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Abstract. We consider the Gross-Pitaevskii equation describing a dipolar Bose-Einstein condensate
without external confinement. We first consider the unstable regime, where the nonlocal nonlinearity
is neither positive nor radially symmetric and standing states are known to exist. We prove that
under the energy threshold given by the ground state, all global in time solutions behave as free waves
asymptotically in time. The ingredients of the proof are variational characterization of the ground states
energy, a suitable profile decomposition theorem and localized virial estimates, enabling to carry out a
Concentration/Compactness and Rigidity scheme. As a byproduct we show that in the stable regime,
where standing states do not exist, any initial data in the energy space scatters.

1. Introduction

The interest concerning the asymptotic dynamics of equations describing a condensate of particles at
very low temperatures speedily increased since the first experimental observation in 1995 of Bose-Einstein
condensate (BEC), see e.g. [1, 8]. In the recent years, the so-called dipolar Bose-Einstein condensate,
namely a condensate made out of particles possessing a permanent electric or magnetic dipole moment,
see e.g. [5, 6, 24,26], has been attracting much attention. At temperatures much smaller than the critical
one, such a model is well described by the wave function u = u(t, x) whose evolution is governed by the
Gross-Pitaevskii equation (GPE),

(1.1) ih
∂u

∂t
= − h2

2m∇
2u+W (x)u+ U0|u|2u+ (Vdip ∗ |u|2)u, x ∈ R3, t > 0,

where t is the time variable, x = (x1, x2, x3) is the space coordinate, h is the Planck constant, m is the
mass of a dipolar particle and W (x) is an external, trapping, real potential. In this paper we consider the
case when the trapping potential W is not active, i.e. assuming W (x) = 0. The coefficient U0 = 4πh2as/m
describes the local interaction between dipoles in the condensate with as the s-wave scattering length
(positive for repulsive interactions and negative for attractive interactions).

The long-range dipolar interaction potential between two dipoles is given by

Vdip(x) =
µ0µ

2
dip

4π
1− 3 cos2(θ)
|x|3

, x ∈ R3,

where µ0 is the vacuum magnetic permeability, µdip is the permanent magnetic dipole moment and θ is
the angle between the dipole axis n and the vector x. For simplicity, we fix the dipole axis as the vector
n = (0, 0, 1). The wave function is normalized according to∫

R3
|u(x, t)|2 dx = N,

where N is the total number of dipolar particles in the dipolar BEC.
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In order to simplify the mathematical analysis we rescale (1.1) into the following dimensionless GPE,

(1.2)

i∂tu+ 1
2∆u = λ1|u|2u+ λ2(K ∗ |u|2)u, (t, x) ∈ R× R3

u(0, x) = u0(x) ∈ H1(R3)
.

The corresponding normalization now reads

N(u(·, t)) := ‖u(·, t)‖22 =
∫
R3
|u(x, t)|2 dx =

∫
R3
|u(x, 0)|2 dx = 1,

and the kernel K is given by

K(x) = x2
1 + x2

2 − 2x2
3

|x|5
.

The physical real parameters λ1,2, which describe the strength of the two nonlinearities, are given by

λ1 = 4πasNγ, λ2 =
mNµ0µ

2
dip

4πh2 γ.

In this paper we consider the case when the two real parameters λ1,2 range in the so called unstable
regime:

(1.3)


λ1 −

4π
3 λ2 < 0 if λ2 > 0

λ1 + 8π
3 λ2 < 0 if λ2 < 0

.

Solutions u(t) ∈ C((−Tmin, Tmax);H1(R3)) to (1.2) have been proved to exist, at least locally in time, by
Carles, Markovich and Sparber in [9], and not only in the unstable regime but also in the complement
region

(1.4)


λ1 −

4π
3 λ2 ≥ 0 if λ2 > 0

λ1 + 8π
3 λ2 ≥ 0 if λ2 < 0

,

which is called the stable regime.

We now recall that solutions to (1.2) conserve mass and energy, namely

(1.5) M(t) =M(u(t)) :=
∫
R3
|u(t)|2 dx =M(0)

and

(1.6) E(t) = E(u(t)) := 1
2

(∫
R3
|∇u(t)|2 + λ1|u(t)|4 + λ2(K ∗ |u(t)|2)|u(t)|2 dx

)
= E(0)

for any t ∈ (−Tmin, Tmax), where Tmin, Tmax ∈ (0,∞] are the minimal and maximal time of existence,
respectively.

The unstable regime is of particular interest since stationary solutions are allowed in this region. More
precisely, stationary states are solutions of the type

u(x, t) = e−iκtu(x),

where κ ∈ R is the chemical potential, u(x) is a time-independent function solving the stationary equation

(1.7) − 1
2∆u+ λ1|u|2u+ λ2(K ∗ |u|2)u+ κu = 0
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constrained on the manifold S(1), where
(1.8) S(1) = {u ∈ H1(R3) s.t. ‖u‖2L2(R3) = 1}.

There are two different approaches to show the existence of standing states.
The first one is due to Antonelli and Sparber, see [3], where existence is proved by means of the Weinstein
method, i.e. as minimizers of the following scaling invariant functional

J(v) :=
‖∇v‖3L2(R3)‖v‖L2(R3)

−λ1‖v‖4L4(R3) − λ2
∫
R3(K ∗ |v|2)|v|2 dx

.

The second strategy, due to the first author and Jeanjean, see [7], relies on topological methods, more
precisely by proving the existence of critical points of the energy functional under the mass constraint
depicted in (1.8). In this approach the parameter κ is found as Lagrange multiplier. Despite the fact the
energy is unbounded from below on S(1), if one restricts to states that are stationary for the evolution
equation, i.e. fulfilling (1.7), then the energy is bounded from below by a positive constant; furthermore,
this constant, corresponding to the mountain pass level, is reached. The mountain pass solutions hence
correspond to least energy states, also called ground states. As a direct consequence of this variational
characterization and using a virial approach, the associated standing waves are proved to be orbitally
unstable.

In [7] is also proved that for sufficiently small initial data in the H1(R3)-norm, then (global) solutions to
(1.2) scatter (for the formal definition, see Definition 1.1), no matter if the equation is considered in the
unstable regime (1.3) or not.

Our aim is to study the long time behaviour of global solutions to (1.2) subject to condition (1.3) up to
some threshold given in term of the ground state energy, by removing therefore the assumption on the
smallness of the initial data. Our strategy follows the Kenig and Merle scheme, developed in the well
celebrated papers [18, 19] to solve the global existence and scattering problems for the energy critical,
focusing, radial nonlinear Schrödinger and Wave Equations in low spatial dimensions, respectively.

Before stating our main result we recall the rigorous definition of scattering. In the following U(t)f =
eit

∆
2 f will denote, with standard notation, the linear evolution driven by the free Schrödinger propagator

of an initial datum f, namely L(t, x) := U(t)f satisfies i∂tL+ 1
2∆L = 0, L(0) = f.

Definition 1.1. Let u0 ∈ H1(R3) be given and u(t, x) ∈ C(R;H1(R3)) be the corresponding unique global
solution (if it exists) to (1.2). Then we say that u(t, x) scatters provided

lim
t→±∞

‖u(t, x)− eit∆
2 u±‖H1(R3) = 0,

for suitable u± ∈ H1(R3).

We point out that is not guaranteed that solutions to (1.2) do exist globally in time, so in the analysis
below we shall also give sufficient conditions such that local in time solutions to (1.2) (whose existence has
been shown in [9]) can be extended globally in time. Let us recall some notation introduced in [7]: the
quantity defined in (1.6) can be rewritten as

E(t) = 1
2

∫
R3
|∇u|2 dx+ 1

2(2π)3

∫
R3

(
λ1 + λ2K̂(ξ)

)
(|̂u|2)2(ξ) dξ

by means of Plancherel identity, where the Fourier transform of K is given by

(1.9) K̂(ξ) = 4π
3

2ξ2
3 − ξ2

2 − ξ2
1

|ξ|2

(see [9] for a proof of the explicit form of K̂.) A trivial computation leads to

K̂ ∈
[
−4

3π,
8
3π
]
.
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We split the energy as sum of the following kinetic and potential energies, respectively defined by

T (u) =
∫
R3
|∇u|2 dx(1.10)

P(u) = 1
(2π)3

∫
R3

(
λ1 + λ2K̂(ξ)

)
(|̂u|2)2(ξ) dξ,(1.11)

and we introduce the quantity (suggested by the Pohozaev identities)

(1.12) G(u) = T (u) + 3
2P(u).

Despite the fact that we are primarily interested in solutions satisfying (1.8), for the mathematical
treatment of the problem it is convenient to consider the generic set of constraints

S(c) =
{
u ∈ H1(R3) s.t. ‖u‖2L2(R3) = c

}
.

Here c > 0 and the case c = 1 trivially corresponds to the normalization (1.8). Given c > 0, E(u) has
a mountain pass geometry on S(c) (see the monograph [2] for a detailed treatment of this topic). More
precisely, there exists β > 0 such that

γ(c) := inf
g∈Γ(c)

max
t∈[0,1]

E(g(t)) > max
{

max
g∈Γ(c)

E(g(0)), max
g∈Γ(c)

E(g(1))
}

holds in the set
Γ(c) = {g ∈ C([0, 1];S(c)) s.t. g(0) ∈ Aβ , E(g(1)) < 0} ,

where
Aβ =

{
u ∈ S(c) s.t. ‖∇u‖2L2(R3) ≤ β

}
.

It it standard, see [2], that the mountain pass geometry induces the existence of a Palais-Smale sequence
at the level γ(c), namely a sequence {un}n∈N ⊂ S(c) such that, as n→∞,

E(un) = γ(c) + o(1), ‖E ′|S(c)(un)‖H−1 = o(1).
If one can show in addition the compactness of {un}n∈N, namely that up to a subsequence, un → u in
H1(R3), then a critical point is found at the level γ(c). This is exactly what happens under the assumptions
(1.3). We can summarize the last paragraph in the following.

Theorem 1.2. [7, Theorem 1.1] Let c > 0 and assume that (1.3) holds. Then E(u) has a mountain pass
geometry on S(c) and there exists a couple {uc, κc} ∈ H1(R3)× R+ solution of (1.7) with ‖uc‖2L2(R3) = c

and E(uc) = γ(c). In addition uc ∈ S(c) is a ground state.

We moreover recall that the energy level γ(c) has the following variational characterization that will be
crucial to establish the scattering result below:
(1.13) γ(c) = inf{E(u) s.t. u ∈ V (u)} where V (c) = {u ∈ H1(R3) s.t. ‖u‖2L2(R3) = c and G(u) = 0}.

In [7], among the other results, the following sufficient conditions are given in order to have global existence
of solution to (1.2).

Theorem 1.3. [7, Theorem 1.3] If E(u0) < γ(c), with c = ‖u0‖2L2(R3) and G(u0) > 0, then the (local in time)
solution u ∈ C((−Tmin, Tmax);H1(R3)) to (1.2) can be extended globally in time, i.e. Tmin = Tmax =∞,
and

G(u(t)) > 0
for all t ∈ R.

Our aim in this paper is to show that something more can actually be said about the solution to (1.2)
under the conditions of Theorem 1.3. In fact, in that region all solutions scatter. The main theorem of the
paper is then as follows.
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Theorem 1.4. For any initial datum u0 ∈ H1(R3) satisfying E(u0) < γ(c), with c = ‖u0‖2L2(R3) and
G(u0) > 0, then the corresponding global solution to (1.2) scatters.

