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Abstract. We study the formation of singularities for cylindrical symmetric solutions to the Gross-
Pitaevskii equation describing a dipolar Bose-Einstein condensate. We prove that solutions arising from
initial data with energy below the energy of the Ground State and that do not scatter collapse in finite
time. The main tools to prove our result are the variational characterization of the Ground State energy,
suitable localized virial identities for cylindrical symmetric functions, and general integral and pointwise
estimates for operators involving powers of the Riesz transforms.

1. Introduction

Since the first experimental observation in 1995 of a quantum state of matter at very low
temperature called Bose-Einstein condensate (BEC), see e.g. [1,7,11], the study of the asymptotic
dynamics of nonlinear equations describing this phenomena rapidly increased, both numerically
and theoretically. Since BEC exists in an ultracold and dilute regime, the most relevant interactions
are the isotropic, elastic two-body collisions. After the first pioneering experimental works, other
condensates have been produced with different atoms, in particular condensates made out of
particles possessing a permanent electric or magnetic dipole moment. Such kind of condensates
are called dipolar Bose-Einstein condensates, see e.g. [3, 4, 27, 29, 31], and their peculiarity is
given by the long-range anisotropic interaction between particles, in contrast with the short-range,
isotropic character of the contact interaction of BEC.
A dipolar quantum gases is well modelled, see [24,32,33] for the validity of such model, by the
Gross-Pitaevskii equation (GPE)

ih
∂u

∂t
= − h2

2m∆u+W (x)u+ U0|u|2u+ (Vdip ∗ |u|2)u, (1.1)

where the wave function u = u(t, x). Here t is the time variable, x = (x1, x2, x3) is the space
coordinate, h is the Planck constant, m is the mass of a dipolar particle and W (x) is an external,
real potential which describes the electromagnetic trap. The coefficient U0 = 4πh2as/m describes
the local interaction between dipoles in the condensate, as being the s-wave scattering length
(positive for repulsive interactions and negative for attractive interactions). The long-range dipolar
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interaction potential between two dipoles is given by

Vdip(x) =
µ0µ

2
dip

4π
1− 3 cos2(θ)
|x|3

, x ∈ R3,

where µ0 is the vacuum magnetic permeability, µdip is the permanent magnetic dipole moment
and θ is the angle between the dipole axis n ∈ R3 and the vector x. For simplicity, we fix the
dipole axis as the vector n = (0, 0, 1). The wave function is normalized according to∫

R3
|u(x, t)|2 dx = N,

where N is the total number of dipolar particles in the dipolar BEC. In this work we consider the
case when the trapping potential W is not active, i.e. we freeze W (x) = 0.

As we are interested in the mathematical features of the GPE, we consider it in its dimensionless
form, therefore we write the Cauchy problem associated to (1.1) as follows:i∂tu+ 1

2∆u = λ1|u|2u+ λ2(K ∗ |u|2)u, (t, x) ∈ R× R3

u(0, x) = u0(x)
, (1.2)

where the dipolar kernel K acting in the convolution on the mass density |u|2 is given by

K(x) = x2
1 + x2

2 − 2x2
3

|x|5
.

The two coefficients λ1,2 involved in the equation are two physical, real parameters defined by

λ1 = 4πasNγ, λ2 =
mNµ0µ

2
dip

4πh2 γ;

they describe the strength of the local nonlinearity and the nonlocal nonlinearity, respectively.
Following the terminology introduced by Carles, Markowich and Sparber in [8], where the authors
give a first mathematical treatment concerning various aspects about local/global well-posedness
of (1.2), we consider the partition of the coordinate plane (λ1, λ2) into the so-called Unstable
Regime 

λ1 −
4π
3 λ2 < 0 if λ2 > 0

λ1 + 8π
3 λ2 < 0 if λ2 < 0

, (1.3)

and its complementary, the so-called Stable Regime
λ1 −

4π
3 λ2 ≥ 0 if λ2 > 0

λ1 + 8π
3 λ2 ≥ 0 if λ2 < 0

. (1.4)
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Heuristically, when comparing (1.2) to the classical cubic NLS (i.e. when λ2 = 0), one can
think to the configuration given by (1.3) as the nonlinearity were focusing, and to (1.4) as the
nonlinearity were defocusing. This notation is although incorrect in the context of the GPE, as
we will emphasize in some remark later on in the paper, after we introduce some basic notation.

Solutions to (1.2) conserve along the flow the mass and the energy (besides other quantities not
used in this paper); more rigorously

M(t) = M(u(t)) :=
∫
R3
|u(t)|2 dx = M(0)

and

E(t) = E(u(t)) := 1
2

(∫
R3
|∇u(t)|2 + λ1|u(t)|4 + λ2(K ∗ |u(t)|2)|u(t)|2 dx

)
= E(0), (1.5)

for any t ∈ (−Tmin, Tmax), where Tmin, Tmax ∈ (0,∞] are the minimal and maximal time of
existence of the solution, respectively. Local existence of solutions to (1.2) was shown in [8], in
both the configurations given by (1.3) and (1.4).

The Unstable Regime (1.3) is of particular relevance, since stationary solutions are allowed in
this region. More precisely, we recall that stationary states are solutions of the following species:

u(x, t) = e−iκtu(x),

where u(x) is a time-independent function solving the stationary equation

− 1
2∆u+ λ1|u|2u+ λ2(K ∗ |u|2)u+ κu = 0 (1.6)

constrained on the manifold S(1), where

S(1) = {u ∈ H1(R3) s.t. ‖u‖2L2(R3) = 1}, (1.7)

and κ ∈ R is a real parameter usually referred as the chemical potential. We postpone the rigorous
discussion about existence of solutions to (1.6) in Section 3. We introduce now some crucial
quantities often used along the paper, and we proceed enunciating the main results of this work
and the strategy to get them.

Let us recall some notation consistent to our previous papers [5, 6]: by means of the Plancherel
identity, the energy defined in (1.5) can be rewritten as

E(t) = 1
2

∫
R3
|∇u(t)|2 dx+ 1

2(2π)3

∫
R3

(
λ1 + λ2K̂(ξ)

)
(|̂u(t)|2)2(ξ) dξ

where the Fourier transform of the dipolar kernel K is explicitly given by

K̂(ξ) = 4π
3

2ξ2
3 − ξ2

2 − ξ2
1

|ξ|2
, ξ ∈ R3. (1.8)

We refer to [8] for a proof of the explicit calculation of K̂, done by means of the decomposition in
spherical harmonics of the Fourier character e−ix·ξ.
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Remark 1.1. It is worth mentioning right now that, by using (1.8), K̂(ξ) is a linear combination of
symbols associated to the square of the Riesz transforms R2

j for j = 1, 2, 3, i.e. R̂2
jf(ξ) = − ξ2

j

|ξ|2 f̂(ξ).
Therefore (K ∗ f)(x) is a linear combination of R2

jf(x)’s.

A trivial computation provides a lower and an upper bound for K̂, and more precisely

K̂ ∈
[
−4

3π,
8
3π
]
,

and from the latter it is straightforward to claim that the convolution with K defines an L2 7→ L2

continuous operator.
We split the energy as sum of the kinetic and potential energies, respectively defined by

T (u) =
∫
R3
|∇u|2 dx (1.9)

and
P (u) = 1

(2π)3

∫
R3

(
λ1 + λ2K̂(ξ)

)
(|̂u|2)2(ξ) dξ, (1.10)

and we introduce the quantity
G(u) = T (u) + 3

2P (u). (1.11)

Moreover, the following useful identity holds true: E − 1
3G = 1

6T. The functional G naturally
appears by means of the Pohozaev identities related to (1.6), see [2].

In spite of the fact that we are primarily interested in solutions satisfying (1.7), we consider,
for a positive c > 0, the generic manifold

S(c) =
{
u ∈ H1(R3) s.t. ‖u‖2L2(R3) = c

}
,

which will be useful for the mathematical study of existence of standing states, and their variational
characterization. The case c = 1 clearly corresponds to the mass normalization expressed in (1.7).
For a fixed c > 0, the energy E(u) has a mountain pass geometry on S(c) and we denote by γ(c)
the mountain pass energy at level c to which it corresponds a stationary state. Again, we refer to
Section 3 for precise definitions and rigorous results.

The energy level γ(c) has the variational characterization below, that will be essential in the
sequel; by introducing the manifold

V (c) = {u ∈ H1(R3) s.t. ‖u‖2L2(R3) = c and G(u) = 0}

we recall, see [6], that
γ(c) = inf{E(u) s.t. u ∈ V (c)}. (1.12)

A contradiction argument in conjunction with a continuity argument implies that provided
E(u0) < γ(c), with c = ‖u0‖2L2(R3) and G(u0) > 0, the local solution u ∈ C((−Tmin, Tmax);H1(R3))
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to (1.2) can be extended globally in time, i.e. Tmin = Tmax =∞, and G(u(t)) > 0 for any t ∈ R,
see [6, Theorem 1.3].

The global existence of solutions under the hypothesis E(u0) < γ(c), with c = ‖u0‖2L2(R3), and
G(u0) > 0, suggests the possibility that all solutions arising from these initial data scatter, in
analogy of what was proved by Duyckaerts, Holmer, and Roudenko in [13,19] for the cubic focusing
NLS by exploiting the original approach of concentration/compactness and rigidity method in the
spirit of the Kenig and Merle road map, see [20]. The authors in fact recently proved in [5] that
the conditions E(u0) < γ(c), for c = ‖u0‖2L2(R3), and G(u0) > 0 imply scattering of solutions to
the dipolar Gross-Pitaevskii equation (1.2).

The main aim of this paper is to study the asymptotic dynamics in the complementary
configuration, i.e. E(u0) < γ(c), with c = ‖u0‖2L2(R3), and G(u0) < 0. We shall underline that
even in the case when λ2 = 0 and λ1 < 0, namely when (1.2) reduces to the classical focusing
cubic nonlinear Schrödinger equationi∂tu+ 1

2∆u = λ1|u|2u, (t, x) ∈ R× R3

u(0, x) = u0(x)
, (1.13)

finite time blow-up for any initial data u0 ∈ H1(R3) satisfying the above conditions is still an open
problem. To the best of our knowledge, the less restrictive assumptions in this context are due to
Martel, see [26], where the author proves finite time blow-up in the space of cylindrical symmetric
functions with finite variance in the x3 direction and negative energy. Early results of this type
are due to Glassey, see [16], in case of finite variance, and Ogawa and Tsutsumi [28], in the ra-
dial symmetric case (see also Holmer and Roudenko [19], and Inui [22,23] in a more general setting).

We are now in position to state our main results and to explain our strategy of the proofs. Let
us define x̄ = (x1, x2) and let us introduce the space where we study the formation of singularities:

Σ3 =
{
u ∈ H1(R3) s.t. u(x) = u(|x̄|, x3) and x3u ∈ L2(R3)

}
.

Σ3 is therefore the space of cylindrical symmetric functions with finite variance in the x3 direction.

Our main result is as follows.

Theorem 1.2. Assume that λ1, λ2 satisfy (1.3), namely the belong to the Unstable Regime.
Let u(t) ∈ Σ3 be a solution to (1.2) defined on (−Tmin, Tmax), with initial datum u0 satisfying
E(u0) < γ(‖u0‖2L2) and G(u0) < 0. Then Tmin and Tmax are finite, namely u(t) blows-up in finite
time.

