such that∥∥∥∥P.V.

∫
Rn

K(x− y) f (y)dy
∥∥∥∥

Lp(Rn)

≤C‖ f‖Lp(Rn)

for any f ∈ Lp(Rn).

Now we are in position to show Proposition 5.

Proof. Thanks to Lemma 7, it is enough to show∥∥〈·〉−q[D,〈·〉q]
∥∥

L2(Rn)→L2(Rn)
< ∞.

At first, We divide the operator into the following two pieces:

〈x〉−q[(−∆)1/2,〈x〉q] =CT1 +CT2,

where ψ is a cut-off function defined by (24).

T1( f )(x) = 〈x〉−q
∫
Rn

(1−ψ(y))(〈x〉q−〈x+ y〉q)
|y|n+1 f (x+ y)dy,

T2( f )(x) = 〈x〉−q P.V.
∫
Rn

ψ(y)(〈x〉q−〈x+ y〉q)
|y|n+1 f (x+ y)dy.

In order to estimate T1 by dividing into two pieces:
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T1 = T3 +T4,

where

T3( f )(x) = 〈x〉−q
∫
|x|≤|y|

(1−ψ(y))(〈x〉q−〈x+ y〉q)
|y|n+1 f (x+ y)dy,

T4( f )(x) = 〈x〉−q
∫
|x|≥|y|

(1−ψ(y))(〈x〉q−〈x+ y〉q)
|y|n+1 f (x+ y)dy.

By the Hölder and Young inequalities,

‖T3( f )‖L2(Rn)

≤ (1+2q)

∥∥∥∥〈x〉−q
∫
|x|≤|y|

〈y〉q(1−ψ(y))
|y|n+1 f (x+ y)dy

∥∥∥∥
L2(Rn)

≤ (1+2q)‖〈·〉−q‖L2(Rn)

∥∥∥∥∫Rn

〈y〉q(1−ψ(y))
|y|n+1 f (x+ y)dy

∥∥∥∥
L∞(Rn)

≤ (1+2q)‖〈·〉−q‖L2(Rn)‖〈·〉
q| · |−n−1(1−ψ)‖L2(Rn)‖ f‖L2(Rn).

Similarly by the Young inequality,

‖T4( f )‖L2(Rn) ≤ (1+2q)

∥∥∥∥∫Rn

1−ψ(y)
|y|n+1 | f (x+ y)|dy

∥∥∥∥
L2(Rn)

≤ (1+2q)‖| · |−n−1(1−ψ)‖L1(Rn)‖ f‖L2(Rn).

Next, in order to estimate T2, we recall that

〈x+ y〉q = 〈x〉q + q
2
〈x〉q−2(|x+ y|2−|x|2)+R1(x,y),

= 〈x〉q +q〈x〉q−2x · y+R2(x,y), (29)

where R2(x,y) = R1(x,y)+q〈x〉q−2|y|2/2 and

R1(x,y) =
q(q−2)

22

∫ |x+y|2

|x|2
(1+ρ)q/2−2(|x+ y|2−ρ)dρ.

By combining (13) and (29), we have

T2 =−qT5−T6,

where

T5( f )(x) =
x
〈x〉2
·P.V.

∫
Rn

yψ(y)
|y|n+1 f (x+ y)dy,

T6( f )(x) =
1
〈x〉q

P.V.
∫
Rn

R2(x,y)ψ(y)
|y|n+1 f (x+ y)dy.
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It is easy to see that K(y) = y|y|−n−1ψ(y) is a CZ kernel. Therefore

‖T5( f )‖L2(Rn) ≤
∥∥∥∥P.V.

∫
Rn

yψ(y)
|y|n+1 f (·+ y)dy

∥∥∥∥
L2(Rn)

≤C‖ f‖L2(Rn).

Moreover, since

|y|−n−1|R1(x,y)| ≤ (〈x〉q−2 + 〈x+ y〉q−2)(|x+ y|2−|x|2)2|y|−n−1

≤ (〈x〉q−2 + 〈x+ y〉q−2)(|x+ y|+ |x|)2|y|−n+1,

by the Young inequality,

‖T6( f )‖L2(Rn) ≤C
∥∥∥∥∫Rn

ψ(y)
|y|n−1 f (x+ y)dy

∥∥∥∥
L2(Rn)

≤ ‖| · |−n+1
ψ‖L1(Rn)‖ f‖L2(Rn).

4 A priori estimates

This last section is devoted to the proofs of Propositions 7, 8, 9, 10, and 11. The
proofs are essentially the same in [12], but we report them here for sake of com-
pleteness.

Proof (Proof of Proposition 7). The proposition follows from a standard argument,
so we omit the proof.

Proof (Proof of Proposition 8). The proposition follows from a standard argument,
so we omit the proof.

Proof (Proof of Proposition 9). Here we give a direct proof based on the integral
equation by using the method in [27].