Remark 1.5. It is worth mentioning that we do not assume neither finite variance nor spherical symmetry
of the solutions. Indeed in the radial setting, the equation would reduce to a classical cubic NLS due to the
fact that the nonlocal nonlinearity can be defined as a Calderón-Zigmund operator with kernel |x|−3O(x)
where O is a zero-order function having zero average on the sphere (see [9]).

Remark 1.6. It shall be emphasised that the fact that λ1, λ2 are in the unstable regime (1.3) does not
imply that the potential energy P defined in (1.11) is negative for any function in H1(R3), see Lemma 2.1
below. Despite the fact that when the potential energy P is positive the nonlinear term acts as a defocusing
nonlinearity, we are not able to exclude that along the time evolution P(u(x, t)) changes sign. For this
reason the conditions G(u0) > 0 and E(u0) < γ(c) are necessary even when P(u0) > 0.

The proof of Theorem 1.4 is based on the concentration/compactness and rigidity argument.
We recall briefly the general strategy (based on a contradiction argument) of the Kenig and Merle road
map. As already recalled, in [7] it has been proved that for sufficiently small H1(R3) initial data, solutions
are global and scatter. Suppose now that the threshold for scattering is strictly below the claimed one. The
tool called profile decomposition, based on concentration/compactness principles, proves the existence of a
global but non-scattering solution (the so called minimal element or soliton-like solution, that we denote
usl) at the threshold between scattering and non-scattering. Secondly, it is proved that the flow of this
minimal element is (up to some symmetries) a precompact subset of H1(R3) and that therefore it remains
spatially localized uniformly in time along a continuous path x(t) ∈ R3. This uniform localization enables
the use of a local virial identity to establish a strictly positive lower bound on the convexity (in time) of the
localized variance. More precisely, once defines the localized variance as zR(t) = R2 ∫

R3 χ
(
x
R

)
|usl(t, x)|2 dx,

where χ ∈ C∞c (R3) is a suitable cut-off function and R > 1 is a rescaling parameter. The goal is to connect
the second derivative of this quantity with the function G, introduced in (1.12), as follows

(1.14) d2

dt2
zR(t) = 4G(usl(t)) + o(1),

where the error term decays, uniformly in time, as R increases. A lower positive bound on G(usl(t)),
following from the variational characterization of the mountain pass energy and from the properties of the
minimal element, finally permits one to exhibit a contradiction, since such a minimal element is forced to be
the null function, while by construction it is non trivial. Moreover we underline that for any initial datum
u0 ∈ H1(R3) satisfying E(u0) < γ(c), with c = ‖u0‖2L2 and G(u0) > 0, using our variational approach we
are able to derive an explicit lower bound on G(u(t)) for the corresponding global solution given by

(1.15) G(u(t)) ≥ min{γ(c)− E(u0), E(u0)}.

Remark 1.7. From the identity E − 1
3G = 1

6T , it is evident that E > 0 if G > 0. Our lower bound on G(u(t))
follows only from the variational characterization of the mountain pass energy and not from the fact that
this critical energy level is achieved by the ground state. Despite the fact that in Proposition 2.3 we show
that our conditions for scattering coincide with the one in the Kenig and Merle approach, we never use the
fact that the ground state exists.

The main difficulty concerning (1.14) is clearly the presence of the nonlocal dipolar term that makes the
analysis more delicate with respect to local nonlinearities. In particular, for the dipolar interaction term,
despite the nice identity x · ∇K(x) = −3K(x), one cannot use the brutal estimate |x · ∇K(x)| = 3|K(x)|
due to the singularity of the kernel at the origin. This argument is, as a matter of fact, the one that
simplifies the computations for nonlocal nonlinearities with positive kernel like for the Coulomb kernel of
the form K(x) = 1

|x| . In our case this rough estimate is not allowed.
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We conclude this introduction by pointing out how in the stable regime (1.4) the potential energy P is
nonnegative for any function in H1(R3). Indeed let us the consider λ2 > 0, λ1 − 4π

3 πλ2 > 0, then we have

P(u) = 1
(2π)3

∫
R3

(
λ1 + λ2K̂(ξ)

)
(|̂u|2)2(ξ) dξ ≥ 1

(2π)3

∫
R3

(
λ1 −

4π
3 λ2

)
(|̂u|2)2(ξ) dξ ≥ 0.

From this fact it is clear that stationary states are not allowed in this regime due to the fact that V (c) = ∅.
Hence following verbatim the argument for the unstable regime without any other assumptions, we have
the following result (see [12, Section 7] for an analogous remark about the cubic defocusing NLS).

Corollary 1.8. In the stable regime for any initial datum in H1(R3), the corresponding global solution to
(1.2) scatters.

1.1. Notations. In what follows, we will use the notations below.

For 1 ≤ p ≤ ∞, the Lp = Lp(Rn;C) are the classical Lebesgue spaces, while W 1,r = W 1,r(R3;C)
is defined as the space of function in Lp with distributional derivatives in Lp, with the usual norm
‖f‖pW 1,p = ‖f‖pLp + ‖∇f‖pLp . When r = 2, we set W 1,2 := H1 = H1(R3;C).

Given an interval I ⊆ R, bounded or unbounded, we define by LpIX = Lp(I;X) the Bochner space of
vector-valued functions f : I 7→ X endowed with the norm ‖f‖Lp

I
X = ‖f‖Lpt (I;X) =

(∫
I
‖f(s)‖pX ds

)1/p for
1 ≤ p <∞, with similar modification as above for p =∞. In case I = R we simply write LpX.

For a normed (Banach) space (X, ‖ · ‖) we denote by BR(X) the open ball of radius R with center at the
origin, i.e. BR(X) = {f ∈ X; ‖f‖ < R}; if X = R3, then B(x0, R) is the ball of radius R centered at x0.

The operator Ff(ξ) = f̂(ξ) is the standard Fourier Transform, F−1 being its inverse. The operator τy
denotes the translation operator τyf(x) := f(x− y), while f ∗ g is the convolution operator between f and
g. <z and =z are the common notations for the real and imaginary parts of a complex number z.

Given a measurable set O ⊆ Rd, 1O(x) is the indicator function of O.

Given two quantities A and B, we denote A . B (A & B, respectively) if there exists a positive constant
C such that A ≤ CB (A ≥ CB, respectively). If both the relations hold true, we write A ∼ B.

Finally, for 1 ≤ p ≤ ∞, we denote its conjugate by p′ := p
p−1 , and since we work on R3, we simply denote∫

=
∫
R3 .

2. Variational Estimates

We shall notice that the fact that λ1, λ2 belong to the unstable regime does not guarantee that the
potential energy P(u) fulfils the condition P(u) < 0. As an example of this fact we show the following.

Lemma 2.1. Let λ1, λ2, belong to the unstable regime (1.3) and without loss of generality λ2 > 0. Assume
moreover the additional restriction λ1 + 8

3πλ2 > 0. Then there exists u ∈ H1 with ‖u‖2L2 = c such that

P(u) > 0.

Proof. We will show the existence of a function u ∈ H1 with ‖u‖2L2 = c such that P(u) > 0 by scaling
argument. Let us consider

uµ = µu(µ1/2x1, µ
1/2x2, µx3).
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This transformation preserves the L2-norm and is such that the potential energy rescales straightforwardly
as

P(uµ) = cµ2
∫ (

λ1 + 4
3πλ2

2µ2ξ2
3 − µξ2

1 − µξ2
2

µξ2
1 + µξ2

2 + µ2ξ2
3

)
(|̂u|2)2 dξ,

where we used the scaling property of the Fourier transform for rescaled functions. Now, with our
assumptions, we have

lim
µ→∞

λ1 + 4
3πλ2

2µ2ξ2
3 − µξ2

1 − µξ2
2

µξ2
1 + µξ2

2 + µ2ξ2
3

= λ1 + 8
3πλ2 > 0,

which implies that limµ→∞ P(uµ) = +∞ for all u thanks to the Lebesgue theorem. �

It is important to notice that if the potential energy is negative it is possible to introduce a Weinstein-
like functional analogous to the one arising from the Gagliardo-Nirenberg inequality, whose maximizers
correspond to the ground states. In [3] is proved the following result ensuring existence of a minimizer for
the functional below:

(2.1) J(v) =
‖∇v‖3L2‖v‖L2

−λ1‖v‖4L4 − λ2
∫

(K ∗ |v|2)|v|2 dx
.

More precisely the result is as follows.

Proposition 2.2. [3, Proposition 3.2] Under the hypothesis (1.3) there exists a minimizer vm ∈ H1 to (2.1),
namely inf{J(v) s.t. v ∈ H1, v 6= 0 and P(v) < 0} is attained at vm, i.e. J(vm) = m := inf{J(v) s.t. v ∈
H1, v 6= 0 and P(v) < 0}. Moreover, by the scaling invariance property of the functional J, it can be
assumed that ‖vm‖L2 = ‖∇vm‖L2 = 1. Furthermore vm solves

(2.2) − 3∆vm + 4m
(
λ1|vm|2vm + λ2(K ∗ |vm|2)vm

)
+ vm = 0.

Let us observe that if we have a solution V to −α∆V + β
(
λ1|V |2V + λ2(K ∗ |V |2)V

)
+ V = 0 then

W = γV (ρx) satisfies

−1
2∆W = −γρ

2

2
α

α
∆V (ρx) = γρ2

2α
(
−β
(
λ1|V |2V + λ2(K ∗ |V |2)V

)
(ρx)− V (ρx)

)
= γρ2

2α

(
− β

γ3

(
λ1|W |2W + λ2(K ∗ |W |2)W

)
− 1
γ
W

)
= − ρ2β

2αγ2

(
λ1|W |2W + λ2(K ∗ |W |2)W

)
− ρ2

2αW

and so by choosing

ρ2 = 2α =⇒ ρ2β

2αγ2 = β

γ2

and
γ =

√
β

we get

−1
2∆W +

(
λ1|W |2W + λ2(K ∗ |W |2)W

)
+W = 0.

Hence, with V = vm, α = 3 and β = 4m we get that Q(x) = 2
√
mvm(

√
6x) satisfies

(2.3) − 1
2∆Q+

(
λ1|Q|2Q+ λ2(K ∗ |Q|2)Q

)
+Q = 0.

Consider therefore Q be the minimizer for the Weinstein functional (2.1) which fulfils (2.3). We have the
following.
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Proposition 2.3. Under the hypothesis of Theorem 1.3 the initial datum u0 satisfies
(2.4) M(u0)E(u0) <M(Q)E(Q)
and
(2.5) ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 .

Moreover, with an analogous reasoning, conditions expressed in (2.4) and (2.5) imply that the initial datum
falls into the hypothesis of Theorem 1.3.

Proof. From the definition of the quantities in (1.6), (1.10) and (1.11) related to (1.2), we straightforwardly
have

E(u0)− 1
3G(u0) = 1

6T (u0).

We notice that Qµ = µQ(µx) is again a minimizer for the Weinstein functional with
‖Qµ‖2L2 = µ−1‖Q‖2L2 ,

‖∇Qµ‖2L2 = µ‖∇Q‖2L2 .

We notice that Q(x)eit is a standing wave solution to the evolution equation and by the symmetry of the
equation it is well known that Qµeiµ

2t = µQ(µx)eiµ2t is another standing wave solution to

−1
2∆Qµ +

(
λ1|Qµ|2Qµ + λ2(K ∗ |Qµ|2)Qµ

)
+ µ2Qµ = 0,

that necessarily satisfies G(Qµ) = 0. Hence E(Qµ) = 1
6‖∇Qµ‖

2
L2 . From the condition E(u) < γ(c) = E(Qµ)

with c = ‖u‖2L2 = ‖Qµ‖2L2 , we get
‖u‖2L2E(u) < ‖Q‖2L2E(Q),

which corresponds to (2.4). Moreover if G(u) > 0 and E(u) < γ(c) = E(Qµ), then we have
1
6‖∇Qµ‖

2
L2 = E(Qµ) > E(u) > E(u)− 1

3G(u) = 1
6‖∇u‖

2
L2

and hence
‖u‖L2‖∇u‖L2 < ‖Q‖L2‖∇Q‖L2 .