As a consequence of Theorem 1.2 we give a generalization of the result by Martel in [26]. We
extend here that result for all positive initial energies under the energy threshold given by the
Ground State associated to NLS (which corresponds to the one given in (1.6) for λ2 = 0). Even if
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the following theorem can be viewed as a straightforward corollary of Theorem 1.2, we prefer to
state it as an independent result, since it has its own interest.

Theorem 1.3. Given a solution u(t) ∈ Σ3 to (1.13) with λ1 < 0 defined on (−Tmin, Tmax), with
initial datum u0 satisfying E(u0) < γ(‖u0‖2L2) and G(u0) < 0, then Tmin and Tmax are finite,
namely u(t) blows-up in finite time.

We point out some feature of the dipolar GPE.

Remark 1.4. Blow-up in finite time for the focusing cubic NLS in the whole generality, i.e. for
infinite-variance initial data and without assuming any symmetry, is still an open problem. See
the beginning of Section 4 for up-to-date references.

Remark 1.5. A usual assumption that often appears in literature in order to simplify the analysis
of a model which cannot be treated in a full generality, is the restriction to a radial setting. The
dipolar kernel K(x) is a Calderón-Zigmund operator of the form |x|−3O(x) where O is a zero-order
function having zero average on the sphere. This implies that the restriction to radial symmetric
solutions makes disappear the effect of the nonlocal term in (1.2), hence the equation reduces to
the classical NLS equation in the radial framework, see [8].

Remark 1.6. We restrict the functional space to functions belonging to H1(R3) with finite variance
in the x3 direction. As it will be clear along the proof a decay estimate for the potential energy in
the exterior of a cylindrical domain will be crucial. Indeed, the finite variance in the x3 direction
enables us to localize the potential energy on the exterior of a cylinder.

Remark 1.7. As remarked in [8], for 0 < λ1 <
4π
3 λ2 – namely when the local nonlinearity is

defocusing, and the coupling parameter λ2 is positive, which is the physical case – finite time
blow-up may arise, so that is improper to speak about “defocusing/focusing” for the dipolar BEC.
The nonlocal interaction then can yield to formation of singularities in finite time of the solutions.

Remark 1.8. From the identity (1.11) and the fact that there exists a positive constant δ > 0 such
that G(u(t)) ≤ −δ for any t ∈ (−Tmin, Tmax) (see Lemma 3.5 below), it is straightforward to see
that the assumption G(u0) < 0 implies that P (u(t)) < 0 for any time in the maximal interval of
existence of the solution to (1.2). This is in contrast of what happens in the counterpart scenario
G(u0) > 0. In the latter case, working in the Unstable Regime (1.3) does not guarantee that the
potential energy P (u(t)) preserves the sign, as we proved in [5].

We turn now to state the ingredients we use in order to prove our main theorems. The strategy
and the main difficulties are the following.

• A variational characterization of the Ground State energy which firstly permits to prove
that ‖u(t)‖Ḣ1(R3) is bounded from below uniformly in time and that G(u(t)) < −δ for
all times in the maximal interval of existence of the solution. As a byproduct, which is
crucial for what follows, it exploits the bound G(u(t)) ≤ −δ̃‖u(t)‖2

Ḣ1(R3), for some δ̃ > 0.
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• The virial identities, valid both for (1.2) and (1.13). We define, following Martel [26],

Vρ(t) := Vρ(u(t)) = 2
∫
R3
ρR(x)|u(t, x)|2 dx,

where ρ, which is in particular a well-constructed function depending only on the two
variables x̄ = (x1, x2) which provides a localization in the exterior of a cylinder, parallel
to the x3 axis and with radius of size |x̄| ∼ R. Here |x̄| clearly denotes |x̄| := (x2

1 + x2
2)1/2.

Moreover we consider the not-localized function x2
3 in order to obtain a virial-like estimate

of the form
d2

dt2
VρR+x2

3
(t) ≤ 4

∫
R3
|∇u(t)|2dx+ 6λ1

∫
R3
|u(t)|4dx︸ ︷︷ ︸

=:G

+cR−2 +HR(u(t)), (1.14)

where the error HR is defined by

HR(u(t)) = 4λ1

∫
R3
FR(x̄)|u(t)|4 dx+ 2λ2

∫
R3
∇ρR · ∇

(
K ∗ |u(t)|2

)
|u(t)|2 dx

− 4λ2

∫
R3
x3∂x3

(
K ∗ |u(t)|2

)
|u(t)|2 dx

and FR(x̄) is a nonnegative function supported in the exterior of a cylinder of radius of
order R.

• In the case λ1 < 0, λ2 = 0 (namely NLS), the decay property of the L4-norm of a
function f supported outside a cylinder of radius of order R, more precisely the estimate
‖f‖4L4(|x̄|≥R) . R−1‖f‖2

Ḣ1(R3), together with the localized virial identities, implies finite
time blow-up by a convexity argument. We underline that everything works well since we
are able to prove that ‖u(t)‖2

Ḣ1(R3) controls either G(u(t)) or the remainder term HR(u(t)).
Note that in this case the quantity G in the r.h.s. of (1.14) precisely defines 4G(u(t)) in
the context of (1.13).

• When λ2 6= 0 we have to deal with the effect of the dipolar interaction term – incorporated
in HR(u(t)) in (1.14) – that is nonlocal and that is neither always positive nor always
negative. As already pointed out, see Remark 1.1, K ∗ · acts as the sum (up to some
constant coefficients) of square of Riesz transforms. Our strategy is to split u (we omit the
time dependence) by separating it in the interior and in the exterior of a cylinder, namely
u = ui + uo where

ui = 1{|x̄|≤CR}u and uo = 1{|x̄|≥CR}u,

and computing the interaction given by the dipolar term. Here 1 denotes the indicator
function on a measurable set. The problem here is that K ∗ |ui|2 is not supported inside
any cylinder. A crucial tool is given by the pointwise estimate

|1{|x̄|≤γ1R}(x)R2
j [(1− 1{|x̄|≤γ2R})f ](x)| ≤ CR−31{|x̄|≤γ1R}(x)‖f‖L1(|x̄|≥γ2R)

where γ1 and γ2 are positive parameters satisfying d := γ2 − γ1 > 0, see Lemma 2.4.
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• In order to control the remainder term and to make appear the 6λ2
∫
R3(K∗|u(t)|2)|u(t)|2 dx

term in (1.14) that will yield to the whole quantity 4G(u(t)), see (1.11), we need to use the
identity 2

∫
R3 x · ∇ (K ∗ f) f dx = −3

∫
R3 (K ∗ f) f dx. The latter follows from the relation

ξ · ∇ξK̂ = 0. The difficulty here comes from the fact that the localization function used in
the virial identities ρR(x̄) satisfies

ρR(x̄) =

|x̄|2 if |x̄| < R

constant if |x̄| > 2R
,

while the function ρ = x2
3 is unbounded. By observing that

2
∫
R3
x3∂x3

(
K ∗ |ui|2

)
|uo|2 dx+ 2

∫
R3
x3∂x3

(
K ∗ |uo|2

)
|ui|2 dx

= −2
∫
R3

(
K ∗ |ui|2

)
|uo|2 dx− 2

∫
R3
ξ3(∂ξ3K̂) ̂|ui|2 ¯̂|uo|2 dξ

and that

ξ3∂ξ3K̂ = 8πξ
2
3(ξ2

1 + ξ2
2)

|ξ|4
= 8π

(
ξ2

3
|ξ|2
− ξ4

3
|ξ|4

)
= 8πR̂2

3 − 8πR̂4
3,

we reduce the problem to the estimate of |〈R4
3f, g〉L2 | when f is supported in {|x̄| ≥ γ2R}

while g is supported in {|x̄| ≤ γ1R}, for some positive parameters γ1 and γ2 satisfying
d := γ2 − γ1 > 0. Here R4

j denotes the fourth power of the Riesz transform, and R̂4
j its

symbol in Fourier space.

• We compute |〈R4
3f, g〉L2 | by means of some corollaries (see Corollary 2.2 and Corollary 2.3)

of a more general result from harmonic analysis, related to the representation of a Fourier
operator T whose symbol is homogeneous of degree zero, in conjunction with the localization
properties of the supports of functions where T is acting on, see Proposition 2.1.

• All the previous points will bring to the final estimate

d2

dt2
VρR+x2

3
(t) ≤ 4G(u(t)) + εR(u(t)),

where G(u(t)) . −δ̃‖u(t)‖2
Ḣ1(R3) and εR(u(t)) . oR(1)‖u(t)‖2

Ḣ1(R3), which in turn implies
the finite time blow-up via a convexity argument, provided R� 1.

1.1. Notation and structure of the paper. We collect here the notation used along the paper
and we disclose how the paper is organized. We work in the three dimensional space R3, and
for a vector x = (x1, x2, x3) ∈ R3 we denote by x̄ ∈ R2 the vector x̄ = (x1, x2) given by the first
two components of x ∈ R3. The differential operators ∇ and ∇· are the common gradient and
divergence operator in R3. When using the subscript x̄, i.e. ∇x̄ or ∇x̄·, we mean that we are
considering them as operators on R2 with respect to the variables (x1, x2) alone. The operator
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Ff(ξ) = f̂(ξ) =
∫
e−ixξf(x) dx is the standard Fourier Transform, F−1 being its inverse. Rj is

the j-th Riesz transform defined vie the Fourier symbol −i ξj|ξ| , i.e. Rjf(x) = F−1
(
−i ξj|ξ| f̂

)
(x).

Powers of the Riesz transform are defined by means of powers of their symbols analogously. For
1 ≤ p ≤ ∞ and Ω ⊆ R3, Lp(Ω) = Lp(Ω;C) are the classical Lebesgue spaces endowed with norm
‖f‖Lp = (

∫
Ω |f(x)|p dx)1/p if p 6= ∞ or ‖f‖L∞ = ess supx∈Ω |f(x)| for p = ∞. When Ω = R3 we

simply write Lp. For a function f(x), x ∈ R3, we denote ‖f‖Lpx̄ = ‖f(·, x3)‖Lpx̄(R2) and similarly
for more general domains Ω ⊂ R2. We set H1 = H1(R3;C) := {f s.t.

∫
R3(1 + |ξ|2)|f̂(ξ)|2 dξ <∞}

and its homogeneous version Ḣ1 = Ḣ1(R3;C) := {f s.t.
∫
R3 |ξ|2|f̂(ξ)|2 dξ < ∞} endowed with

their natural norms. Since we work on R3, we simply denote
∫
f dx =

∫
R3 f dx and often we write∫

f dx =
∫
R
∫
R2 f(x̄, x3) dx̄ dx3. The expression (f ∗ g)(x) :=

∫
f(x− y)g(y) dy denotes the convo-

lution operator between f and g. The L2 inner product between two function f, g is denoted by
〈f, g〉 = 〈f, g〉L2 :=

∫
fg dx. <z and =z are the common notations for the real and imaginary parts

of a complex number z. When the bar-symbol over-lines a complex-valued function, we mean the
complex conjugate. Given a measurable set A ⊆ R3, 1A(x) is the indicator function of A. Finally,
given two quantities A and B, we denote A . B (A & B, respectively) if there exists a positive
constant C such that A ≤ CB (A ≥ CB, respectively). If both relations hold true, we write A ∼ B.