‖u(t2)‖2
Ḣs(Rn)

= ‖u(t1)‖2
Ḣs(Rn)−2Re

∫ t2

t1
〈Ds(|u(t)|p−1u(t)),Dsu(t)〉L2(Rn)dt

≤ ‖u(t1)‖2
Ḣs(Rn)+2

∫ t2

t1
‖Ds(|u(t)|p−1u(t))‖L2(Rn)‖u(t)‖Ḣs(Rn)dt

≤ ‖u(t1)‖2
Ḣs(Rn)+C

∫ t2

t1
‖u(t)‖p−1

L∞(Rn)
‖u(t)‖2

Ḣs(Rn)dt,

where we used the nonlinear estimate

‖| f |p−1 f‖Ḣs(Rn) . ‖ f‖p−1
L∞(Rn)

‖ f‖Ḣs(Rn)

(see [13, Lemma 3.4]).
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Proof (Proof of Proposition 10). Since |u|2u∈C((0,T );H2(Rn)), the following cal-
culation is justified by the Plancherel identity:

‖u(t2)‖2
Ḣ2(Rn)

= ‖u(t1)‖2
Ḣ2(Rn)−2Re

∫ t2

t1

〈
∆ |u(t)|2u(t),∆u(t)

〉
L2(Rn)

dt

= ‖u(t1)‖2
Ḣ2(Rn)−2Re

n

∑
j,k=1

∫ t2

t1

〈
|u(t)|2∂ j∂ku(t),∂ j∂ku(t)

〉
L2(Rn)

dt

−4Re
n

∑
j,k=1

∫ t2

t1

〈
∂ku(t)∂ j|u(t)|2,∂ j∂ku(t)

〉
L2(Rn)

dt

−2Re
n

∑
j,k=1

∫ t2

t1

〈
∂ j∂k|u(t)|2,u(t)∂ j∂ku(t)

〉
L2(Rn)

dt

= ‖u(t1)‖2
Ḣ2(Rn)−2

n

∑
j,k=1

∫ t2

t1
‖u(t)∂ j∂ku(t)‖2

L2(Rn)dt

+2
n

∑
j,k=1

∫ t2

t1

〈
∂

2
j |u(t)|2, |∂ku(t)|2

〉
L2(Rn)

dt

−
n

∑
j,k=1

∫ t2

t1

〈
∂ j∂k|u(t)|2,∂ j∂k|u(t)|2−2Re(∂ ju(t)∂ku(t))

〉
L2(Rn)

dt.

By the Hölder,Young, and Sobolev inequalities,

‖u(t2)‖2
Ḣ2(Rn)

≤ ‖u(t1)‖2
Ḣ2(Rn)−2

n

∑
j,k=1

∫ t2

t1
‖u(t)∂ j∂ku(t)‖2

L2(Rn)dt

+2n2
n

∑
k=1

∫ t2

t1
‖∂ku(t)‖4

L4(Rn)dt +2
n

∑
j,k=1

∫ t2

t1
‖∂ ju(t)‖2

L4(Rn)‖∂ku(t)‖2
L4(Rn)dt

≤ ‖u(t1)‖2
Ḣ2(Rn)−2

n

∑
j,k=1

∫ t2

t1
‖u(t)∂ j∂ku(t)‖2

L2(Rn)dt

+2n2(n+1)
∫ t2

t1
‖u(t)‖4−n

Ḣ1(Rn)
‖u(t)‖n

Ḣ2(Rn)
dt.

We can now conclude the paper by showing Proposition 11.

Proof (Proof of Proposition 11). When s = 1 and when s = 2 and p = 3, a priori
estimates shows the global well-posedness by the blow-up alternative argument.
Here we consider the case where p = 3 and 1 < s < 2. Let [a] be the floor function
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of a. Let T1 = min{1,T0}. By using the H1 a priori estimate, for any t > 0,

‖u‖L4(0,t;L∞(R2)) ≤
[t/T1]+1

∑
k=0

‖u‖L4(kT1,(k+1)T1;L∞(R2))

≤
[t/T1]+1

∑
k=0

‖u‖X1(kT1,(k+1)T1)

≤ 2T−1
1 (1+ t)‖u0‖H1(R2).

Then by using Proposition 10,

‖u(t)‖2
Ḣs(R2) . ‖u0‖2

Hs(R2)+
∫ t

0
‖u(t ′)‖2

L∞(Rn)‖u(t
′)‖2

Ḣs(R2)dt

. ‖u0‖2
Hs(R2)+‖u(t

′)‖2
L4(0,t;L∞(R2))‖u‖

2
L4(0,t;Ḣs(R2))

. ‖u0‖2
Hs(R2)+‖u0‖2

H1(R2)(1+ t)2‖u‖2
L4(0,t;Ḣs(R2)).

This shows

‖u(t)‖4
Ḣs(R2) . ‖u0‖4

Hs(R2)+‖u0‖4
H1(R2)(1+ t)4‖u‖4

L4(0,t;Ḣs(R2)).

Therefore Gronwall inequality imply the global well-posedness in Hs(R2).
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298–305 (2000)

24. Lenzmann, E., Schikorra, A.: Sharp commutator estimates via harmonic extensions.
arXiv:1609.08547

25. Li, D.: On Kato-Ponce and fractional Leibniz. Rev. Mat. Iberoamericana. to appear.
arXiv:1609.01780v2

26. Nakamura, M., Ozawa, T.: The Cauchy problem for nonlinear Klein-Gordon equations in the
Sobolev spaces. Publ. Res. Inst. Math. Sci. 37, 255–293 (2001)

27. Ozawa, T.: Remarks on proofs of conservation laws for nonlinear Schrödinger equations.
Calc. Var. Partial Differential Equations. 25, 403–408 (2006)

28. Sickel, W., Skrzypczak, L.: Radial subspaces of Besov and Lizorkin-Triebel classes: extended
Strauss lemma and compactness of embeddings. J. Fourier Anal. Appl. 6, 639–662 (2000)