�

Remark 2.4. It is worth doing a brief parallelism between the Cauchy problem for the Gross-Pitaevkii
equation (1.2) and the Cauchy problem for the focusing cubic NLS in three dimension

(2.6)

i∂tw + 1
2∆w = −|w|2w, (t, x) ∈ R× R3

w(0, x) = w0(x) ∈ H1
.

In [16] sufficient conditions for global existence (and scattering) for (2.6) have been shown. They are given
in terms of the energy and the mass of initial data with respect to the same quantities associated to the
ground state S for (2.6), the latter being the solution to

−1
2∆S + S = |S|2S.

The two conditions are precisely
(2.7) M(w0)E(w0) < M(S)E(S)
and
(2.8) ‖w0‖L2‖∇w0‖L2 < ‖S‖L2‖∇S‖L2 ,

where
M(w) = ‖w‖2L2 , E(w) = 1

2

∫
|∇w(t)|2 − |w(t)|4 dx
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are conserved along the NLS flow (notice that they are exactly the analogous quantities defined in (1.5)
and (1.6) for (1.2)). Conditions (2.7) and (2.8) ensure a uniform bound on the H1 norm of the solution
w(t) to (2.6) on its lifespan, hence it exists for every time according to the well-known blow-up alternative
criterium. Therefore our assumptions G(u) > 0 and E(u) < γ(c) play the same role for (1.2) as (2.7) and
(2.8) in the context of the cubic focusing NLS.

We pass now to understand the geometry of E(u) on S(c), and with this aim we introduce the scaling

uµ(x) = µ3/2u(µx), µ > 0.
The next lemma is contained in [7].

Lemma 2.5. [7, Lemma 3.3] Let u ∈ S(c) be such that
∫

(λ1 + λ2K̂(ξ))(|̂u|2)2 dξ < 0 then we have:
(1) there exists a unique µ?(u) > 0, such that uµ? ∈ V (c) (defined in (1.13));
(2) the map µ 7→ E(uµ) is concave on [µ?,∞);
(3) µ?(u) < 1 if and only if G(u) < 0;
(4) µ?(u) = 1 if and only if G(u) = 0;
(5) the functional G satisfies

G(uµ)
{
> 0, ∀µ ∈ (0, µ?(u))
< 0, ∀µ ∈ (µ?(u),+∞)

;

(6) E(uµ) < E(uµ?), for any µ > 0 and µ 6= µ?;
(7) ∂

∂µE(uµ) = 1
µG(uµ), ∀µ > 0.

Proof. Since

(2.9) E(uµ) = µ2

2 T (u) + µ3

2 P(u)

we have that
∂

∂µ
E(uµ) = µT (u) + 3

2µ
2P(u) = 1

µ
G(uµ).

Now we denote
y(µ) = µT (u) + 3

2µ
2P(u),

and we observe that G(uµ) = µy(µ) which proves (7). After direct calculations, we see that:
y′(µ) = T (u) + 3µP(u),
y′′(µ) = 3P(u).

From the expression of y′(µ) and the assumption P(u) < 0 we know that y′(µ) has a unique zero that we
denote µ0 > 0 such that µ0 is the unique maximum point of y(µ). Thus in particular the function y(µ)
satisfies:

(i) y(µ0) = maxµ>0 y(µ);
(ii) limµ→+∞ y(µ) = −∞;
(iii) y(µ) decreases strictly in [µ0,+∞) and increases strictly in (0, µ0].

By the continuity of y(µ), we deduce that y(µ) has a unique zero µ? > 0. Then G(uµ?) = 0 and point (1)
follows. Points (2)–(5) are also easy consequences of (i)–(iii). Finally, since y(µ) > 0 on (0, µ?(u)) and
y(µ) < 0 on (µ?(u),∞) we get (6). �

We are now in the position to state a lower bound for (1.12).

Proposition 2.6. Under the hypothesis of Theorem 1.3

4
∫
|∇u|2 dx+ 6λ1

∫
|u|4 dx+ 6λ2

∫
(K ∗ |u|2)|u|2 dx ≥ 4 min{γ(c)− E(u0), E(u0)} := α.
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Proof. We shall distinguish two cases which depend on the sign of the nonlinear term. At a given time
t̃ we have either P(u(t̃)) > 0 or P(u(t̃)) < 0. Let t̃ therefore be an arbitrary but fixed time and simply
denote u = u(x, t̃). We consider both cases:

Case 1: P(u) > 0. In this case the estimate is trivial. Indeed, G(u) = 2E(u) + 1
2P(u) > 2E(u) > E(u).

Case 2: P(u) < 0. In this case we argue using the scaling of Lemma 2.5. First let us notice that if∣∣∣P(u)
2

∣∣∣ < E(u) then G(u) = 2E(u) + P(u)
2 > E(u) then the lower bound is achieved. We assume hence that∣∣∣P(u)

2

∣∣∣ ≥ E(u). Let us rescale the function u according to the scaling of Lemma 2.5 such that uµ? ∈ V (c)
and let us express E(uµ?)− E(u) as

E(uµ
?

)− E(u) = (µ? − 1) ∂
∂µ
E(uµ) |µ=µ0

with 1 < µ0 < µ?, according to the previous Lemma. Now we claim that

(2.10) µ? < 2 and ∂

∂µ
E(uµ) |µ=µ0<

∂

∂µ
E(uµ) |µ=1= G(u).

From the claim we get the desired estimate. Indeed,

γ(c)− E(u0) ≤ E(uµ
?

)− E(u) ≤ G(u),
and this concludes the proof.
Thus, it remains to prove (2.10). From (2.9) we get that E(uµ) < 0 for µ > T (u)

|P(u)| , hence µ
? < T (u)

|P(u)| .
Now we notice that the assumption 1

2 |P (u)| ≥ E(u) implies that T (u)
|P(u)| = 2E(u)+|P(u)|

|P(u)| ≤ 2. To prove
∂
∂µE(uµ) |µ=µ0< G(u) it is sufficient to show that ∂

∂µE(uµ) is monotone decreasing when µ > 1. Direct
computation gives in fact

∂2

∂2µ
E(uµ) = T (u) + 3µP(u) < 0

provided that µ > T (u)
3|P(u)| = 2E(u)+|P(u)|

3|P(u)| . Now the condition 1
2 |P (u)| ≥ E(u) implies that

2E(u) + |P(u)|
3|P(u)| ≤ 2

3 .

The fact that µ0 > 1 proves that claim. Summing up all the estimates we get
G(u) > min{γ(c)− E(u0), E(u0)}.

�

3. Small data theory and perturbative nonlinear results

We collect here some perturbative results for (1.2). To lighten the exposition, we just give here the
statements, postponing the proofs until Appendix B. The next two Lemmas are in the framework of
the so-called Small data Theory, which is actually the first cornerstone on which the Kenig and Merle
approach is built. The first one ensures that if the initial datum is sufficiently small in the H1-norm, then
its nonlinear evolution under the Gross-Pitaevskii flow (1.2) is global.

Lemma 3.1. There exists a radius ρ > 0 such that if u0 ∈ Bρ(H1) then the corresponding solution
u ∈ C(−Tmin, Tmax);H1) to (1.2) with u0 as initial datum is global, i.e. Tmin = Tmax = +∞.

The second one claims that if the initial datum is small enough (possibly smaller than the previous one),
still in the H1 space, then the global solution to (1.2) actually behaves like a free wave asymptotically in
time.
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Lemma 3.2. There exists δ > 0 such that for any u0 ∈ Bδ(H1), the solution u(t, x) to the Cauchy problem
(1.2) scatters to a linear solution in H1.

The following states that if a global solution to (1.2) enjoys some uniform spacetime control, then it scatters.

Lemma 3.3. If u(t, x) ∈ C(R;H1) ∩ L8L4 is a solution to (1.2), then it scatters.

Remark 3.4. It is worth mentioning that if a C(R;H1) solution to (1.2) scatters, then it belongs to L8L4.

We conclude this preliminary tools section with a small perturbation result.

Lemma 3.5. For everyM > 0 there exist ε = ε(M) > 0 and C = C(M) > 0 such that: if u(t, x) ∈ C(R;H1)
is the unique global solution to (1.2) and w ∈ C(R;H1) ∩ L8L4 is a global solution to the perturbed problemi∂tw + 1

2∆w = λ1|w|2w + λ2(K ∗ |w|2)w + e(t, x)

w(0, x) = w0 ∈ H1

satisfying the conditions ‖w‖L8L4 ≤M, ‖
∫ t
t0
U(t−s)e(s) ds‖L8L4 . ε and ‖U(t−t0)(u(t0)−w(t0))‖L8L4 ≤ ε,

then u ∈ L8L4 and ‖u− w‖L8L4 . ε.

Remark 3.6. Let us mention that the term e(t, x) in Lemma 3.5 is meant as an error. The main tool in the
construction of a minimal (with respect to the energy) global but not scattering solution to (1.2) which
will be carried out in Section 5, will be the profile decomposition theorem contained in the Section below.
It is worth mentioning since now on that the profile decomposition theorem is a purely linear statement,
though we are concerned with the construction of a nonlinear solitone-like solution. Therefore Lemma 3.5
will be crucial to absorb the error terms that will be introduced once one passes from the linear profiles
given by Theorem 4.1 to nonlinear profiles.

4. Linear Profile Decomposition and Nonlinear Profiles

The main ingredient in the construction of the minimal element is a suitable profile decomposition
theorem. It is worth mentioning that this kind of result goes back to the work of Gérard, see [14], where is
given an explicit characterization of the defect of compactness for the Sobolev embeddings. Pioneering
results for evolution equations are the works by Bahouri and Gérard, see [4], for the critical wave equation,
by Keraani, see [20], about the defect of compactness for the Strichartz embeddings, and by Merle and Vega,
see [23], how to treat concentration phenomena for the two dimensional mass critical nonlinear Schrödinger
equation.

If it were not for the presence of the nonlocal term, the next linear result in the non-radial setting would
be exactly the same given by Duyckaerts, Holmer and Roudenko in [12], which in turn extended the one in
Holmer and Roudenko [16] removing the spherical symmetry assumption of the this last mentioned paper.
For (1.2), an additional term must be dealt with, so at first we state the theorem in [12], then we will show
how to manage with the nonlocal term of (1.2).