In Section 2 we prove the essential integral and pointwise estimates for powers of the Riesz
transforms for suitably localized functions. In Section 3 we discuss the geometry of the energy
functional and we disclose several properties leading to the control of the functional G in terms
of ‖u‖Ḣ1 . In Section 4 we prove the blow-up in finite time for the focusing cubic NLS stated
in Theorem 1.3, then we conclude with Section 5 where we prove the main result of the paper,
namely the finite time blow-up for the dipolar GPE. We collect in the Appendix A some useful
identities used along the proofs in the paper. In Appendix B we make a connection between
the fourth power of the Riesz transform with the propagator associated to the linear parabolic
biharmonic equation, which has its own interest, and it could be used to give an alternative proof
for the integral decay estimates in Section 2.

2. Localization properties of the dipolar kernel

This section provides the first technical tools we need in order to prove our main result concerning
the finite time blow-up for the GPE (1.2). In the next Lemmas we prove some decay estimates –
pointwise and integral estimates – regarding the square and the 4-th power of the Riesz transforms
for suitably localized functions. We prove this decay by employing a general harmonic analysis
tool which gives an explicit characterization of homogeneous distributions. Subsequently, we prove
the pointwise estimates for R2

j by using the explicit representation of R2
j in terms of the singular

integral defined in the principal value sense.

2.1. Integral estimates for R4
j . We start with the integral estimates for the fourth power of the

Riesz transform, and, as anticipated above, we use a general result in harmonic analysis regarding
the characterization of homogeneous distribution on Rn of degree −n, coinciding with a regular
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function in Rn \ {0}. For our purposes, likely along the whole paper, we just consider n = 3. The
main contribution of this section is as follows.

Proposition 2.1. Let T an operator defined by means of a Fourier symbol m(ξ), which is smooth
in R3 \ {0} and is a homogenous function of degree zero, i.e. m(λξ) = m(ξ) for any λ > 0. For
any couple of functions f, g ∈ L1 having disjoint supports, we have the following estimate:

|〈Tf, g〉| . (dist(supp(f), supp(g)))−3 ‖g‖L1‖f‖L1 . (2.1)

By observing that the symbols defining R4
i and R2

kR2
h are given by m(ξ) = ξ4

i
|ξ|4 and m(ξ) = ξ2

kξ
2
h

|ξ|4 ,
respectively, which fulfil the hypothesis of Proposition 2.1, we straightforwardly have the following
corollaries. It is worth mentioning that for our applications, we will consider as f and g some
cut-off of the density of the mass |u(t)|2, which is clearly in L1.

Corollary 2.2. Assume that f, g ∈ L1 and that f is supported in {|x̄| ≥ γ2R} while g is supported
in {|x̄| ≤ γ1R}, for some positive parameters γ1 and γ2 satisfying d := γ2 − γ1 > 0. Then

|〈R4
i f, g〉| . R−3‖g‖L1‖f‖L1 .

Corollary 2.3. Assume that f, g ∈ L1, and that f is supported in {|x̄| ≥ γ2R} while g is supported
in {|x̄| ≤ γ1R}, for some positive parameters γ1 and γ2 satisfying d := γ2 − γ1 > 0. Then

|〈R2
kR2

hf, g〉| . R−3‖g‖L1‖f‖L1 .

Proof of Proposition 2.1. By definition, F(Tf)(ξ) = m(ξ)f̂(ξ), and being m a homogeneous
symbol of degree zero, smooth away from the origin, we can invoke [17, Proposition 2.4.7] and we
can claim the existence of a smooth function Ω on the sphere S2, and a scalar c ∈ C such that

F−1m = 1
|x|3

Ω
(
x

|x|

)
+ cδ(x),

where δ is the Dirac delta at the origin. We recall that being m a symbol of degree zero, the
associated distribution is homogeneous of degree −3. Hence,

〈Tf, g〉 =
∫∫ 1
|x− y|3

Ω
(
x− y
|x− y|

)
f(y)g(x) dy dx+ c

∫∫
δ(x− y)f(y)g(x) dy dx

=
∫∫ 1
|x− y|3

Ω
(
x− y
|x− y|

)
f(y)g(x) dy dx,

where in the last identity we used the disjointness of the supports of f and g. Therefore,

|〈Tf, g〉| ≤ (dist(supp(f), supp(g)))−3 ‖Ω‖L∞(S2)‖f‖L1‖g‖L1

. (dist(supp(f), supp(g)))−3 ‖f‖L1‖g‖L1 ,

and the proof is concluded. �
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2.2. Pointwise estimate for R2
j . We turn now the attention to the square of the Riesz transform.

In the subsequent results, we will use a cut-off function χ satisfying the following: χ(x) is a
localization function supported in the cylinder {|x̄| ≤ 1} which is nonnegative and bounded, with
‖χ‖L∞ ≤ 1. For a positive parameter γ, we define by χ{|x̄|≤γR} the rescaled function χ(x/γR)
(hence χ{|x̄|≤γR} is bounded, positive and supported in the cylinder of radius γR). The proof of
the next lemmas is inspired by [25].

Lemma 2.4. For any (regular) function f the following pointwise estimate is satisfied: provided
d := γ2 − γ1 > 0, where γ1 and γ2 are positive parameters, there exists a universal constant C > 0
such that

|χ{|x̄|≤γ1R}(x)R2
j [(1− χ{|x̄|≤γ2R})f ](x)| ≤ CR−3χ{|x̄|≤γ1R}(x)‖f‖L1(|x̄|≥γ2R). (2.2)

Remark 2.5. It is worth mentioning that the use of the general Proposition 2.1 yields an integral
estimate for the operator R2

j , which would suffices for our purposes later on in the paper, namely
to close the convexity argument for the blow-up Theorem when the dipolar kernel in (1.2) is
acting (i.e. λ2 6= 0). Nonetheless, we prefer to give the pointwise decay below as well, which is
more refined than an integral estimate, and because it relies of the precise integral representation
of the square of the Riesz transform, while Proposition 2.1 holds true for any operator as in the
hypothesis.

Proof of Lemma 2.4. In the principal value sense, the square of the Riesz transform acts on a
function g as

R2
jg(x) =

∫∫
xj − yj
|x− y|3+1

yj − zj
|y − z|3+1 g(z) dz dy.

Let g(x) = χ{|x̄|≥γ2R}(x)f(x). Then

χ{|x̄|≤γ1R}(x)R2
jg(x) =

∫∫ (
yj
|y|4

zj − yj
|z − y|4

dy

)
g(x− z) dz.

Since g is supported in the exterior of a cylinder of radius γ2R, we can assume |x̄− z̄| ≥ γ2R, and
for the function χ{|x̄|≤γ1R} is supported by definition in the cylinder of radius γ1R, we can assume
|x̄| ≤ γ1R : therefore we have that |z̄| ≥ dR. This implies that {|ȳ| ≤ d

4R} ∩ {|z̄ − ȳ| ≤
1
2 |z̄|} = ∅.

Indeed,
1
2 |z̄| ≥ |z̄ − ȳ| ≥ |z̄| − |ȳ| =⇒ |ȳ| ≥ 1

2 |z̄| ≥
d

2R, (2.3)

hence we have the following splitting:

I =
∫

yj
|y|4

z1 − y1
|z − y|4

dy =
∫
|ȳ|≤ d4R

yj
|y|4

zj − yj
|z − y|4

dy

+
∫
|z̄−ȳ|≤ 1

2 |z̄|

yj
|y|4

zj − yj
|z − y|4

dy

+
∫
{|ȳ|≥ d4R}∩{|z̄−ȳ|≥

1
2 |z̄|}

yj
|y|4

zj − yj
|z − y|4

dy

= I + II + III.

(2.4)
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Estimate for the term I. Let us focus on the first integral I. The domain of integration of this
integral is the cylinder of radius R parallel to the y3 axis. Therefore

I = I1 + I2 =
∫
|y3|≤ d4R

∫
|ȳ|≤ d4R

yj
|y|4

zj − yj
|z − y|4

dȳ dy3 +
∫
|y3|≥ d4R

∫
|ȳ|≤ d4R

yj
|y|4

zj − yj
|z − y|4

dȳ dy3.

For the term I1 we first notice that∫
|y3|≤ d4R

∫
|ȳ|≤ d4R

yj
|y|4

dȳ dy3 = 0

since the domain is invariant under the change of variables y 7→ −y. Therefore

A1 =
∫
|y3|≤ d4R

∫
|ȳ|≤ d4R

yj
|y|4

(
zj − yj
|z − y|4

− zj
|z|

)
dȳ dy3

and we write
zj − yj
|z − y|4

− zj
|z|

=
∫ 1

0
h′(s) ds

where
h(s) = zj − syj

|z − sy|4
, s ∈ [0, 1].

We have, by a straightforward calculation, that

h′(s) = − yj
|z − sy|4

+ 4 zj − syj
|z − sy|4

(z − sy) · y

and
|h′(s)| . |y|

|z − sy|4
.

Hence, by observing that |z − sy| ≥ |z̄ − sȳ| ≥ |z̄| − s|ȳ| ≥ 3d
4 R as s|ȳ| ≤ d

4R, we get that

max
s∈[0,1]

|h′(s)| . R−4|y|,

then

I1 =
∫
|y3|≤ d4R

∫
|ȳ|≤ d4R

yj
|y|4

(∫ 1

0
h′(s) ds

)
dȳ dy3 . R

−4
∫
|y3|≤ d4R

∫
|ȳ|≤ d4R

1
|y|2

dȳ dy3

. R−4
∫
|y|≤

√
2d
4 R

1
|y|2

dy . R−3.

(2.5)

The term I2 can be estimated as follows:

I2 =
∫
|y3|≥ d4R

∫
|ȳ|≤ d4R

yj
|y|4

zj − yj
|z − y|4

dȳ dy3 ≤
∫
|y3|≥ d4R

∫
|ȳ|≤ d4R

1
|y|3

1
|z − y|3

dȳ dy3

≤
∫
|y3|≥ d4R

1
|y3|3

∫
|ȳ|≤ d4R

1
|z̄ − ȳ|3

dȳ dy3 .
∫
|y3|≥ d4R

1
|y3|3

dy3

(
1
R3

∫
|ȳ|≤ d4R

dȳ

)
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where we used again the fact that if |ȳ| ≤ d
4R then |z̄ − ȳ| ≥ 3d

4 R, hence we conclude with

I2 . R
−2R−1 = R−3 (2.6)

In conclusion, by summing up the two estimates (2.5) and (2.6)we get

I . R−3. (2.7)

Estimate for the term II. We adopt a similar approach for the term II that we split in two
further terms:

II =
∫
|z3−y3|≤|z̄|

∫
|z̄−ȳ|≤ 1

2 |z̄|

yj
|y|4

zj − yj
|z − y|4

dy +
∫
|z3−y3|≥|z̄|

∫
|z̄−ȳ|≤ 1

2 |z̄|

yj
|y|4

zj − yj
|z − y|4

dy

= II1 + II2

We first notice that ∫
|z3−y3|≤|z̄|

∫
|z̄−ȳ|≤ 1

2 |z̄|

zj − yj
|z − y|4

dȳ dy3 = 0

since the domain is invariant under the change of variable y 7→ 2z − y.
Estimate for the term II1. Therefore

II1 =
∫
|z3−y3|≤|z̄|

∫
|z̄−ȳ|≤ 1

2 |z̄|

zj − yj
|z − y|4

(
yj
|y|4
− zj
|z|4

)
dȳ dy3

=
∫
|z3−y3|≤|z̄|

∫
|z̄−ȳ|≤ 1

2 |z̄|

zj − yj
|z − y|4

(∫ 1

0
h′(s) ds

)
dȳ dy3

where
h(s) = syj + (1− s)zj

|syj + (1− s)zj |4
, s ∈ [0, 1].