Theorem 4.1. Given a bounded sequence {vn}n∈N ⊂ H1, ∀ J ∈ N and ∀ 1 ≤ j ≤ J there exist sequences of
time and space translation parameters {tjn}n∈N ⊂ R, {xjn}n∈N ⊂ R3 and profiles ψj ∈ H1 for j = 1, . . . , J
and RJn such that, up to subsequences,

(4.1) vn =
∑

1≤j≤J
U(−tjn)τxjnψ

j +RJn

with the following properties:
• [Dichotomy of the parameters] for any fixed j ∈ {1, . . . , J}

either tjn = 0 ∀n ∈ N or tjn → ±∞,
either xjn = 0 ∀n ∈ N or xjn → ±∞;
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• [Divergence property] for any j 6= k ∈ {1, . . . , J}

|xjn − xkn|+ |tjn − tkn|
n→∞−→ ∞;

• [Smallness of the remainder] ∀ ε > 0 ∃ J̃ = J̃(ε) such that, for any J ≥ J̃

(4.2) lim sup
n→∞

‖U(t)RJn‖L∞L3∩L8L4 ≤ ε;

• [Pythagorean expansion of mass and kinetic energy] the mass and the quadratic energy term are
almost orthogonal, namely as n→∞

‖vn‖2L2 =
∑

1≤j≤J
‖ψj‖2L2 + ‖RJn‖2L2 + o(1), ∀ J ∈ N,(4.3)

‖vn‖2H1 =
∑

1≤j≤J
‖ψj‖2H1 + ‖RJn‖2H1 + o(1), ∀ J ∈ N;(4.4)

• [Pythagorean expansion of the local potential energy] ∀ J ∈ N, as n→∞

(4.5) ‖vn‖4L4 =
∑

1≤j≤J
‖U(−tjn)τxjnψ

j‖4L4 + ‖RJn‖4L4 + o(1).

Remark 4.2. Let us briefly comment that the dichotomy of the parameters comes from the fact that if the
sequence {tn}n∈N is bounded, then up to subsequences it converges to some t̄ and similarly can be claimed
for the space translation sequence {xn}n∈N. Therefore, in case the sequences of parameters are bounded, up
to translate in time and space the profiles ψj , they can be assumed to be the trivial ones. The divergence
property instead implies that the profiles weakly interact each other, leading to the orthogonality relations
in the theorem.

If the nonlocal term in (1.2) were not present, namely λ2 = 0, summing up (4.4) and (4.5) would lead
to the so called orthogonal decomposition of the energy. But in our case we must deal with the nonlocal
interaction term λ2

∫
(K ∗ |v|2)|v|2. The next proposition aims to show exactly that what is inferred in (4.5)

has its counterpart also for the dipolar interaction energy.

Proposition 4.3. Under the same hypothesis of Theorem 4.1, the following Orthogonal Expansion of the
nonlocal energy can be claimed: for any J ∈ N, as n→∞

(4.6)

∫
(K ∗ |vn|2)|vn|2 dx =

∑
1≤j≤J

∫
(K ∗ |U(−tjn)τxjnψ

j |2)|U(−tjn)τxjnψ
j |2 dx

+
∫

(K ∗ |RJn|2)|RJn|2 dx+ o(1).

Proof. Up to reordering the indexes, we may suppose that there exists J̄ such that:
Case 1 : tjn = 0 for any n ∈ N, if 1 ≤ j ≤ J̄ ;
Case 2 : |tjn| → ∞ as n→∞ if J̄ + 1 ≤ j ≤ J.
Due to the divergence property in Theorem 4.1, in the situation of Case 1, given two different indexes
j 6= k ∈

{
1, . . . , J̄

}
then |xjn − xkn| → ∞ as n→∞ and this implies the weak interaction for the cross term

in the expression below:∫∫
K(x− y)

∣∣∣∣∣∣
J̄∑
j=1

U(−tjn)ψj(y − xjn)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

J̄∑
j=1

U(−tjn)ψj(x− xjn)

∣∣∣∣∣∣
2

dy dx

=
∫∫

K(x− y)

∣∣∣∣∣∣
J̄∑
j=1

ψj(y − xjn)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

J̄∑
j=1

ψj(x− xjn)

∣∣∣∣∣∣
2

dy dx.
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More precisely, since K ∗ τzg = τz(K ∗ g), then as |z − z′| → ∞

(4.7)
∫

(K ∗ τzg)(x)τz′h(x) dx =
∫
τz(K ∗ g)(x)τz′h(x) dx = o(1).

Hence (4.7) implies that in the situation delineated in Case 1

(4.8)

∫∫
K(x− y)

∣∣∣∣∣∣
J̄∑
j=1

ψj(y − xjn)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

J̄∑
j=1

ψj(y − xjn)

∣∣∣∣∣∣
2

dy dx

=
J̄∑
j=1

∫∫
K(x− y)

∣∣ψj(y − xjn)
∣∣2 ∣∣ψj(y − xjn)

∣∣2 dy dx
=

J̄∑
j=1

∫∫
K(x− y)

∣∣U(−tjn)ψj(y − xjn)
∣∣2 ∣∣U(−tjn)ψj(y − xjn)

∣∣2 dy dx.
Under the condition illustrated in Case 2 instead, the continuity property of the operator K ∗ f, mapping
continuously Lp into itself for any p ∈ (1,∞), yields, by using the Cauchy-Schwarz inequality and the
continuity property with p = 2,

(4.9)

∫
(K ∗ (|U(−tjn)ψj(· − xjn)|2))(x)|U(−tjn)ψj(· − xjn)|2(x) dx

. ‖K ∗ (|U(−tjn)ψj(· − xjn)|2)‖L2‖|U(−tjn)ψj(· − xjn)|2‖L2

. ‖U(−tjn)ψj‖4L4
n→∞−→ 0.

The last decay property follows by the dispersive estimate (A.2) of the Schrödinger free propagator and the
fact that U(t) is an isometry on L2 (actually, on any Hs space), concluding with a density argument by
considering at first ψj ∈ L4/3 ∩H1. Summing up the results in (4.8) and (4.9) we claim that for n→∞

∫∫
K(x− y)

∣∣∣∣∣∣
J∑
j=1

U(−tjn)ψj(y − xjn)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

J∑
j=1

U(−tjn)ψj(x− xjn)

∣∣∣∣∣∣
2

dy dx

=
J∑
j=1

∫∫
K(x− y)

∣∣U(−tjn)ψj(y − xjn)
∣∣2 ∣∣U(−tjn)ψj(x− xjn)

∣∣2 dy dx+ o(1).

Recall from (4.6) that we aim to prove that the quantity
(4.10)

I :=
∫

(K ∗ |vn|2)|vn|2 dx−
J∑
j=1

∫
(K ∗ |U(−tjn)τxjnψ

j |2)|U(−tjn)τxjnψ
j |2 dx−

∫
(K ∗ |RJn|2)|RJn|2 dx

=
∫

(K ∗ |vn|2)|vn|2 dx−
J∑
j=1

∫
(K ∗ |U(−tjn)τxjnψ

j |2)|U(−tjn)τxjnψ
j |2 dx−

∫
(K ∗ |RJn|2)|RJn|2 dx

±
∫

(K ∗ |vn −RLn |2)|vn −RLn |2 dx±
∫

(K ∗ |RJn −RLn |2)|RJn −RLn |2 dx

goes to zero as n→∞, where L is a fixed positive integer. To shorten the notation we define
gLn = vn −RLn
rL,Jn = RLn −RJn
ujn = U(−tjn)τxjnψ

j
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therefore I can be estimated as

I ≤
∣∣∣∣∫ (K ∗ |vn|2)|vn|2 dx−

∫
(K ∗ |gLn |2)|gLn |2 dx

∣∣∣∣
+
∣∣∣∣∫ (K ∗ |rL,Jn |2)|rL,Jn |2 dx−

∫
(K ∗ |RJn|2)|RJn|2 dx

∣∣∣∣
+

∣∣∣∣∣∣
∫

(K ∗ |gLn |2)|gLn |2 dx−
J∑
j=1

∫
(K ∗ |ujn|2)|ujn|2 dx−

∫
(K ∗ |rL,Jn |2)|rL,Jn |2 dx

∣∣∣∣∣∣
= I + II + III

and we show that this three quantities go towards zero as n→∞. Let us begin with the first term I.

I ≤
∣∣∣∣∫∫ K(x− y)

(
|vn(y)|2|vn(x)|2 − |(gLn (y)|2|gLn (x)|2

)
dy dx

∣∣∣∣
≤
∣∣∣∣∫∫ K(x− y)Π4 (vn(x), v̄n(x), vn(y), v̄n(y), RLn(x), R̄Ln(x), RLn(y), R̄Ln(y)

)
dy dx

∣∣∣∣ ,
where Π4 (vn(x), v̄n(x), vn(y), v̄n(y), RKn (x), R̄Ln(x), RLn(y), R̄Ln(y)

)
is an homogeneous polynomial of order

4 not involving any monomial consisting in only vn, v̄n’s terms, hence it can be estimated by using the
continuity property of the convolution with the kernel K, obtaining

I . ‖RLn‖4L4 + ‖vn‖3L4‖RLn‖L4 + ‖vn‖2L4‖RLn‖2L4

. ‖RLn‖4L4 + ‖RLn‖2L4 + ‖RLn‖L4 ,

where we used that {vn}n∈N is uniformly bounded in L4 since it is bounded in H1, by Sobolev embedding.
Since

‖RLn‖L4 ≤ ‖U(t)RLn‖L∞L4 ≤ ‖|U(t)RLn |1/2‖L∞L12‖|U(t)RLn |1/2‖L∞L6

≤ ‖U(t)RLn‖
1/2
L∞L3‖U(t)RLn‖

1/2
L∞L6

combining (4.2) and (4.4) one obtains

lim sup
J→∞

lim
n→∞

‖RJn‖L∞L4 = 0.

Hence, for any ε > 0 there exists L large enough and n̄ such that for any n > n̄ the term I ≤ ε/3. The
same analysis can be carried out for II, therefore also II ≤ ε/3. Let turn the attention on the last term

III =

∣∣∣∣∣∣
∫

(K ∗ |gLn |2)|gLn |2 dx−
J∑
j=1

∫
(K ∗ |ujn|2)|ujn|2 dx−

∫
(K ∗ |rL,Jn |2)|rL,Jn |2 dx

∣∣∣∣∣∣ .
By definition 

gLn = vn −RLn =
∑L
j=1 u

j
n

gJn = vn −RJn =
∑J
j=1 u

j
n

RLn −RJn =
∑J
j=L+1 u

j
n

,
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then

III ≤

∣∣∣∣∣∣∣
∫∫

K(x− y)

∣∣∣∣∣∣
L∑
j=1

ujn(y)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

L∑
j=1

ujn(x)

∣∣∣∣∣∣
2

dy dx−
L∑
j=1

∫∫
K(x− y)|ujn(y)|2|ujn(x)|2 dy dx

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫∫

K(x− y)

∣∣∣∣∣∣
J∑

j=L+1
ujn(y)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

J∑
j=L+1

ujn(x)

∣∣∣∣∣∣
2

dy dx−
J∑

j=L+1

∫∫
K(x− y)|ujn(y)|2|ujn(x)|2 dy dx

∣∣∣∣∣∣∣
≤ ε/6 + ε/6 = ε/3.

Hence (4.6) is proved. �

As immediate corollary we have:

Corollary 4.4. Under the hypothesis of Theorem 4.1, for the decomposition in (4.1) the Pythagorean
expansion of the energy holds true, namely: ∀J ∈ N as n→ +∞

E(vn) =
∑

1≤j≤J
E(U(−tjn)τxjnψ

j) + E(RJn) + o(1).

As already pointed out in Remark 3.6, we will need to associate nonlinear profiles to the linear ones of
Theorem 4.1. The existence of such nonlinear waves basically comes from the local well-posedness theory
for (1.2) and the existence of wave operators. More precisely, once we consider a pair (ψj , tjn) as above, a
nonlinear profile corresponding to it is given by means of a solution Ψj to (1.2) satisfying

‖Ψj(tjn)− U(tjn)ψj‖H1
n→∞−→ 0.

Since the dichotomy property of the parameters in Theorem 4.1 allows us to restrict the situation only on
the cases tjn = 0 or tjn →∞, finding such Ψj reduces to solving the Cauchy problem for the GPE at t0 = 0
or at t0 =∞, namely it suffices to solve

Ψj = U(t)ψj + i

∫ t

0
U(t− s)

(
λ1|Ψj |2Ψj + λ2(K ∗ |Ψj |2)Ψj

)
(s) ds

and

Ψj = U(t)ψj + i

∫ t

∞
U(t− s)

(
λ1|Ψj |2Ψj + λ2(K ∗ |Ψj |2)Ψj

)
(s) ds,

where the equations above are referred as the integral formulation of the solution to (1.2), also known as
Duhamel’s representation.

5. Existence of the Minimal Element and its properties

Once the profile decomposition is proved, combinations of arguments in Section 2 and Section 3 give the
following.

Theorem 5.1. There exists a not trivial initial profile usl,0 ∈ H1 with E(usl,0) < γ(‖usl,0‖2L2) and
G(usl,0) > 0 such that the corresponding solution usl to (1.2) is globally defined but does not scatter.
Moreover, there exists a continuous function x(t) : R+ 7→ R3 such that {usl(t, x − x(t)), t ∈ R+} is
precompact as a subset of H1.

Definition 5.2. It is standard to refer to this solution as the minimal element or critical solution or
soliton-like solution. Along the remaining part of the paper we follow this conventions and we will denote it
as usl, justifying therefore the subscripts in Theorem 5.1.
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Proof. We just sketch the proof which relies on a contradiction argument. Let us define the threshold

γsl(c) = sup {γ > 0 such that if u0 ∈ S(c) with E(u0) < γ and G(u0) > 0
then the solution to (1.2) with initial data u0 is in L8L4 } .

Since small data scattering holds, see Lemma 3.1 and Lemma 3.2, the set above is well-defined and γc > 0.
The aim is to show that γsl(c) = γ(c) and we suppose that this is not the case, namely we assume that

γsl(c) < γ(c). Consider a minimizing sequence of initial data {un(0)}n∈N with E(un(0)) ↓ γsl and such that
the corresponding sequence of solutions {un(t)}n∈N to (1.2) satisfy

(5.1) lim sup
n→∞

‖un‖L8L4 →∞.

The sequence {un(0)}n∈N can be decomposed in

(5.2) u0,n =
∑

1≤j≤J
U(−tjn)τxjnψ

j +RJn,

by means of Theorem 4.1, Proposition 4.3 and Corollary 4.4. In particular, Corollary 4.4 implies that, in
the limit n→∞,

γsl(c) =
∑

1≤j≤J
E(U(−tjn)ψj) + E(RJn)

while the orthogonal expansion of the mass (4.3) gives, as n→∞, (since ‖u0,n‖2L2 = c for any n ∈ N)

cj := ‖ψj‖2L2 ≤ c.

We claim the following: there exists only one non trivial profile in the expansion (5.2).

Suppose by the absurd that at least two profiles are non-trivial, i.e. ψjh 6= 0 for {jh} ⊆ {1, . . . , J} and
the cardinality #{jh} ≥ 2. Let us keep the notation ψj instead of ψjh . This implies that cj < c and
E(U(−tjn)ψj) < γsl(c).
We recall that the equation (1.2) is invariant under the transformation u 7→ uµ := µu(µ2t, µx), the latter
moreover leaving invariant the L8L4-norm, and we split the situation in two cases.

Case 1. In this first situation we assume that the time translation parameter of the profile decomposition
above is diverging, namely tjn → ∞ for some j. In this case we have that limn→∞ G(U(−tjn)τxjnψ

j) > 0
and limn→∞ E(U(−tjn)τxjnψ

j) > 0. Since we have E(U(−tjn)ψj) < γsl(c) and the scaling of the equation
guarantees that

cjγsl(cj) = cγsl(c) =⇒ γsl(cj) > γsl(c)
we can infer that E(U(−tjn)τxjnψ

j) < γsl(cj). With the nonlinear profiles constructed at the end of Section 4,
therefore mapping (tjn, ψj) 7→ Ψj

n, we get E(Ψj) < γsl(cj), Ψj ∈ S(cj), G(Ψj) > 0 and hence we obtain

‖Ψj‖L8L4 < +∞.

Case 2. We consider the remaining situation, namely when the time translation sequence is the trivial
one.
We argue as before using that the convergence

U(−tjn)τxjnψ
j → τxjnψ

j

as n→∞ strongly holds in H1 topology.

We first show that G(U(−tjn)τxjnψ
j) > 0. Notice that thanks to G(un) > 0

cj
6 ‖∇U(−tjn)τxjnψ

j‖2L2 <
c

6‖∇un‖
2
L2 < cE(un) = cγsl(c) + o(1) = cjγsl(cj) + o(1).
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Let us suppose G(U(−tjn)τxjnψ
j) < 0 and let us pick 0 < µ? ≤ 1 such that G(vµ?) = 0 where v =

U(−tjn)τxjnψ
j and vµ = µ3/2v(µx) (see Lemma 2.5 for the properties of the functional G when evaluated on

such rescaled functions). We have

E(vµ
?

) = µ?
2

6 ‖∇U(−tjn)τxjnψ
j‖2L2 ≤

1
6‖∇U(−tjn)τxjnψ

j‖2L2

and therefore
cjE(vµ

?

) ≤ cj
6 ‖∇U(−tjn)τxjnψ

j‖2L2 < cjγsl(cj) + o(1) < cjγ(cj)

which leads to the contradiction.

Now, recalling that E(U(−tjn)τxjnψ
j) > 1

6 ||∇U(−tjn)τxjnψ
j ||2L2 we get E(U(−tjn)τxjnψ

j) < γsl(c) < γsl(cj).
As for the previous case, we can associate to the linear profiles their corresponding nonlinear ones Ψj having
the property to belong to S(cj), satisfying G(Ψj) > 0 and having finite L8L4-norm, hence they scatter.

All ingredients to show that there can be only a nontrivial profile in the decomposition (5.2) are
established, therefore the existence of the minimal element usl as stated in Theorem 5.1 can be proved
following [12,16].

By substituting the linear profiles in (5.2) with the nonlinear ones coming from Case 1 and Case 2 above,
we write

u0,n =
∑

1≤j≤J
Ψj(−tjn) + ρJn,

with
(5.3) lim sup

n→∞
‖U(t)ρJn‖L8L4 ≤ ε

for any J ≥ J̄ = J̄(ε).
The aim is now to give an approximation of {un(t)}n∈N in terms of the scattering nonlinear profiles

above to reach a contradiction by showing that {un(t)}n∈N has uniformly bounded L8L4-norm by means of
the perturbation result of Lemma 3.5. Therefore we define

wn(t) =
∑

1≤j≤J
Ψj(t− tjn, x− xjn)

and by the very definition of the involved term we get

i∂twn + 1
2∆wn − λ1|wn|2wn − λ2(K ∗ |wn|2)wn = λ1|wn|2wn + λ2(K ∗ |wn|2)wn + en

with
en =

∑
1≤j≤J

λ1
(
|Ψj(t− tjn, x− xjn)|2Ψj(t− tjn, x− xjn)− |wn|2wn

)
+
∑

1≤j≤J
λ2
((
K ∗ |Ψj(t− tjn, · − xjn)|2

)
Ψj(t− tjn, x− xjn)− (K ∗ |wn|2)wn

)
.

First of all, one observes that wn(0)− un(0) = w0 − u0,n = ρJn and therefore by (5.3)

lim sup
J→∞

(
lim
n→∞

‖U(t)(wn(0)− u0,n)‖L8L4

)
= 0.

Moreover it can be claimed that ‖
∫ t

0 U(t−s)en(s) ds‖L8L4 ≤ ε uniformly in n, for n large enough depending
on ε and J. For these details we refer the reader to [16]. All of these ingredients allow us to apply Lemma 3.5
obtaining therefore that

sup
n∈N
‖un‖L8L4 ≤ C <∞,

which is a contradiction with respect to (5.1).
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We eventually arrive to the existence of only one nontrivial profile and again by proceeding in the same
spirit of [16] we get the existence of a global non-scattering solution as in the statement of Theorem 5.1. �

Proposition 5.3. The translation path x(t) : R+ 7→ R3 has a sub-linear growth at infinity, namely as
t→∞

(5.4) |x(t)|
t

= o(1).

Proof. The proof of this spatial control is contained in [12], once one notices that also for (1.2) the
momentum of the critical solution usl given in Theorem 5.1 is zero, i.e. P (usl) = ={

∫
R3 ūsl∇usl dx} = 0.

In fact, if we consider the Galilean transformation of usl given by

Tv(usl(x, t)) = ei(v·x−|v|
2t)usl(x− 2vt, t), v ∈ R3

and we assume that P (usl) 6= 0, then by selecting

v = − P (usl)
M(usl)

we will have P (Tv(usl)) = 0 and E(Tv(usl)) < E(usl) < γ(c); moreover the function
µ 7→ E(Tµv(usl))

is decreasing for 0 < µ < 1. Let us suppose therefore that G(Tv(usl)) < 0; by continuity there exists
0 < µ̄ < 1 such that

G(Tµ̄v(usl)) = 0, E(Tµ̄v(usl)) < E(usl) < γ(c)
which is impossible, therefore G(Tv(usl)) > 0. But this implies that Tv(usl) does scatter and therefore usl
cannot be the minimal element. �

Finally, we state the uniform localization of {usl(t, x− x(t)), t ≥ 0} , which is a standard consequence
of the precompacteness property of the minimal element.
Proposition 5.4. For any ε > 0 there exists a radius ρ = ρ(ε) > 0 such that∫

|x+x(t)|>ρ
|usl(t)|2 + |∇usl(t)|2 +

∣∣λ1|usl|4 + λ2(K ∗ |usl(t)|2)|usl(t)|2
∣∣ dx

≤ C(λ1, λ2)
∫
|x+x(t)|>ρ

|usl(t)|2 + |∇usl(t)|2 + |usl(t)|4 dx < ε, ∀ t ≥ 0.

6. Extinction of the Minimal Element

This section is devoted to the conclusion of the proof of Theorem 1.4 with the so-called rigidity part
of the Kenig and Merle road map. The minimal global non-scattering solution built in Theorem 5.1 can
be only the trivial one, obtaining therefore a contradiction with respect to the fact that its L8L4-norm is
not finite. It is based on a convexity argument on the localized variance of the minimal element. For the
infinite-variance NLS equation, this method of considering a localized version of the variance was pioneered
by Ogawa and Tsutsumi, see [25], in order to show finite time singularity formation as an extension of the
result by Glassey in a framework with finite variance, see [15].

6.1. Localized Virial Identities. To lighten the notation, since now on we simply write u instead of usl.
Define zR(t) = R2 ∫ χ ( xR) |u(t, x)|2 dx where χ ∈ C∞c (R3) is a cut-off function. Standard computations
yield

(6.1) d

dt
zR(t) = 2=

{
R

∫
∇χ

( x
R

)
· ∇uū dx

}
and to the immediate estimate ∣∣∣∣ ddtzR(t)

∣∣∣∣ . R‖u‖L2‖∇u‖L2 .
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By using (6.1) and the equation solved by u, i.e. (1.2), we have

d2

dt2
zR(t) = 2

∫ (
∇2χ

( x
R

)
∇u
)
· ∇ū dx

− 1
2R2

∫
∆2χ

( x
R

)
|u|2 dx

+ λ1

∫
∆χ

( x
R

)
|u|4 dx

− 2λ2R

∫
∇χ

( x
R

)
· ∇
(
K ∗ |u|2

)
|u|2 dx.