We compute

h′(s) = yj − zj
|sy + (1− s)z|4 + 4 syj + (1− s)zj

|sy + (1− s)z|5
sy + (1− s)z
|sy + (1− s)z| · (y − z)

and hence
|h′(s)| . |y − z|

|sy + (1− s)z)|4 .

Now we observe, as s|ȳ − z̄| ≤ 1
2 |z̄|, that |sy + (1 − s)z| = |s(y − z) + z| ≥ |s(ȳ − z̄) + z̄| ≥

|z̄| − s|ȳ − z̄| ≥ 1
2 |z̄| and then

max
s∈[0,1]

|h′(s)| . |y − z|
|z̄|4

which allows us to continue the estimate for II1 as follows:

II1 .
1
|z̄|4

∫
|z3−y3|≤|z̄|

∫
|z̄−ȳ|≤ 1

2 |z̄|

1
|z − y|2

dȳ dy3

.
1
|z̄|4

∫
|z−y|.|z̄|

1
|z − y|2

dy . |z̄|−3 . R−3.

(2.8)
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Estimate for the term II2. It remains to prove a suitable estimate for the remaining term II2.

We use (2.3) and we estimate

II2 =
∫
|z3−y3|>|z̄|

∫
|z̄−ȳ|≤ 1

2 |z̄|

yj
|y|4

zj − yj
|z − y|4

dȳ dy3

≤
∫
|z3−y3|>|z̄|

∫
|z̄−ȳ|≤ 1

2 |z̄|

1
|y|3

1
|z − y|3

dȳ dy3

≤
∫
|z3−y3|>|z̄|

∫
|ȳ|≥ 1

2 |z̄|

1
|y|3

1
|z − y|3

dȳ dy3

≤
∫
|z3−y3|>|z̄|

1
|z3 − y3|3

dy3

∫
|ȳ|≥ 1

2 |z̄|

1
|ȳ|3

dȳ ≤ |z̄|−2|z̄|−1 . R−3.

(2.9)

We conclude, by summing up (2.8) and (2.9), that

II . R−3. (2.10)

Estimate for the term III. It is left to estimate the integral

III =
∫
{|ȳ|≥ d4R}∩{|z̄−ȳ|≥

1
2 |z̄|}

yj
|y|4

zj − yj
|z − y|4

dy.

By the Cauchy-Schwarz’s inequality

III =
∫
{|ȳ|≥ d4R}∩{|z̄−ȳ|≥

1
2 |z̄|}

yj
|y|4

zj − yj
|z − y|4

dy ≤
∫
{|ȳ|≥ d4R}∩{|z̄−ȳ|≥

1
2 |z̄|}

1
|y|3

1
|z − y|3

dy

≤
(∫
{|ȳ|≥ d4R}∩{|z̄−ȳ|≥

1
2 |z̄|}

1
|y|6

dy

)1/2(∫
{|ȳ|≥ d4R}∩{|z̄−ȳ|≥

1
2 |z̄|}

1
|z − y|6

dy

)1/2

≤
(∫
{|y|≥ d4R}

1
|y|6

dy

)1/2(∫
{|z−y|≥ 1

2 |z̄|}

1
|z − y|6

dy

)1/2

. R−3/2|z̄|−3/2 . R−3.

(2.11)

The proof of the lemma is therefore concluded by observing that the integral I defined in (2.4)
can be bounded, by using (2.7), (2.10) and (2.11), by

I := I + II + III . R−3,

and hence

|χ{|x̄|≤γ1R}(x)R2
jg(x)| = χ{|x̄|≤γ1R}(x)

∣∣∣∣∫∫ ( yj
|y|4

zj − yj
|z − y|4

dy

)
g(x− z) dz

∣∣∣∣
. R−3χ{|x̄|≤γ1R}(x)

∫
|g(x− z)| dz

. R−3χ{|x̄|≤γ1R}(x)‖f‖L1(|x̄|≥γ2R)

which is the estimate stated in (2.2). �
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We have an estimate similar to (2.2) if we localize inside a cylinder the function on which
R2
j acts, and we then truncate everything with a function supported in the exterior of another

cylinder.

Lemma 2.6. For any (regular) function f the following pointwise estimate is satisfied: provided
d := γ1 − γ2 > 0, where γ1 and γ2 are positive parameters, there exists a universal constant C > 0
such that

|(1− χ|x̄|≤γ1R)(x)R2
j [(χ{|x̄|≤γ2R})f ](x)| ≤ CR−3|(1− χ{|x̄|≤γ1R})(x)|‖f‖L1(|x̄|≤γ2R). (2.12)

Proof. The proof is analogous to the one for Lemma 2.4, so we skip the details. �

3. Variational structure of the energy functional and consequences

We pass now to the discussion on the variational structure of the energy functional and its
relation to the existence of standing waves for (1.2). The following arguments are valid in the same
fashion for the NLS equation (1.13), when the parameter λ2 = 0, even if it is worth mentioning
that for NLS the existence of standing waves is nowadays classical. We recall the two different
approaches to prove existence of Ground States for the GPE.

The first strategy is due to Antonelli and Sparber, see [2], where existence is proved by means
of minimization of the Weinstein functional

J(v) :=
‖∇v‖3L2‖v‖L2

−λ1‖v‖4L4 − λ2
∫

(K ∗ |v|2)|v|2 dx
.

The alternative way, see the work of Jeanjean and the first author [6], is based on topological
methods, where the existence of Ground States is shown by means of the existence of critical points
of the energy functional under the mass constraint (1.7). In the latter approach the parameter κ
which appears in (1.6) is found as Lagrange multiplier. Even if the energy functional is unbounded
from below on S(1), when restricting to states which are stationary for the evolution equation,
i.e. they satisfy (1.6), then the energy is bounded from below by a positive constant. The latter
constant, which corresponds to the mountain pass level, is reached. The mountain pass solutions
therefore correspond to the least energy states (which are called Ground States, precisely). We
pass now to the analysis of the geometry of the functional E(u) on S(c), and to this aim we
introduce the L2-preserving scaling:

uµ(x) = µ3/2u(µx), µ > 0.

We report the next crucial lemma from [6]. We recall the definition of V (c) given in (1.12):

V (c) = {u ∈ H1 s.t. ‖u‖2L2 = c and G(u) = 0}.

Lemma 3.1. [6, Lemma 3.3] Suppose that u belongs to the manifold S(c) and moreover that it
satisfies

∫
(λ1 + λ2K̂(ξ))(|̂u|2)2 dξ < 0. Then the following properties hold true:
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• there exists a unique µ̃(u) > 0, such that uµ̃ ∈ V (c);

• the map µ 7→ E(uµ) is concave on [µ̃,∞);

• µ̃(u) < 1 if and only if G(u) < 0;

• µ̃(u) = 1 if and only if G(u) = 0;

• the functional G satisfies

G(uµ)

> 0, ∀µ ∈ (0, µ̃(u))
< 0, ∀µ ∈ (µ̃(u),+∞)

;

• E(uµ) < E(uµ̃), for any µ > 0 and µ 6= µ̃;

• d
dµE(uµ) = 1

µG(uµ), ∀µ > 0.

With Lemma 3.1 at hand, we can prove the next proposition which basically shows the dichotomy
between the scattering and blow-up for (1.2) in terms of the quantities γ(‖u0‖2L2) and G(u0).

Proposition 3.2. Suppose that the initial datum u0 satisfies E(u0) < γ(‖u0‖2L2) and G(u0) > 0,
then

M(u0)E(u0) < M(Q)E(Q) (3.1)

and
‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 . (3.2)

Conversely, if the conditions expressed in (3.1) and (3.2) hold true, then the initial datum u0
satisfies E(u0) < γ(‖u0‖2L2) and G(u0) > 0.

Remark 3.3. We point out that we gave the proof of the first implication in our previous work
[5], but we repeat it below as in that paper some steps were not rigorously justified (it is worth
mentioning that the claim was however correct, and the validity of the result was not affected by
that carelessness).

Proof. We start with the first implication. From the definition of the quantities in (1.5), (1.9) and
(1.10), we straightforwardly obtain the identity

E(u0)− 1
3G(u0) = 1

6T (u0). (3.3)

Due to the scaling invariance properties of the Weinstein functional, we note that Qµ := µQ(µx)
is again a minimizer for the Weinstein functional with

‖Qµ‖2L2 = µ−1‖Q‖2L2 ,

‖∇Qµ‖2L2 = µ‖∇Q‖2L2 .
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We notice that Q(x)eit is a standing wave solution to the evolution equation and by the symmetry
of the equation it is well known that Qµeiµ

2t = µQ(µx)eiµ2t is another standing wave solution to

−1
2∆Qµ +

(
λ1|Qµ|2Qµ + λ2(K ∗ |Qµ|2)Qµ

)
+ µ2Qµ = 0,

that necessarily satisfies G(Qµ) = 0. Hence E(Qµ) = 1
6‖∇Qµ‖

2
L2 .

Provided we choose the parameter µ such that ‖Qµ‖2L2 = ‖u0‖2L2 , i.e. Qµ belongs to the constraint
S(c), c = ‖u0‖2L2 , we get (using the hypothesis)

E(u0) < γ(‖u0‖2L2) = γ(‖Qµ‖2L2) = E(Qµ). (3.4)

From (3.4) we obtain
‖u0‖2L2E(u0) < ‖Q‖2L2E(Q),

which corresponds to (3.1). It is worth remarking how we can claim the equality in (3.4) (this is
precisely the clarification we do with respect to what we wrote in Remark 3.3). It is crucial to
notice that if Q is a standing state (solving the elliptic equation with a corresponding Lagrange
multiplier), then Qµ is a standing state for any µ > 0. On the other hand if Q is not a standing
state (i.e. it does not solve the elliptic equation with any Lagrange multiplier), then Qµ is not a
standing state for any µ > 0.
If we take two standing states with the same mass, let say w and v, with their corresponding
Lagrange multipliers, and such that E(w) < E(v), then E(wµ) < E(vµ) for any µ > 0. This is
evident by the fact that E(wµ) = 1

6‖∇wµ‖
2
L2 = µ

6‖∇w‖
2
L2 = µ

6E(w) for any µ > 0 (indeed G(wµ)
is always 0). Therefore if E(w) < E(v) then E(wµ) < µ

6‖∇v‖
2
L2 = E(vµ).

This implies that in the case of a Mountain Pass solution, if one takes a standing wave Q such
that E(Q) = γ(‖Q‖2L2) then E(Qµ) = γ(‖Qµ‖2L2).

We prove now the validity of the other condition. If G(u0) > 0 and E(u0) < γ(‖u0‖2L2) = E(Qµ),
then we have

1
6‖∇Qµ‖

2
L2 = E(Qµ) > E(u0) > E(u0)− 1

3G(u0) = 1
6‖∇u0‖2L2

and hence
‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 .