If we choose χ(x) = |x|2 on |x| ≤ 1 and supp (χ) ⊂ B(0, 2), then by direct computations we get

(6.2) d2

dt2
zR(t) = A− 2λ2RB

where
A = 4

∫
|x|≤R

|∇u|2 dx+ 2
∫
R≤|x|≤2R

(
∇2χ

( x
R

)
∇u
)
· ∇ū dx

− 1
2R2

∫
R≤|x|≤2R

∆2χ
( x
R

)
|u|2 dx

+ 6λ1

∫
|x|≤R

|u|4 dx+ λ1

∫
R≤|x|≤2R

∆χ
( x
R

)
|u|4 dx

and

(6.3) B = B(|u|2) :=
∫
∇χ

( x
R

)
· ∇
(
K ∗ |u|2

)
|u|2 dx.

It is trivial to estimate A as

(6.4) A ≥ 4
∫
|∇u|2 dx+ 6λ1

∫
|u|4 dx− ε1(R)

where

ε1(R) = C

(∫
|x|≥R

|∇u|2 +R−2|u|2 + |u|4 dx
)
.

Now we focus on the more delicate term B.

Let us consider the second term appearing in the localized virial identity above, i.e. B defined in (6.3).
Before starting with the analysis we recall some preliminary tools introduced by Lu and Wu in [22], where
the authors study the Davey-Stewartson equation. The nonlocal nonlinearity in that case is given by a
convolution with a kernel having symbol ξ2

1
|ξ|2 instead of dipolar kernel.

Let Rjf = F−1
(
−i ξj|ξ| f̂

)
the Riesz transform of f, defined via the zero-order symbol −i ξj|ξ| . It is well-

known that it maps Lp into itself for any p ∈ (1,+∞). One recognizes that the symbol − ξ2
j

|ξ|2 is the one
defining R2

j . By recalling the expression of the dipolar kernel K in Fourier variables (1.9), we get

F (K ∗ f) = (K̂f̂) = 4π
3

(
2ξ2

3
|ξ|2
− ξ2

2
|ξ|2
− ξ2

1
|ξ|2

)
f̂

= −4π
3
(
2F(R2

3f)−F(R2
2f)−F(R2

1f)
)
,
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and therefore
(K ∗ f) = −8π

3 R
2
3f + 4π

3 R
2
2f + 4π

3 R
2
1f.

After these considerations, we report the point-wise estimates contained in [22].

Lemma 6.1. [22, Lemma 5.1] Let f be a smooth function, and η a compactly supported function on B(0, 1)
with |η| ≤ 1. Then

(6.5)
∣∣∣η ( x

R

)
R2
j

((
1− η

( ·
4R

))
f
)

(x)
∣∣∣ . η ( x

R

)
R−3‖f‖L1(B(0,4R)c)

and
(6.6)

∣∣∣(1− η
( x

4R

))
R2
j

(
η
( ·
R

)
f
)

(x)
∣∣∣ . (1− η

( x

4R

))
R−3‖f‖L1(B(0,2R)).

The above lemma is used to show a suitable estimate for the term B, yielding the following.

Lemma 6.2. The term B satisfies

(6.7) − 2λ2RB(|u|2) ≥ 6λ2

∫
(K ∗ |u|2)|u|2 dx− ε2(R)

where

ε2(R) = C

(∫
|x|≥r

|∇u|2 +R−2|u|2 + |u|4 dx
)
, r ∼ R.

The above lemma in conjunction with (6.2) and (6.4) gives the following estimate.

Proposition 6.3. The localized variance satisfies
d2

dt2
zR(t) ≥ 4G(u)− ε1(R)− ε2(R).

Proof of Lemma 6.2. We introduce the functions v1 = 1{|x|≤10R}u and v2 = (1 − 1{|x|≤10R})u, therefore
u = v1 + v2, and we observe that, due to the disjointness of their supports, |v1 + v2|2 = |v1|2 + |v2|2.
Therefore, by linearity,

B =
∫
∇χ

( x
R

)
· ∇
(
K ∗ |v1 + v2|2

)
|v1 + v2|2 dx

=
∫
∇χ

( x
R

)
· ∇
(
K ∗ |v1|2

)
|v1|2 dx+

∫
∇χ

( x
R

)
· ∇
(
K ∗ |v2|2

)
|v1|2 dx

+
∫
∇χ

( x
R

)
· ∇
(
K ∗ |v1|2

)
|v2|2 dx+

∫
∇χ

( x
R

)
· ∇
(
K ∗ |v2|2

)
|v2|2 dx

and since the support of ∇χ
(
x
R

)
is contained in B(0, 2R) while the one of v2 in B(0, 10R)c, which are

disjoint sets, it follows that

(6.8)
B =

∫
∇χ

( x
R

)
· ∇
(
K ∗ |v1|2

)
|v1|2 dx+

∫
∇χ

( x
R

)
· ∇
(
K ∗ |v2|2

)
|v1|2 dx

= B0 + B1

with
B1 =

∫
∇χ

( x
R

)
· ∇
(
K ∗ ((1− 1{|x|≤10R})|u|2)

)
|v1|2 dx

= −R−1
∫

∆χ
( x
R

) (
K ∗ ((1− 1{|x|≤10R})|u|2)

)
|v1|2 dx

− 2
∫
B(0,2R)

(
K ∗ ((1− 1{|x|≤10R})|u|2)

)
∇χ

( x
R

)
· <{v̄1∇v1} dx

= B1,1 + B1,2.
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We observe that

|B1,1| . R−1‖K ∗ ((1− 1{|x|≤10R})|u|2)‖L2‖v1‖2L4

. R−1‖u‖2L4(B(0,10R)c)‖u‖
2
L4

. R−1‖u‖2L4(B(0,10R)c)‖u‖
2
H1 ,

while, by using (6.5),

|B1,2| . ‖1B(0,2R)K ∗ ((1− 1{|x|≤10R})|u|2)‖L∞‖v̄1∇v1‖L1

. R−3‖u‖2L2(B(0,10R)c)‖∇v1‖L2‖v1‖L2

. R−3‖u‖2L2(B(0,10R)c)‖u‖
2
H1 .

By gluing everything together we eventually obtain

(6.9) |B1| . R−1
(
‖u‖2L4(B(0,10R)c) +R−2‖u‖2L2(B(0,10R)c)

)
‖u‖2H1 .

Then it remains to properly estimate the first integral in the right-hand side of (6.8), namely B0.
Following the strategy in [22] we introduce the function χ̃R = R2χ

(
x
R

)
− |x|2 and it straightforwardly

yields the equality

(6.10)
RB0 = R

∫
∇χ

( x
R

)
· ∇
(
K ∗ |v1|2

)
|v1|2 dx

=
∫
∇χ̃R · ∇

(
K ∗ |v1|2

)
|v1|2 dx+

∫
∇(|x|2) · ∇

(
K ∗ |v1|2

)
|v1|2 dx = B0,1 + B0,2.

By localizing again, by setting v1 = w1 + w2 with w2 = 1{|x|≤R/10}v1 and noticing that the supports of w1
and w2 are disjoints, alike the one of ∇χ̃R and w2, we can split B0,1 in two further terms

B0,1 =
∫
∇χ̃R · ∇

(
K ∗ |v1|2

)
|v1|2 dx =

∫
∇χ̃R · ∇

(
K ∗ |w1|2

)
|w1|2 dx+ B′′0,1 = B′0,1 + B′′0,1

where

B′′0,1 =
∫
∇χ̃R · ∇

(
K ∗ (1{|x|≤R/10}|v1|2)

)
|w1|2 dx

= −
∫

∆χ̃R
(
K ∗ (1{|x|≤R/10}|v1|2)

)
|w1|2 dx−

∫
2R≤|x|≤10R

(
K ∗ (1{|x|≤R/10}|v1|2)

)
∇χ̃R · ∇(|w1|2) dx.

Similarly to the term B1,∣∣∣∣∫ ∆χ̃R
(
K ∗ (1{|x|≤R/10}|v1|2)

)
|w1|2 dx

∣∣∣∣ . ‖K ∗ (1{|x|≤R/10}|v1|2)‖L2‖w1‖2L4

. ‖u‖2H1‖w1‖2L4 . ‖u‖2H1‖u‖2L4(B(0,R/10)c)

while, by means of (6.6)∣∣∣∣∣
∫

2R≤|x|≤10R

(
K ∗ (1{|x|≤R/10}|v1|2)

)
∇χ̃R · ∇(|w1|2) dx

∣∣∣∣∣
. R‖12R≤|x|≤10RK ∗ (1{|x|≤R/10}|v1|2)‖L∞‖∇w1‖L2‖w1‖L2

. R−2‖u‖2L2‖u‖H1‖u‖L2(B(0,R/10)c).

By summing up the two terms we end up with

(6.11) |B′′0,1| . ‖u‖H1

(
‖u‖H1‖u‖2L4(B(0,R/10)c) +R−2‖u‖2L2‖u‖L2(B(0,R/10)c)

)
.
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It is left to estimate the term B′0,1 =
∫
∇χ̃R ·∇

(
K ∗ |w1|2

)
|w1|2 dx. By setting g = |w1|2 = |1{|x|≤10R}(1−

1{|x|≤R/10})u|2 and making use of the Parseval identity,

∫
∇χ̃R · ∇

(
K ∗ |w1|2

)
|w1|2 dx = i

∫
∇̂χ̃Rg(ξ) · ξK̂ ¯̂g dξ

= i4π
3

∫
∇̂χ̃Rg(ξ) · ξ(2F(R2

3g)−F(R2
2g)−F(R2

1g)) dξ.

Consider the generic term
∫
∇̂χ̃Rg(ξ) · ξF(R2

jg) dξ ; it is explicitly given, up to (complex) constants, by
(6.12)∫
∇̂χ̃Rg(ξ) · ξ

ξ2
j

|ξ|2
¯̂g(ξ) dξ =

∫
(∇̂χ̃R ∗ ĝ)(ξ) · ξ

ξ2
j

|ξ|2
¯̂g(ξ) dξ

=
∫∫

ĝ(η)∇̂χ̃R(η − ξ) ·
(
ξ1ξ

|ξ|
± η1η

|η|

)
ξ1
|ξ|
ĝ(ξ) dη dξ

=
∫
∇χ̃R · Rj(∇g)(x)Rj ḡ(x) dx

+
∫∫

ĝ(η)∇̂χ̃R(η − ξ) ·
(
ξ1ξ

|ξ|
− η1η

|η|

)
ξ1
|ξ|
ĝ(ξ) dη dξ

= −1
2

∫
∆χ̃R|Rjg(x)|2 dx+

∫∫
ĝ(η)∇̂χ̃R(η − ξ) ·

(
ξ1ξ

|ξ|
− η1η

|η|

)
ξ1
|ξ|
ĝ(ξ) dη dξ

since derivatives and Riesz transform commute. The first term in the right-hand side of (6.12) is simply
estimated by ‖u‖4L4(B(0,R)c) due to the continuity property of the Riesz transform. For the second term we
have