Let us prove the reverse implication.
First of all we notice that if Q is a minimizer for the Weinstein functional, then E(Q) = γ(‖Q‖2L2).
We take a rescaling Qµ of Q such that ‖Qµ‖2L2 = ‖u0‖2L2 and as before we can claim that
E(Qµ) = γ(‖u0‖2L2). Therefore (3.1) implies

M(u0)E(u0) < M(Q)E(Q) = M(Qµ)E(Qµ) = M(Qµ)γ(‖u0‖L2) =⇒ E(u0) < γ(‖u0‖L2).

Let us focus on the statement “(3.2) =⇒ G(u0) > 0”. Suppose that G(u0) ≤ 0 and consider
µ̃ such that uµ̃ ∈ V (‖u0‖2L2). By using Lemma 3.1 such µ̃ do exists, G(uµ̃0 ) = 0 (by the very
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definition of V (‖u0‖2L2)) and µ̃ ≤ 1. (In particular, if G(u0) = 0 then µ̃ = 1.) Hence

E(uµ̃) = 1
6‖∇u

µ̃‖2L2 = µ̃

6 ‖∇u‖
2
L2 ≤

1
6‖∇u‖

2
L2 <

1
6‖∇Q‖

2
L2 = E(Q).

This concludes the proof since we got a function, uµ̃, such that E(uµ̃) < E(Q), which contradicts
the minimality of E(Q). �

Remark 3.4. It is straightforward to see that in Proposition 3.2, provided E(u0) < γ(‖u0‖2L2), the
condition (3.2) replaced by

‖u0‖L2‖∇u0‖L2 > ‖Q‖L2‖∇Q‖L2 (3.5)

will imply that G(u0) < 0, and conversely (3.5) is satisfied provided we assume G(u0) < 0. Hence
E(u0) < γ(‖u0‖2L2) and G(u0) > 0 or G(u0) < 0 give the dichotomy between scattering and
blow-up for (1.2). It is worth mentioning that when restricting to the cubic NLS case, the latter
ones are the same described by Holmer and Roudenko in [19], namely (3.1), (3.2), and (3.5).

Lemma 3.5. If the initial datum u0 satisfies E(u0) < γ(‖u0‖2L2) and G(u0) < 0 then G(u(t)) < 0
for any t ∈ (−Tmin, Tmax). More precisely, there exists a positive constant δ > 0 such that
G(u(t)) ≤ −δ for any t ∈ (−Tmin, Tmax).

Proof. Suppose that G(u(t)) > 0 for some time t ∈ (−Tmin, Tmax); then by the continuity in time
of the function G(u(t)) there exists t̃ such that G(u(t̃)) = 0. By definition we have therefore
γ(‖u0‖2L2) ≤ E(u(t̃)) = E(u0) which is a contradiction with respect to the definition of γ(‖u0‖2L2).

We now prove the uniform bound from below away from zero. We simply denote u = u(t). By
Lemma 3.1 – third claim – there exists µ̃ ∈ (0, 1) such that G(uµ̃) = 0. Then

E(u0)− E(uµ̃) = (1− µ̃) d
dµ
E(uµ)|µ=µ̄

for some µ̄ ∈ (µ̃, 1), and due to the concavity of µ 7→ E(uµ) – see Lemma 3.1, second claim – we
have that

E(u0)− E(uµ̃) = (1− µ̃) d
dµ
E(uµ)|µ=µ̄ ≥ (1− µ̃) d

dµ
E(uµ)|µ=1 = (1− µ̃)G(u)

where in the last equality we used the last claim of Lemma 3.1. Hence

G(u(t)) ≤ (1− µ̃)−1
(
E(u0)− E(uµ̃)

)
≤ (1− µ̃)−1(E(u0)− γ(c)).

The proof is complete with δ = (1− µ̃)−1(γ(c)− E(u0)). �

The previous Lemma implies the pointwise-in-time bound for the function G(u(t)), by means
of the homogeneous Sobolev Ḣ1-norm of u(t).

Lemma 3.6. There exists α > 0 such that G(u(t)) ≤ −α‖u(t)‖2
Ḣ1 for any t ∈ (−Tmin, Tmax).
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Proof. It follows from Lemma 3.5 and the identity (3.3), that ‖u(t)‖2
Ḣ1 > 6E(u0). By exploiting

again the identity (3.3) we write ‖u(t)‖2
Ḣ1 = 6E − 2G(u(t)), so we have

G(u(t)) + α‖u(t)‖2
Ḣ1 = (1− 2α)G(u(t)) + 6αE. (3.6)

As we have that G ≤ −δ, it is straightforward to see that for α� 1 the claim follows, since for α
sufficiently small, the r.h.s. of (3.6) is bounded by −δ/2. �

We give the following simple consequence of the previous Lemma.

Corollary 3.7. There exists a positive constant c > 0 such that

inf
t∈(−Tmin,Tmax)

‖u(t)‖Ḣ1 ≥ c.

Proof. Suppose that there exists a sequence of times {tn}n∈N such that limn→∞ ‖u(tn)‖Ḣ1 = 0.
Then by the Gagliardo-Nirenberg’s inequality limn→∞ ‖u(tn)‖L4 = 0 as well. But then G(u(tn))→
0, since by the L2 7→ L2 property of the dipolar kernel

|G(u(tn))| . ‖u(tn)‖2
Ḣ1 + ‖u(tn)‖4L4 → 0,

which contradicts Lemma 3.5 �

4. Blow-up for the focusing cubic NLS

In this chapter we prove Theorem 1.3 regarding the NLS (1.13). We first construct a suitable
cut-off function localizing in the exterior of a cylinder parallel to the x3 axis, which we then plug
it in the virial identities below. This cut-off function will be used also in the proof of Theorem 1.2
regarding the blow-up in finite time for solutions to the GPE, but the estimates we need in
order to control some remainders in the presence of the dipolar kernel are much more involved.
Therefore we prefer to state the result for the focusing cubic NLS which has its own interest,
passing to the analysis of the equation (1.2) in the next chapter. Previous papers in literature
about the formation of singularities in finite time for L2-supercritical focusing NLS in 3D are
[12,15,18,21,30], besides the already cited [16,26,28].

We now introduce some classical virial identities, valid both for (1.2) and (1.13). Let u(t) be a
solution to (1.2), which also corresponds to a solution to (1.13) for λ2 = 0 and λ1 < 0; then we
define

Vρ(t) = 2
∫
ρ(x)|u(t, x)|2 dx, (4.1)

ρ(x) being a sufficiently smooth function which justifies the following formal and standard
computations:

d

dt
Vρ(t) = 2=

{∫
∇ρ · ∇uū dx

}
, (4.2)
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where we used the equation satisfied by u = u(t). By using (4.2) and again the equation solved by
u(t), we have

d2

dt2
Vρ(t) = 2

∫ (
∇2ρ · ∇u

)
· ∇ū dx− 1

2

∫
∆2ρ|u|2 dx

+ λ1

∫
∆ρ|u|4 dx− 2λ2

∫
∇ρ · ∇

(
K ∗ |u|2

)
|u|2 dx.

Therefore for the rescaled function ρR(x) := R2ρ(x/R) we get

d2

dt2
VρR(t) = 2

∫ (
∇2ρ

(
x

R

)
· ∇u

)
· ∇ū dx− 1

2R2

∫
∆2ρ

(
x

R

)
|u|2 dx

+ λ1

∫
∆ρ

(
x

R

)
|u|4 dx− 2λ2R

∫
∇ρ

(
x

R

)
· ∇

(
K ∗ |u|2

)
|u|2 dx.

(4.3)

Let us precisely build the (rescaled) function ρ, which is in particular a radial cut-off function
depending only on the two variables x̄ = (x1, x2) :

ρR(x) = ρR(|x̄|) = R2ρ(|x̄|/R) = R2ψ(|x̄|2/R2)

where
ψ(r) = r −

∫ r

0
(r − s)η(s) ds,

and the function η : R 7→ R+
0 is a function satisfying the following properties: it is a nonnegative,

regular function with unitary mean, namely:
η ∈ C∞c (R;R+

0 )
η(s) = 0 for s ≤ 1 and s ≥ 2∫
R η(s) ds = 1

.

We have, for i, j ∈ {1, 2} and δij being the usual Kronecker symbol,

∂xiρR(x) = 2xiψ′(|x̄|2/R2)

and
∂2
xj ,xiρR(x) = 2δijψ′(|x̄|2/R2) + 4xixj

R2 ψ′′(|x̄|2/R2),

hence (
∇2ρ

(
x

R

)
∇u
)
· ∇ū = 2ψ′(|x̄|2/R2)|∇x̄u|2 + 4

R2 |x̄|
2ψ′′(|x̄|2/R2)|∇x̄u|2

= 2|∇x̄u|2
(
ψ′(|x̄|2/R2) + 2

R2 |x̄|
2ψ′′(|x̄|2/R2)

)
and

∆ρR = 4ψ′(|x̄|2/R2) + 4
R2 |x̄|

2ψ′′(|x̄|2/R2).

We observe moreover that ∆2ρ ∈ L∞ and therefore we can estimate R−2 ∫ ∆2ρ(x/R)|u|2 dx as

R−2
∫

∆2ρ(x/R)|u|2 dx ≤ C(‖∆ρ‖L∞)R−2‖u(t)‖2L2 = CMR−2, (4.4)
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by using the conservation of the mass.
We compute explicitly the following:

− FR(x̄) := ψ′(|x̄|2/R2) + |x̄|
2

R2 ψ
′′(|x̄|2/R2)− 1 = −

∫ |x̄|2/R2

0
η(s) ds− |x̄|

2

R2 η(|x̄|2/R2) ≤ 0. (4.5)

We observe that by its construction

L∞ 3 FR

= 0 for any |x̄| ≤ R
> 0 for any |x̄| > R

. (4.6)

and the boundedness is uniform with respect to R ≥ 1.
Moreover we consider the not-localized virial identity in the x3 direction; we namely plug in

(4.1) the function ρ = Ax2
3, A being a positive constant, and we simply get,

d2

dt2
VAx2

3
(t) = 4A

∫
|∂x3u|2 dx+ 2Aλ1

∫
|u|4 dx− 4Aλ2

∫
x3∂x3

(
K ∗ |u|2

)
|u|2 dx. (4.7)

For A = 1 and by plugging λ2 = 0 in (4.3), we are going to prove that

d2

dt2
VρR+x2

3
(t) ≤ 4

∫
|∇u|2dx+ 6λ1

∫
|u|4dx+ H̃R(u(t))

= 4G(u(t)) + H̃R(u(t)),
(4.8)

where
H̃R(u(t)) = oR(1) + oR(1)‖u(t)‖2

Ḣ1 ; (4.9)

therefore Lemma 3.6, Corollary 3.7 coupled with a convexity argument will yield to the result
stated in Theorem 1.3, as long as R� 1. Note that for λ2 = 0, G(u) is reduced to 4

∫
|∇u|2dx+

6λ1
∫
|u|4dx.

4.1. Estimate of the remainder HR(u(t)). Once fixed λ2 = 0, and for λ1 < 0, by suitably
manipulating (4.3) by adding and subtracting some quantity, it can be rewritten as

d2

dt2
VρR(t) = 4

∫ (
ψ′(|x̄|2/R2) + 2

R2 |x̄|
2ψ′′(|x̄|2/R2)

)
|∇x̄u|2 dx

+ λ1

∫
∆ρ(x/R)|u|4 dx− 1

2R2

∫
∆2ρ(x/R)|u|2 dx

= 4
∫ (

ψ′(|x̄|2/R2) + 2
R2 |x̄|

2ψ′′(|x̄|2/R2) + 1− 1
)
|∇x̄u|2 dx

+ 4
∫
|∂x3u|2 dx− 4

∫
|∂x3u|2 dx−

1
2R2

∫
∆2ρ(x/R)|u|2 dx

+ 4λ1

∫ (
ψ′(|x̄|2/R2) + |x̄|

2

R2 ψ
′′(|x̄|2/R2) + 3

2 −
3
2

)
|u|4 dx,
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and by using the definition of G(u), see (1.11), taking into account that the potential energy P (u)
is simply given by λ1

∫
|u|4 dx, see (1.10) for λ2 = 0, we get

d2

dt2
VρR(t) = 4G(u(t))− 1

2R2

∫
∆2ρ(x/R)|u|2 dx− 4

∫
|∂x3u|2 dx

+ 4
∫ (

ψ′(|x̄|2/R2) + 2
R2 |x̄|

2ψ′′(|x̄|2/R2)− 1
)
|∇x̄u|2 dx

+ 4λ1

∫ (
ψ′(|x̄|2/R2) + |x̄|

2

R2 ψ
′′(|x̄|2/R2)− 3

2

)
|u|4 dx

and
d2

dt2
VAx2

3
(t) = 4A

∫
|∂x3u|2 dx+ 2Aλ1

∫
|u|4 dx,

therefore by summing up the two terms we get

d2

dt2
VρR+Ax2

3
(t) = 4G(u(t))− 1

2R2

∫
∆2ρ(x/R)|u|2 dx− 4(1−A)

∫
|∂x3u|2 dx

+ 4
∫ (

ψ′(|x̄|2/R2) + 2
R2 |x̄|

2ψ′′(|x̄|2/R2)− 1
)
|∇x̄u|2 dx

+ 4λ1

∫ (
ψ′(|x̄|2/R2) + |x̄|

2

R2 ψ
′′(|x̄|2/R2)− 3

2 + A

2

)
|u|4 dx

≤ 4G(u(t)) + CR−2

+ 4|λ1|
∫ (

1− ψ′(|x̄|2/R2)− |x̄|
2

R2 ψ
′′(|x̄|2/R2)

)
|u|4 dx,

(4.10)

where we have set A = 1, we have used the definition of G(u), (4.4), and (4.5). Note that, even if
it is a simple computation, we preferred to state the virial identity (4.7) with a general constant
A to emphasize how the choice A = 1 is precisely done to make appear – in the last line of (4.10)
– the function FR defined above. At this point (4.10) reduces to

d2

dt2
VρR+x2

3
(t) ≤ 4G(u(t)) + CR−2 + 4|λ1|

∫∫
|x̄|>R

FR(x̄)|u|4 dx̄ dx3.

We estimate, in the spirit of Martel [26],∫∫
FR(x̄)|u|4 dx̄ dx3 ≤

∫
‖FR|u|2‖L∞

x̄
‖u‖2L2

x̄
dx3 ≤ ‖u‖2L∞

x3L
2
x̄

∫
‖FR|u|2‖L∞

x̄
dx3, (4.11)

where the norm in the x̄ variable are meant in the domain {|x̄| ≥ R} due to (4.6) . We now use
the Strauss embedding for a radial function g(x̄), x̄ ∈ R2 and g ∈ H1, see [9],

‖g‖L∞
x̄ (|x̄|>R) . R

−1/2‖g‖
1
2
L2
x̄
‖g‖

1
2
Ḣ1
x̄

, (4.12)

hence by recalling that FR is bounded in space uniformly in R ≥ 1, we obtain, by using (4.12)
and the Cauchy-Schwarz’s inequality, that∫

‖FR|u|2‖L∞
x̄
dx3 .

∫
‖|u|2‖L∞

x̄ (|x̄|≥R) dx3 .
∫
‖u‖2L∞

x̄ (|x̄|≥R) dx3 . R
−1‖u‖Ḣ1 . (4.13)
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On the other hand, by calling g(x3) =
∫
R2 |u|2(x̄, x3) dx̄ we have

g(x3) =
∫ x3

−∞
∂sg(s) ds = 2<

∫ x3

−∞

(∫
R2
ū∂su dx̄

)
ds ≤ 2

∫
|u||∇u| dx ≤ 2

√
M‖u‖Ḣ1

and then
‖u‖2L∞

x3L
2
y
. ‖u‖Ḣ1 . (4.14)

By glueing up (4.13) and (4.14) we get that (4.11) satisfies∫∫
FR|u|4 dx̄ dx3 . R

−1‖u‖2
Ḣ1 . (4.15)

We conclude that for some α > 0

d2

dt2
VρR+x2

3
(t) . G(u(t)) +R−1 +R−1‖u(t)‖2

Ḣ1 . −
α

2 ‖u(t)‖2
Ḣ1 . −1,

where in last step we used Lemma 3.5, Lemma 3.6, Corollary 3.7 and we have chosen R� 1. We
can eventually conclude that Tmax < +∞ by a convexity argument. Indeed, it implies that there
exists a time T0 such that ∫

(ρR + x2
3)|u(t)|2 dx→ 0 as t→ T0.

We observe the following: by using the Weyl-Heisenberg’s inequality ‖xf‖L2‖f‖Ḣ1 & ‖f‖2L2 in 1D
we get

‖u0‖2L2 = ‖u(t)‖2L2 =
∫
R2

∫
R
|u(t)|2 dx3 dx̄ .

∫
R2

(∫
R
|∂x3u(t)|2 dx3

)1/2 (∫
R
x2

3|u(t)|2 dx3

)1/2
dx̄

and by using the Cauchy-Schwarz’s inequality we conclude with the estimate

‖x3u(t)‖L2‖∂x3u(t)‖L2 & ‖u0‖2L2 > 0.

Then ‖u(t)‖Ḣ1 →∞ as t→ T0. The proof of Theorem 1.3 is therefore concluded.

5. Blow-up for the dipolar GPE

This last chapter is devoted to the proof of Theorem 1.2. With respect to the NLS equation,
when dealing with the equation (1.2) governing a dipolar BEC, we get an additional term to
be estimated in the sum of the virial identies (4.3) and (4.7), namely the sum of the two terms
involving λ2. It is worth mentioning that all the terms that we have shown to be small in the NLS
case will remain the same. What we are going to prove is that for the dipolar GPE (1.2) we have
a virial-type estimate of the form (cf. with (4.8), (4.9))

d2

dt2
VρR+x2

3
(t) ≤ 4

∫
|∇u|2dx+ 6λ1

∫
|u|4dx+HR(u(t)) (5.1)
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where

HR = H̃R − 2λ2

(∫
∇ρR · ∇

(
K ∗ |u|2

)
|u|2 dx+ 2

∫
x3∂x3

(
K ∗ |u|2

)
|u|2 dx

)
. (5.2)

As already proved in Section 4, see (4.15),

H̃R(u(t)) = oR(1) + oR(1)‖u(t)‖2
Ḣ1 , (5.3)

so we are going to show that

V +W :=
∫
∇ρR · ∇

(
K ∗ |u|2

)
|u|2 dx+ 2

∫
x3∂x3

(
K ∗ |u|2

)
|u|2 dx (5.4)

will contribute for a term −3
∫

(K ∗ |u|2)|u|2 dx that will yield to the quantity 4G(u) (see the
definition (1.11)) when summed to the first two terms in the r.h.s. of (5.1), plus a remainder term
which must be proved to be small, again of the type oR(1) + oR(1)‖u‖2

Ḣ1 .

5.1. Estimate of the remainder HR(u(t)). The V term. By its definition, we get that the
function ρR fulfils

∂xiρR(x) = 2xiψ′(|x̄|2/R2) = 2x̄
(

1−
∫ |x̄|2/R2

0
η(s) ds

)
=

2x̄ if |x̄|2/R2 ≤ 1
0 if |x̄|2/R2 > 2

,

hence supp∇x̄ρR is contained in the cylinder of radius
√

2R.
We split the function u by partitioning the whole space in the region inside and the region

outside a cylinder, namely we write u = ui + uo where

ui = 1{|x̄|≤4R}u and uo = 1{|x̄|≥4R}u.

Since supp∇ρR ∩ suppuo = ∅ we get

V :=
∫
∇x̄ρR · ∇x̄

(
K ∗ |u|2

)
|u|2 dx

=
∫
∇x̄ρR · ∇x̄

(
K ∗ |uo|2

)
|ui|2 dx−

∫
∇x̄ρR · ∇x̄

(
K ∗ |ui|2

)
|ui|2 dx

= Vo,i + Vi,i.

Estimate for the term Vo,i. The term Vo,i can be estimated in this way: by integrating by parts,

Vo,i =
∫
∇x̄ρR · ∇x̄

(
K ∗ |uo|2

)
|ui|2 dx

= −
∫

∆x̄ρR
(
K ∗ |uo|2

)
|ui|2 dx−

∫
∇x̄ρR · ∇x̄

(
|ui|2

) (
K ∗ |uo|2

)
dx = V ′o,i + V ′′o,i

and, by using Lemma 2.4, in particular the pointwise estimate (2.2), we obtain

|V ′o,i| .
∫

1{|x̄|≤√2R}

∣∣∣K ∗ |uo|2∣∣∣ |ui|2 dx . R−3‖uo‖2L2‖ui‖2L2 . R−3‖u‖4L2 . R−3.
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Similarly, by using that |∇x̄ρR| . R on its support in conjunction with the Cauchy-Schwarz’s
inequality, we get

|V ′′o,i| .
∫

1{|x̄|≤√2R} |∇x̄ρR|
∣∣∣K ∗ |uo|2∣∣∣ |ui||∇x̄ui| dx

. R
∫

1{|x̄|≤√2R}

∣∣∣K ∗ |uo|2∣∣∣ |ui||∇x̄ui| dx . R−2‖uo‖2L2‖ui‖L2‖ui‖Ḣ1 . R−2‖u‖Ḣ1

and then the estimate for Vo,i is concluded by summing up the two bounds above:

|Vo,i| . R−2‖u‖Ḣ1 +R−3. (5.5)

Estimate for the term Vi,i. We analyse the term Vi,i. We do a further splitting and we introduce
another localization function. By setting up ρ̃R = ρR − |x̄|2 we can write

Vi,i =
∫
∇x̄ρR · ∇x̄

(
K ∗ |ui|2

)
|ui|2 dx

=
∫
∇x̄ρ̃R · ∇x̄

(
K ∗ |ui|2

)
|ui|2 dx+ 2

∫
x̄ · ∇x̄

(
K ∗ |ui|2

)
|ui|2 dx = V ′i,i + V ′′i,i.

(5.6)

We further localize the function ui by splitting again ui as ui = wi,i + wi,o, where

wi,i = 1{|x̄|≤R/10}ui and wi,o = 1{|x̄|≥R/10}ui = 1{R/10≤|x̄|≤4R}u.

By using the fact that supp∇x̄ρ̃R is contained in {|x̄| ≥ R}, then supp∇x̄ρ̃R ∩ {|x̄| ≤ R/10} = ∅,
we write

V ′i,i =
∫
∇x̄ρ̃R · ∇x̄

(
K ∗ |wi,i|2

)
|wi,o|2 dx

+
∫
∇x̄ρ̃R · ∇x̄

(
K ∗ |wi,o|2

)
|wi,o|2 dx = A+ B.