∣∣∣∣∫∫ ĝ(η)∇̂χ̃R(η − ξ) ·
(
ξ1ξ

|ξ|
− η1η

|η|

)
ξ1
|ξ|
ĝ(ξ) dη dξ

∣∣∣∣ ≤ ∣∣∣∣∫∫ ĝ(η)∇̂χR(η − ξ) ·
(
ξ1ξ

|ξ|
− η1η

|η|

)
ξ1
|ξ|
ĝ(ξ) dη dξ

∣∣∣∣
+
∣∣∣∣∫∫ ĝ(η)∇̂N(η − ξ) ·

(
ξ1ξ

|ξ|
− η1η

|η|

)
ξ1
|ξ|
ĝ(ξ) dη dξ

∣∣∣∣
where N = |x|2. Now, since

∣∣∣ηηj|η| − ξξj
|ξ|

∣∣∣ . |η − ξ|,
∣∣∣∣∫∫ ĝ(η)∇̂χR(η − ξ) ·

(
ξ1ξ

|ξ|
− η1η

|η|

)
ξ1
|ξ|
ĝ(ξ) dη dξ

∣∣∣∣ . ∫∫ |ĝ(ξ)‖ĝ(η)‖η − ξ|2|χ̂R(η − ξ)| dη dξ

=
∫
|ĝ(ξ)|

∫
|ĝ(η)|

∥∥η − ξ|2χ̂R(η − ξ)
∣∣ dη dξ

=
∫
|ĝ(ξ)| (|ĝ| ∗ |F(−∆χR)|) dξ

=
∫
|ĝ(ξ)|

(
|ĝ| ∗

∣∣∣F (−∆χ
( ·
R

))∣∣∣) dξ
=
∫
|ĝ(ξ)|

(
|ĝ| ∗

∣∣∣F (h( ·
R

))∣∣∣) dξ
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where we defined h(·) = −∆χ(·), and continue in this way∫
|ĝ(ξ)|

(
|ĝ| ∗

∣∣∣F (h( ·
R

))∣∣∣) dξ ≤ ∫ |ĝ(ξ)|
(
|ĝ| ∗

∣∣∣F (h( ·
R

))∣∣∣) dξ
. ‖g‖L2

∥∥∥|ĝ| ∗ ∣∣∣F (h( ·
R

))∣∣∣∥∥∥
L2

. ‖g‖2L2

∥∥∥F (h( ·
R

))∥∥∥
L1

. R3‖g‖2L2

∥∥∥ĥ(R·)
∥∥∥
L1

= ‖g‖2L2

∥∥∥ĥ∥∥∥
L1

. ‖g‖2L2 = ‖w1‖2L4 ≤ ‖u‖2L4(B(0,R/10)c),

since ĥ ∈ L1 (being χ in the Schwartz class, hence ∆χ is in the Schwartz class, so it is integrable).
In the same way∣∣∣∣∫∫ ĝ(η)∇̂N(η − ξ) ·

(
ξ1ξ

|ξ|
− η1η

|η|

)
ξ1
|ξ|
ĝ(ξ) dη dξ

∣∣∣∣ . ∫∫ |ĝ(ξ)‖ĝ(η)‖η − ξ|2|N̂(η − ξ)| dη dξ

=
∫
|ĝ(ξ)|

∫
|ĝ(η)|

∣∣∣|η − ξ|2N̂(η − ξ)
∣∣∣ dη dξ

=
∫
|ĝ(ξ)| (|ĝ| ∗ 6δ0) dξ

. ‖g‖2L2 ≤ ‖u‖2L4(B(0,R/10)c).

Therefore

(6.13)
∣∣B′0,1∣∣ . ‖u‖2L4(B(0,R/10)c).

Now we finish with the estimate of B0,2 =
∫
∇(|x|2) · ∇

(
K ∗ |v1|2

)
|v1|2 dx. We observe that a direct

application of the Parseval identity gives

B0,2 = 2
∫
x · ∇

(
K ∗ |v1|2

)
|v1|2 dx = −2

∫
∇ ·
(
x|v1|2

) (
K ∗ |v1|2

)
dx

= −6
∫ (

K ∗ |v1|2
)
|v1|2 dx− 2

∫
x · ∇(|v1|2)

(
K ∗ |v1|2

)
dx = −3

∫ (
K ∗ |v1|2

)
|v1|2 dx

(above ∇· stands for the divergence operator) then, by writing |v1| = |v1±u|, it is with a direct computation
to produce, using the Cauchy-Schwarz inequality and the continuity property of the dipolar kernel,

(6.14) B0,2 ≥ −3
∫ (

K ∗ |u|2
)
|u|2 dx+ ε̃(r)

where
ε̃(r) ∼ ‖u‖2L4(B(0,r)c), r ∼ R.

Now summing up (6.2), (6.8), (6.9), (6.10), (6.11), (6.13) with (6.14) we get the desired results stated in
(6.7) of Lemma 6.2 and in Proposition 6.3. �

6.2. Death of the soliton-like solution. In this section we can close the Kenig and Merle scheme by
showing, through a convexity argument, that the soliton-like solution built in Section 5 is the trivial one,
clearly reaching a contradiction with respect to its infinite spacetime norm. We still keep the convention
u = usl.
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By gluing the estimate in Proposition 6.3 with the bound in Proposition 2.6 we get
d2

dt2
zR(t) ≥ α− ε1(R)− ε2(R).

and we can finally conclude if we are able to show that also ε1,2(R)→ 0 as R→∞, uniformly in time. Since
they have qualitatively the same form, let us control just ε1(R). At this point we can exploit a strategy as
in [12], which allows us to conclude. In fact, consider two times 0 < τ < τ1 and the interval I = [τ, τ1] and
a radius R ≥ supI |x(t)|+ ρ where ρ is as in Proposition 5.4. Then {|x| > R} ⊂ {|x+ x(t)| > ρ} and so
ε1(R)→ 0 as R→∞, which in turn implies, with the choice of ε1,2 = α/4

d2

dt2
zR(t) ≥ α

2 > 0

for R sufficiently large. Integrating on I, we get

R & R‖u‖L2‖∇u‖L2 &

∣∣∣∣ ddtzR(τ1)− d

dt
zR(τ)

∣∣∣∣ ≥ α

2 (τ1 − τ)

and by choosing R = ρ+ δτ1 we get
ρ+ δτ1 ≥ β(τ1 − τ),

for some β > 0.

Remark 6.4. Since (5.4) holds, it is always possible, once δ > 0 has been selected, to find τ = τ(δ) such
that |x(t)| ≤ δt for any t ≥ τ.

Therefore by choosing δ = β/2 we get
β

2 τ1 ≤ ρ+ βτ = ρ+ βτ

(
β

2

)
which is a contradiction since the right-hand side of the above inequality is a finite constant, while the
left-hand side diverges as τ1 →∞. We have eventually proved the following.

Proposition 6.5. Let usl be the precompact solution to (1.2) constructed in the previous section. Then
usl ≡ 0.

This last Proposition closes the concentration/compactness and rigidity method, since the trivial solution
cannot have a divergent spacetime norm.

Appendix A.

In this first Appendix, we recall the Strichartz estimates. Beside their use in our work, they are the basic
tool to study nonlinear dispersive equations of Schrödinger-type (but not only them), whose proof can be
found in the classical monographs [10,21], and [17] for the endpoint case (r = 6 below). We refer the reader
to these already mentioned works for more accurate treatments on these kind of a priori estimates for the
Schrödinger propagator. We just point out here that they are essentially consequences of the so-called
dispersive estimate
(A.1) ‖U(t)f‖L∞ ≤ C|t|−3/2‖f‖L1 , ∀ t 6= 0, ∀ f ∈ L1,

which also holds for general dimensions, namely in the whole space Rd with L1 − L∞ decay rate given by
|t|−d/2. More generally, conservation of the L2-norm along the linear propagation (which for the nonlinearity
in (1.2) also holds true for the nonlinear flow, see (1.5)) together with (A.1) implies, as a trivial application
of the Riesz-Thorin interpolation theorem, that for any p ∈ [2,∞] the Lp − Lp′ bound below is satisfied:

(A.2) ‖U(t)f‖Lp ≤ C|t|−
3
2 ( 1

2−
1
p )‖f‖Lp′ , ∀ t 6= 0, ∀ f ∈ Lp

′
.

Let us now state the Strichartz estimates.
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Let (q, r), (γ, ρ) be two arbitrary 3D−admissible pairs, namely they satisfy the algebraic condition
2
q

= 3
(

1
2 −

1
r

)
, 2 ≤ r ≤ 6.

Then for any interval I 3 t0, bounded or unbounded,
‖U(t)f‖Lq

I
Lr ≤ C1‖f‖L2 , ∀ f = f(x) ∈ L2,∥∥∥∥∫ t

t0

U(t− s)F (s)
∥∥∥∥
Lq
I
Lr
≤ C2‖F‖Lγ′

I
Lρ′
, ∀F = F (t, x) ∈ Lγ

′

I L
ρ′ .

where the constant C1, C2 depend only on the structural parameter and not on the functions f, F themselves.

Remark A.1. Due to the commutativity property between derivatives and the linear flow, the previous
estimates extend to Sobolev spaces:

‖U(t)f‖Lq
I
W 1,r ≤ C̃1‖f‖H1 , ∀ f = f(x) ∈ H1,∥∥∥∥∫ t

t0

U(t− s)F (s) ds
∥∥∥∥
Lq
I
W 1,r

≤ C̃2‖F‖Lγ′
I
W 1,ρ′ , ∀F = F (t, x) ∈ Lγ

′

I W
1,ρ′ .

We will also use an extension for non-admissible pairs for the inhomogeneous Strichartz estimates, see [13]
and [27] for a general treatment. For any interval I 3 t0, bounded or unbounded,

(A.3)
∥∥∥∥∫ t

t0

U(t− s)F (s) ds
∥∥∥∥
L8
I
L4
≤ C3‖F‖L8/3

I
L4/3 , ∀F = F (t, x) ∈ L8/3

I L4/3.

Appendix B.

In this appendix we prove Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.5.

Proof of Lemma 3.1. The proof in the stable regime can be shown as consequence of the coercivity of the
energy, see [9]. In the unstable regime, the proof is contained in [7]. We sketch it. First of all, it is worth
mentioning that under condition (1.3) the energy could be negative, then a classical Glassey’s argument
would yield finite time blowing-up solutions. Fix now λ2 > 0, λ1 − 4π

3 λ2 < 0. Thanks to Theorem 1.3 it is
sufficient to show that for initial data u0 small enough in the H1 space, then G(u0) > 0 and E(u0) < γ(u0).
Let us recall that the potential energy can be written as

P(u) =
(
λ1 −

4π
3 λ2

)
‖u‖4L4 + 4λ2π

(2π)3

∫
ξ2
3
|ξ|2

(
|̂u|2
)2

dξ ≥
(
λ1 −

4π
3 λ2

)
‖u‖4L4 .

Therefore by using in order the Plancherel identity and the Sobolev embedding and moreover recalling we
are working on λ1 − 4π

3 λ2 < 0 we have

G(u) ≥ T (u) + 3
2

(
λ1 −

4π
3 λ2

)
‖u‖4L4

≥ ‖∇u‖2L2 − C‖u‖L2‖∇u‖3L2 > 0

provided ‖u‖H1 is small enough. �

Proof of Lemma 3.2. The proof is contained in [7], where it is shown that if the initial datum is small
enough (and so the solution is global), this yields uniform bound on the Strichartz norm L8/3W 1,4 and this
in turn implies that the solution scatters (see the monographs [10,21]). The Duhamel’s formulation of (1.2)
is

u(t, x) = U(t)u0 + i

∫ t

0
U(t− s)

(
λ1|u|2u+ λ2(K ∗ |u|2)u

)
(s) ds
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and by using the Strichartz estimates with (q, r) = (γ, ρ) = (8/3, 4) then (q′, r′) = (8/5, 4/3), by using the
Hölder inequality and the continuity property of the dipolar kernel, it is easy to get

‖u‖L8/3W 1,4 ≤ C‖u0‖H1 + C‖u‖5/3
L8/3W 1,4 .

Let δ = ‖u0‖H1 ; noticing that the set S := {s s.t. f(s) := s− Cδ − Cs5/3 ≤ 0} decomposes in two disjoint
connected components, the continuity of the flow implies that if δ is sufficiently small, the L8/3W 1,4-norm
of u is uniformly bounded for (positive) times. Scattering for (positive) times is an easy consequence of this
uniform control and the definition of the scattering state. In fact, by defining v(t) = U(−t)u and making
use of the Duhamel’s representation formula above, it is straightforward to check that

‖v(t1)− v(t2)‖H1
t1,2→+∞−→ 0.

Definition of v and the unitary property of the linear propagator U(t) eventually gives the result. The
analysis for negative times is the same. �

Proof of Lemma 3.3. If the solution u to (1.2) is global and such that u(t, x) ∈ L8L4, then a perturbative
argument shows that u(t, x) ∈ L8/3W 1,4, therefore concluding as in the proof of Lemma 3.2. It is worth
mentioning that in its generality this result was established by Cazenave and Weissler in their paper on the
so-called rapidly decaying solutions, see [11]. Since for any fixed T the u ∈ LqIW 1,r with I = (0, T ), let us
consider v(t) = u(t+ T ). It follows that

v(t, x) = U(t)u(T ) + i

∫ t

0
U(t− s)

(
λ1|v|2v + λ2(K ∗ |v|2)v

)
(s) ds

and by means of the Strichartz estimates, for Ĩ = (0, T̃ )

‖v‖
L

8/3
Ĩ

W 1,4 ≤ C‖u(T )‖H1 + C‖v‖2L8
Ĩ
L4‖v‖L8/3

Ĩ
W 1,4

≤ C + C‖u‖2L8
(T,T+T̃ )

L4‖v‖L8/3
Ĩ

W 1,4

since u is uniformly bounded in time in H1. It suffices to select T � 1 such that C‖u‖2
L8

(T,∞)L
4 ≤ 1

2 to
obtain

sup
T̃>0
‖u‖

L
8/3
Ĩ

W 1,4 <∞ =⇒ u ∈ L8/3
(0,∞)W

1,4.

For negative times the analysis is exactly the same. �

Proof of Lemma 3.5. If the equation were reduced to the classical NLS equation (2.6), then the proof would
be contained in [16]. Since we are in the presence of the dipolar interaction term we will sketch the proof
for sake of clarity. Let z = u− w; then z satisfies

(B.1) i∂tz + 1
2∆z = λ1|u|2u− λ1|w|2w + λ2(K ∗ |u|2)u− λ2(K ∗ |w|2)w − e

subject to initial condition z0 = z(0, x) = u0 − w0. Since ‖w‖L8L4 ≤ M we can partition [t0,∞) into
m = m(M) intervals Ij = [tj , tj+1] such that ‖w‖L8

Ij
L4 ≤ δ for each j, where δ is small enough (to be

chosen later on). The integral formulation of (B.1) is

z = U(t− tj)z(tj) + i

∫ t

tj

U(t− s) (Z1 + Z2) (s) ds

where, as in [16] for NLS
Z1 = |u|2u− |w|2w = |z + w|2(z + w)− |w|2w

= w2z̄ + 2|w|2z + 2w|z|2 + w̄z2 + |z|2z + e

while the nonlocal nonlinearity splits as
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Z2 = (K ∗ |u|2)u− (K ∗ |w|2)w = (K ∗ |z + w|2)(z + w)− (K ∗ |w|2)w
= (K ∗ (|z + w|2 − |w|2))w − (K ∗ |z + w|2)z,

and due to (A.3) on Ij∥∥∥∥∥
∫ t

tj

U(t− s)
[(

(K ∗ (|z + w|2 − |w|2)
)
w
]

(s) ds

∥∥∥∥∥
L8
Ij
L4

. ‖(K ∗ (|z + w|2 − |w|2))w‖
L

8/3
Ij

L4/3

. ‖|z + w|2 − |w|2‖L4
Ij
L2‖w‖L8

Ij
L4

. ‖z‖2L8
Ij
L4‖w‖L8

Ij
L4 + ‖zw̄‖L4

Ij
L2‖w‖L8

Ij
L4

. ‖z‖2L8
Ij
L4‖w‖L8

Ij
L4 + ‖z‖L8

Ij
L4‖w‖2L8

Ij
L4

and similarly∥∥∥∥∥
∫ t

tj

U(t− s)
[
(K ∗ |z + w|2)z

]
(s) ds

∥∥∥∥∥
L8
Ij
L4

. ‖(K ∗ |z + w|2)z‖
L

8/3
Ij

L4/3

. ‖|z + w|2‖L4
Ij
L2‖z‖L8

Ij
L4

.

(
‖z‖2L8

Ij
L4 + ‖w‖2L8

Ij
L4

)
‖z‖L8

Ij
L4

. ‖z‖3L8
Ij
L4 + ‖w‖2L8

Ij
L4‖z‖L8

Ij
L4

hence, by using the hypothesis,∥∥∥∥∥
∫ t

tj

U(t− s)Z2(s) ds

∥∥∥∥∥
L8
Ij
L4

. δ‖z‖2L8
Ij
L4 + δ2‖z‖L8

Ij
L4 + ‖z‖3L8

Ij
L4

and therefore the nonlocal interaction term leads to the same estimate for Z1 contained in [16]. By gluing
up everything together we get

‖z‖L8
Ij
L4 ≤ ‖U(t− tj)z(tj)‖L8

Ij
L4 + cδ‖z‖2L8

Ij
L4 + cδ2‖z‖L8

Ij
L4 + c‖z‖3L8

Ij
L4 + cε,

thus the proof can be concluded in the same way of [16, Proposition 2.3]. We report here the strategy for
sake of clarity. For δ small enough,
(B.2) ‖z‖L8

Ij
L4 ≤ 2‖U(t− tj)z(tj)‖L8

Ij
L4 + 2Cε

and choosing t = tj+1 in the integral representation of z(t) one obtains

(B.3) U(t− tj+1)z(tj+1) = U(t− tj)z(tj) + i

∫ jj+1

tj

U(t− s)(Z1 + Z2)(s) ds,

and so analogously to the estimates above it follows that
‖U(t− tj+1)z(tj+1)‖L8L4 ≤ ‖U(t− tj)z(tj)‖L8L4 + Cδ2‖z‖L8

Ij
L4 + Cδ‖z‖2L8

Ij
L4 + C‖z‖3L8

Ij
L4 + Cε.

Summing up (B.2) and (B.3) we eventually obtain
‖U(t− tj+1)z(tj+1)‖L8L4 ≤ 2‖U(t− tj)z(tj)‖L8L4 + 2Cε

and iterating on j ∈ N it can be concluded that
‖U(t− tj)z(tj)‖L8L4 ≤ 2j‖U(t− t0)z(t0)‖L8L4 + 2(2j − 1)Cε . 2j+2ε.
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The smallness assumption on δ is now defined if 2m+2ε is sufficiently small (depending on the absolute
constants of the a priori estimates and of course depending on m which in turn is depending on M of the
statement). �

Acknowledgements

J. B. is partially supported by Project 2016 “Dinamica di equazioni nonlineari dispersive” of FONDAZIONE
DI SARDEGNA. The authors warmly thank the referee for the careful reading and for the suggestions
given in order to improve a preliminary version of the paper.

References
[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein

Condensation in a Dilute Atomic Vapor, Science 269 (1995), no. 5221, 198–201.
[2] A. Ambrosetti and A. Malchiodi, Nonlinear analysis and semilinear elliptic problems, 104th ed., Cambridge Studies in

Advanced Mathematics, Cambridge University Press, Cambridge, 2007.
[3] P. Antonelli and C. Sparber, Existence of solitary waves in dipolar quantum gases, Phys. D 240 (2011), no. 4-5, 426–431.
[4] H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J.

Math. 121 (1999), no. 1, 131–175.
[5] W. Bao and Y. Cai, Mathematical Theory and Numerical methods for Bose-Einstein condensation, Kinetic and Related

Models AMS 6 (2013), no. 1, 1–135.
[6] W. Bao, Y. Cai, and H. Wang, Efficient numerical method for computing ground states and dynamic of dipolar

Bose-Einstein condensates, J. Comput. Phys. 229 (2010), 7874–7892.
[7] J. Bellazzini and L. Jeanjean, On dipolar quantum gases in the unstable regime, SIAM J. Math. Anal. 48 (2016), no. 3,

2028–2058.
[8] C. C. Bradley, C. A. Sackett, J. J. Tolett, and R. J. Hulet, Evidence of Bose-Einstein Condensation in an Atomic Gas

with Attractive Interaction, Phys. Rev. Lett. 75 (1995), 1687–1690.
[9] R. Carles, P. A. Markowich, and C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases,

Nonlinearity 21 (2008), no. 11, 2569–2590.
[10] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University,

Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
[11] T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys.

147 (1992), no. 1, 75–100.
[12] T. Duyckaerts, J. Holmer, and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation,

Math. Res. Lett. 15 (2008), no. 6, 1233–1250.
[13] D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ. 2 (2005), no. 1, 1–24.
[14] P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim. Calc. Var. 3 (1998),

213–233 (French, with French summary).
[15] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys.

18 (1977), no. 9, 1794–1797.
[16] J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation,

Comm. Math. Phys. 282 (2008), no. 2, 435–467.
[17] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980.
[18] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear

Schrödinger equation in the radial case, Invent. Math. 166 (2006), no. 3, 645–675.
[19] , Global well-posedness, scattering and blow-up for the energy-critical focusing nonlinear wave equation, Acta

Math. 201 (2008), no. 2, 147–212.
[20] S. Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential

Equations 175 (2001), no. 2, 353–392.
[21] F. Linares and G. Ponce, Introduction to nonlinear dispersive equations, 2nd ed., Universitext, Springer, New York, 2015.
[22] J. Lu and Y. Wu, Sharp threshold for scattering of a generalized davey-Stewartson system in three dimension, Comm.

Pure Appl. Anal. 14 (2015), 1641–1670.
[23] F. Merle and L. Vega, Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in

2D, Internat. Math. Res. Notices 8 (1998), 399–425.
[24] R. Nath, P. Pedri, P. Zoller, and M. Lewenstein, Soliton-soliton scattering in dipolar Bose-Einstein condensates, Phys.

Rev. A 76 (2007), 013606–013613.
[25] T. Ogawa and Y. Tsutsumi, Blow-up of H1 solution for the nonlinear Schrödinger equation, J. Differential Equations 92

(1991), no. 2, 317–330.



SCATTERING FOR DIPOLAR BEC 29

[26] L. Santos, G. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose-Einstein condensation in trapped dipolar gases, Phys. Rev.
Lett. 85 (2000), 1791–1797.

[27] M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc. 359 (2007),
no. 5, 2123–2136.

Jacopo Bellazzini
Università di Sassari, via Piandanna 4, 07100 Sassari, Italy

E-mail address: jbellazzini@uniss.it

Luigi Forcella
École Polytechnique Fédérale de Lausanne, Institute of Mathematics, Station 8, CH-1015 Lausanne, Switzerland.

E-mail address: luigi.forcella@epfl.ch


	1. Introduction
	1.1. Notations

	2. Variational Estimates
	3. Small data theory and perturbative nonlinear results
	4. Linear Profile Decomposition and Nonlinear Profiles
	5. Existence of the Minimal Element and its properties
	6. Extinction of the Minimal Element
	6.1. Localized Virial Identities
	6.2. Death of the soliton-like solution

	Appendix A. 
	Appendix B. 
	Acknowledgements
	References