Now, similarly to the term Vo,i, by integrating by parts and by using in this case Lemma 2.6, and
precisely the pointwise estimate (2.12), we have

A =
∫
∇x̄ρ̃R · ∇x̄

(
K ∗ |wi,i|2

)
|wi,o|2 dx = −

∫
{R≤|x̄|≤4R}

∆x̄ρ̃R
(
K ∗ |wi,i|2

)
|wi,o|2 dx

−
∫
{R≤|x̄|≤4R}

∇x̄ρ̃R · ∇x̄
(
|wi,o|2

) (
K ∗ |wi,i|2

)
dx

. R−3‖wi,i‖2L2‖wi,o‖2L2 +R−2‖wi,i‖2L2‖wi,o‖L2‖wi,o‖Ḣ1 . R−3 +R−2‖u‖Ḣ1 .

(5.7)

Note that we used the following facts: |∆x̄ρ̃R| . 1, and by recalling that ui = 1{|x̄|≤4R}u, we infer
that |∇ρ̃R| . R on {|x̄| ≤ 4R}.
Estimate for the term B. Hence it remains to prove a suitable estimate for the term

B =
∫
{R≤|x̄|≤

√
2R}
∇x̄ρ̃R · ∇x̄

(
K ∗ |wi,o|2

)
|wi,o|2 dx. (5.8)

By setting g = |wi,o|2 and making use of the Plancherel identity we get∫
∇x̄ρ̃R · ∇x̄

(
K ∗ |wi,o|2

)
|wi,o|2 dx =

∫
ĝ∇x̄ρ̃(ξ) · ξ̄K̂ ¯̂g dξ.
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By recalling the precise expression for the Fourier transform of the dipolar kernel, see (1.8), we
note that K̂ is a linear combination of the symbols defining the square of the j-th Riesz transform
R2
j :

K̂(ξ) = 4π
3

2ξ2
3 − ξ2

2 − ξ2
1

|ξ|2
=

3∑
j=1

αj
ξ2
j

|ξ|2
.

Consider therefore the generic term
∫
∇̂x̄ρ̃Rg(ξ) · ξ̄ ξ2

j

|ξ|2
¯̂g dξ; by adding and subtracting ηj η̄

|η| , we have

∫
ĝ∇x̄ρ̃R(ξ) · ξ̄

ξ2
j

|ξ|2
¯̂g(ξ) dξ =

∫
(∇̂x̄ρ̃R ∗ ĝ)(ξ) · ξ̄

ξ2
j

|ξ|2
¯̂g(ξ) dξ

=
∫∫

ĝ(η)∇̂x̄ρ̃R(ξ − η) ·
(
ξj ξ̄

|ξ|
+ ηj η̄

|η|
− ηj η̄

|η|

)
ξj
|ξ|
ĝ(ξ) dη dξ

=
∫
∇x̄ρ̃R · ∇x̄(Rjg)(x)Rj ḡ(x) dx

+
∫∫

ĝ(η)∇̂x̄ρ̃R(ξ − η) ·
(
ξj ξ̄

|ξ|
− ηj η̄

|η|

)
ξj
|ξ|
ĝ(ξ) dη dξ

= −1
2

∫
∆x̄ρ̃R|Rjg(x)|2 dx

+
∫∫

ĝ(η)∇̂x̄ρ̃R(ξ − η) ·
(
ξj ξ̄

|ξ|
− ηj η̄

|η|

)
ξj
|ξ|
ĝ(ξ) dη dξ.

(5.9)

The first term in the r.h.s. of (5.9) is simply estimated by

‖u‖4L4(|x̄|≥R/10) . R
−1‖u‖2

Ḣ1 (5.10)

due to the L2 7→ L2 continuity property of the Riesz transform and (4.15). For the second term
in the r.h.s. of (5.9) we proceed in this way. First of all suppose that j = 1, 2; then

∫∫
ĝ(η)∇̂x̄ρ̃R(ξ − η) ·

(
ξj ξ̄

|ξ|
− ηj η̄

|η|

)
ξj
|ξ|
ĝ(ξ) dη dξ

=
∫
ξj
|ξ|
ĝ(ξ)

∫∫
ĝ(η̄, η3)δ(ξ3 − η3)̂̃ρR(ξ̄ − η̄)(ξ̄ − η̄) ·

(
ξj ξ̄

|ξ|
− ηj η̄

|η|

)
dη̄ dη3 dξ

=
∫
ξj
|ξ|
ĝ(ξ)

∫
ĝ(η̄, ξ3)̂̃ρR(ξ̄ − η̄)(ξ̄ − η̄) ·

ξj ξ̄
|ξ|
− ηj η̄√

|η̄|2 + ξ2
3


︸ ︷︷ ︸

=: ~Fj(ξ̄)−~Fj(η̄)

dη̄ dξ.
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If instead j = 3 we have∫∫
ĝ(η)∇̂x̄ρ̃R(ξ − η) ·

(
ξ3ξ̄

|ξ|
− η3η̄

|η|

)
ξ3
|ξ|
ĝ(ξ) dη dξ

=
∫
ξ3
|ξ|
ĝ(ξ)

∫∫
ĝ(η̄, η3)δ(ξ3 − η3)̂̃ρR(ξ̄ − η̄)(ξ̄ − η̄) ·

(
ξ3ξ̄

|ξ|
− η3η̄

|η|

)
dη̄ dη3 dξ

=
∫
ξ3
|ξ|
ĝ(ξ)

∫
ĝ(η̄, ξ3)̂̃ρR(ξ̄ − η̄)(ξ̄ − η̄) ·

ξ3ξ̄

|ξ|
− ξ3η̄√

|η̄|2 + ξ2
3


︸ ︷︷ ︸

=: ~F3(ξ̄)−~F3(η̄)

dη̄ dξ.

where

~Fj(v̄) = vj v̄√
|v̄|2 + ξ2

3

=

 vjv1√
|v̄|2 + ξ2

3

,
vjv2√
|v̄|2 + ξ2

3

 , v̄ = (v1, v2) ∈ R2, j = 1, 2

and

~F3(v̄) = ξ3v̄√
|v̄|2 + ξ2

3

=

 ξ3v1√
|v̄|2 + ξ2

3

,
ξ3v2√
|v̄|2 + ξ2

3

 , v̄ = (v1, v2) ∈ R2.

We notice that the Jacobian J~Fj (v̄) of ~Fj are uniformly bounded, namely
∣∣∣J~Fj (v̄)

∣∣∣ . 1 for any
v̄ ∈ R2, for j = 1, 2, 3; therefore we can bound the last term in the r.h.s. of (5.9) by∫

R3
|ĝ(ξ)|

∫
R2
|ĝ(η̄, ξ3)|

∣∣∣ ̂̃ρR(ξ̄ − η̄)
∣∣∣ |ξ̄ − η̄|2 dη̄ dξ

≤
∫
R3
|ĝ(ξ)|

∫
R2
|ĝ(η̄, ξ3)|

∣∣∣∆̂x̄ρR(ξ̄ − η̄)
∣∣∣ dη̄ dξ

+
∫
R3
|ĝ(ξ)|

∫
R2
|ĝ(η̄, ξ3)|

∣∣∣∆̂x̄|x̄|2(ξ̄ − η̄)
∣∣∣ dη̄ dξ

=
∫
R3
|ĝ(ξ)| (|ĝ(·, ξ3)| ∗ hR) (ξ̄) dξ +

∫
R3
|ĝ(ξ)| (|ĝ(·, ξ3)| ∗ 4δ) (ξ̄) dξ

=
∫
R3
|ĝ(ξ)| (|ĝ(·, ξ3)| ∗ hR) (ξ̄) dξ + 4

∫
R3
|ĝ(ξ)|2 dξ

(5.11)

where we defined hR =
∣∣∣∆̂x̄ρR

∣∣∣ . We continue in this way: in the first term in the r.h.s. of (5.11)
we first apply the Cauchy-Schwarz’s inequality and then the Young’s inequality for convolutions
with respect to dξ̄, and eventually the Cauchy-Schwarz’s inequality with respect to dξ3 to obtain∫

R3
|ĝ(ξ)| (|ĝ(·, ξ3)| ∗ hR) (ξ̄) dξ =

∫
R

∫
R2
|ĝ(ξ̄, ξ3)| (|ĝ(·, ξ3)| ∗ hR) (ξ̄) dξ̄ dξ3

≤
∫
R
‖ĝ(·, ξ3)‖L2

ξ̄
‖|ĝ(·, ξ3)| ∗ hR‖L2

ξ̄
dξ3

≤ ‖hR‖L1
ξ̄

∫
R
‖ĝ(·, ξ3)‖2L2

ξ̄

dξ3 = ‖hR‖L1
ξ̄
‖ĝ‖2L2 = ‖hR‖L1

ξ̄
‖g‖2L2 ,
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where in the last step we used the Plancherel identity. Since by definition the L1-norm of hR is the
L1-norm of the Fourier transform of ∆x̄ρR, and the latter is a smooth and compactly supported
function by its very construction, then its Fourier transform is still in L1

ξ̄
uniformly in R. Hence

the estimate for the last integral in the r.h.s. of (5.9), recalling that g = |wi,o|2 = |1{|x̄|≥R/10}|2,
can be concluded with∫∫

ĝ(η)∇̂x̄ρ̃R(ξ − η) ·
(
ξj ξ̄

|ξ|
− ηj η̄

|η|

)
ξj
|ξ|
ĝ(ξ) dη dξ . ‖u‖4L4(|x̄|≥R/10) . R

−1‖u‖2
Ḣ1 , (5.12)

where we used (4.15) for the last inequality. By summing up (5.10) and (5.12) we give the bound
for the whole B term in (5.8):

B . R−1‖u‖2
Ḣ1 . (5.13)

The estimate (5.13) in conjunction with (5.7) conclude the estimate for V ′i,i :

V ′i,i . R−1‖u‖2
Ḣ1 . (5.14)

To end up with the full estimate leading to the proof of the main theorem, we are left to study
the remaining term V ′′i,i together with the term W as defined in (5.4).

5.2. Estimate of the remainder HR(u(t)). The V ′′i,i +W term. In order to conclude the
estimate for the term V +W, we are left to control the last term V ′′i,i coming from the splitting in
(5.6), and the term W, see (5.4), that we did not handle so far. A straightforward computation
gives

V ′′i,i +W = 2
∫
x̄ · ∇x̄

(
K ∗ |ui|2

)
|ui|2 dx+ 2

∫
x3∂x3

(
K ∗ |u|2

)
|u|2 dx

= 2
∫
x · ∇

(
K ∗ |ui|2

)
|ui|2 dx+ 2

∫
x3∂x3

(
K ∗ |ui|2

)
|uo|2 dx

+ 2
∫
x3∂x3

(
K ∗ |uo|2

)
|ui|2 dx+ 2

∫
x3∂x3

(
K ∗ |uo|2

)
|uo|2 dx

= −3
∫ (

K ∗ |ui|2
)
|ui|2 dx+ 2

∫
x3∂x3

(
K ∗ |ui|2

)
|uo|2 dx

+ 2
∫
x3∂x3

(
K ∗ |uo|2

)
|ui|2 dx+ 2

∫
x3∂x3

(
K ∗ |uo|2

)
|uo|2 dx

(5.15)

where we used the identity (A.2). By means of (A.4) with f = g = |uo|2 we obtain

2
∫
x3∂x3

(
K ∗ |uo|2

)
|uo|2 dx = −

∫ (
K ∗ |uo|2

)
|uo|2 dx−

∫
ξ3(∂ξ3K̂) ̂|uo|2 ̂|uo|2 dξ (5.16)

while, again by means of (A.4), we write

2
∫
x3∂x3

(
K ∗ |ui|2

)
|uo|2 dx+ 2

∫
x3∂x3

(
K ∗ |uo|2

)
|ui|2 dx

= −2
∫ (

K ∗ |ui|2
)
|uo|2 dx− 2

∫
ξ3(∂ξ3K̂) ̂|ui|2 ̂|uo|2 dξ. (5.17)
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We explicitly write ξ3∂ξ3K̂ and we observe that is bounded:

ξ3∂ξ3K̂ = 8πξ
2
3(ξ2

1 + ξ2
2)

|ξ|4
∈ L∞ξ ; (5.18)

hence (5.16) is simply estimated by

2
∫
x3∂x3

(
K ∗ |uo|2

)
|uo|2 dx . ‖uo‖4L4 . R−1‖u‖2

Ḣ1

by using the L2 7→ L2 continuity of the dipolar kernel for the first integral, while for the second
integral we used the boundedness property (5.18) together with the Plancherel identity, and (4.15).

It remains to handle (5.17). First of all we note that

ξ3∂ξ3K̂ = 8πξ
2
3(ξ2

1 + ξ2
2)

|ξ|4
= 8π

(
ξ2

3
|ξ|2
− ξ4

3
|ξ|4

)
= 8πR̂2

3 − 8πR̂4
3,

where, with abuse of notation, we write R̂2
3 and R̂4

3 to denote the symbols of R2
3 and R4

3,

respectively. This in turn implies that the r.h.s. of (5.17) can be rewritten, for some constants
α1, α2, α3, as

−16π
∫ (
R4

3(|ui|2)
)
|uo|2 dx+

3∑
j=1

αj

∫ (
R2
j (|ui|2)

)
|uo|2 dx.

By splitting ui = wi,i + wi,o with wi,i = 1{|x̄|≤R/10}ui = 1{|x̄|≤R/10}u and wi,o = 1{|x̄|≥R/10}ui =
1{R/10≤|x̄|≤4R}u we decompose each of the terms in the sum involving R2

j ’s as∫ (
R2
j (|ui|2)

)
|uo|2 dx =

∫ (
R2
j (|wi,i|2)

)
|uo|2 dx+

∫ (
R2
j (|wi,o|2)

)
|uo|2 dx

and by using the Cauchy-Schwarz’s inequality, the L2 7→ L2 continuity of the Riesz transform, the
localization properties of wi,o and uo, and (4.15) we obtain∫ (

R2
j (|wi,o|2)

)
|uo|2 dx . ‖wi,o‖2L4‖uo‖2L4 . ‖u‖4L4(|x̄|≥R/10) . R

−1‖u‖2
Ḣ1 . (5.19)

By using (2.12) we estimate∫ (
R2
j (|wi,i|2)

)
|uo|2 dx . R−3‖wi,i‖2L2‖uo‖2L2 . R−3.

With the same decomposition of the function ui we separate∫ (
R4

3(|ui|2)
)
|uo|2 dx =

∫ (
R4

3(|wi,i|2)
)
|uo|2 dx+

∫ (
R4

3(|wi,o|2)
)
|uo|2 dx;

then, similarly to (5.19) we have∫ (
R4

3(|wi,o|2)
)
|uo|2 dx . R−1‖u‖2

Ḣ1 ,
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while by using Corollary 2.2 we can bound∫ (
R4

3(|wi,i|2)
)
|uo|2 dx . R−3‖wi,i‖2L2‖uo‖2L2 . R−3.

The remaining term in (5.15) is −3
∫ (
K ∗ |ui|2

)
|ui|2 dx. By adding and subtracting u to ui we

can infer, by similar computations done before, that

−3
∫ (

K ∗ |ui|2
)
|ui|2 dx = −3

∫ (
K ∗ |u|2

)
|u|2 dx+ ε(R, u)

ε(R, u) . oR(1) +R−1‖u‖2
Ḣ1 .

(5.20)

5.3. Proof of Theorem 1.2. We can now summarize all the previous contributions towards the
final step of the proof. We have, starting from (5.1)-(5.2), that

d2

dt2
VρR+x2

3
(t) ≤ 4

∫
|∇u|2dx+ 6λ1

∫
|u|4dx+ H̃R(u(t))− 2λ2(V +W)

= 4
∫
|∇u|2dx+ 6λ1

∫
|u|4dx+ H̃R(u(t))− 2λ2(Vo,i + V ′i,i + V ′′i,i +W).

Thanks to the estimates (5.5), (5.3), (5.14), and (5.20) which provide a control for the terms Vo,i,
H̃R(u(t)), V ′i,i, and V ′′i,i +W, respectively, we end up with

d2

dt2
VρR+x2

3
(t) ≤ 4G(u(t)) + oR(1) + oR(1)‖u(t)‖2

Ḣ1 .

Therefore by means of Lemma 3.5, Lemma 3.6, and Corollary 3.7, provided R� 1 we infer that
Tmin = Tmax = +∞ via a convexity argument. The proof of Theorem 1.2 is now complete.

Appendix A. Identities for convolution with the dipolar Kernel

We recall here some useful identities often used along the proofs contained in the paper. They
are basically versions for the dipolar kernel K of some identities found by Cipolatti, see [10] in
the context of the Davey-Stewartson system. For our equation (1.2) the crucial identity is

ξ · ∇ξK̂ = 0. (A.1)

We begin with the following.

Lemma A.1. Given a (smooth) functions f the following identity holds true:

2
∫
x · ∇ (K ∗ f) f dx = −3

∫
(K ∗ f) f dx (A.2)

Proof. The identity is proved by means of some properties of the dipolar kernel and its explicit
representation in the frequencies space. We start by considering two (smooth) functions f, g and
we write∫
x · ∇ (K ∗ f) g dx =

∫
x · (∇K ∗ f) g dx =

∫
x ·
(∫
∇K(x− y)f(y) dy

)
g(x) dx

=
∫∫

(x− y) · ∇K(x− y)f(y)g(x) dy dx+
∫ (∫

y · ∇K(x− y)f(y) dy
)
g(x) dx,
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and since the dipolar kernel is an odd function, we continue as follows:∫
x · ∇ (K ∗ f) g dx =

∫
((x · ∇K) ∗ f) g −

∫∫
y · ∇K(y − x)f(y)g(x) dy dx

=
∫

((x · ∇K) ∗ f) g dx−
∫∫

x · ∇K(x− y)f(x)g(y) dx dy

=
∫

((x · ∇K) ∗ f) g dx−
∫
x · (∇K ∗ g)f dx

hence, by using the Plancherel identity and (A.1) we conclude that∫
x · ∇ (K ∗ f) g dx+

∫
x · ∇ (K ∗ g) f dx =

∫
((x · ∇K) ∗ f) g dx

= −
∫
divξ(ξK̂)f̂ ¯̂g = −3

∫
(K ∗ f)g dx.

(A.3)

By plugging f = g in (A.3) we prove (A.2). �

A consequence of the previous identities is the following.

Lemma A.2. Given two (smooth) functions f, g the following identity holds true:∫
x3∂x3 (K ∗ f) g dx+

∫
x3∂x3 (K ∗ g) f dx = −

∫
(K ∗ f) g dx−

∫
ξ3(∂ξ3K̂)f̂ ¯̂g dξ. (A.4)

Proof. Similarly to the previous proof we have:∫
x3∂x3 (K ∗ f) g dx+

∫
x3∂x3 (K ∗ g) f dx =

∫
((x3∂x3K) ∗ f) g dx = −

∫
∂ξ3(ξ3K̂)f̂ ¯̂g dξ

= −
∫

(K ∗ f) g dx−
∫
ξ3(∂ξ3K̂)f̂ ¯̂g dξ.

�

Appendix B. A link between R4
i and the parabolic biharmonic equation

In this section we provide a representation of the pairing between a function g ∈ L2 and the
fourth power of the Riesz transform acting on a function f ∈ L2. Let us consider the parabolic
biharmonic equation

∂tw + ∆2w = 0, (t, x) ∈ R+ × R3. (B.1)

We denote by Pt the linear propagator associated to (B.1), namely w(t, x) := Ptw0(x) denotes the
solution to the equation (B.1) with initial datum w0. We have the following representation result.

Proposition B.1. For any two functions f, g ∈ L2, the following identity holds true:

〈R4
i f, g〉 = −

∫ ∞
0
〈∂4
xi

d

dt
Ptf, g〉t dt. (B.2)
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Proof. By passing to the frequencies space, it is easy to see that P̂tf(ξ) := e−t|ξ|
4
f̂(ξ) and we

observe, by integration by parts, that

ξ4
i |ξ|4

∫ ∞
0

e−t|ξ|
4
t dt = ξ4

i

|ξ|4
; (B.3)

hence ∫ ∞
0
〈∂4
xi

d

dt
Ptf, g〉t dt = 〈

∫ ∞
0

∂4
xi

d

dt
(Ptf)t dt, g〉 = 〈

∫ ∞
0

ξ4
i

d

dt
(e−t|ξ|4 f̂)t dt, ĝ〉

= −〈ξ4
i |ξ|4f̂

∫ ∞
0

e−t|ξ|
4
t dt, ĝ〉 = −〈 ξ

4
i

|ξ|4
f̂, ĝ〉 = −〈R4

i f, g〉,

where the change of order of integration (in time and in space) is justified by means of the
Fubini-Tonelli’s theorem, and we used the Plancherel identity when passing from the frequencies
space to the physical space, and vice versa. �

We now observe that we can explicitly write the heat kernel associated to Pt. We introduce, for
t > 0 and x ∈ R3

pt(x) = α
k(µ)
t3/4

, µ = |x|
t1/4

and
k(µ) = µ−2

∫ ∞
0

e−s
4(µs)3/2J1/2(µs) ds,

where J1/2 is the 1
2 -th Bessel function, and α−1 := 4π

3
∫∞

0 s2k(s) ds is a positive normalization
constant. We refer to [14] for these definitions and further discussions about the heat kernel of
the parabolic biharmonic equation. We recall that the 1

2 -th Bessel function is given by

J1/2(s) = (π/2)−1/2s−1/2 sin(s),

then
Ptf(x) = (pt ∗ f)(x) = c

∫
R3
f(x− y)

∫ ∞
0

1
|y|3

e−ts
4/|y|4s sin (s) ds dy,

and therefore
d

dt
Ptf(x) = −c

∫
R3
f(x− y)

∫ ∞
0

1
|y|3

e−ts
4/|y|4 s

5

|y|4
sin (s) ds dy. (B.4)

By combining (B.2) and (B.4), we can provide an alternative proof of the integral decay estimate
similar to the one in (2.1), of the following (weaker) type: for any couple of functions f, g ∈ L1∩L2,

|〈R4
i f, g〉| . d−1‖g‖L1‖f‖L1 ,

where d = dist(supp(f), supp(g)). We omit the details.
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