Chapter 3

Discrete-time dynamical systems

In this chapter we consider discrete-time dynamical systems as defined in Definition 1.2. Hence we need to specify a set X and a map $T: X \to X$. The properties of X and T may vary and give rise to different areas of research. Here we assume that X is a locally compact connected metric space and T is a continuous map, and call (X,T) a discrete-time continuous dynamical system. In many situations one can simply consider X to be an interval of the real line, and in fact some results of this chapter hold only for one-dimensional spaces X or even for compact intervals of the real line.

We start with simple definitions.

Definition 3.1. Let (X,T) and (\tilde{X},\tilde{T}) be two discrete-time continuous dynamical systems. We say that (\tilde{X},\tilde{T}) is a *topological factor* of (X,T) if there exists a continuous map $h: X \to \tilde{X}$ that is surjective and satisfies

$$\tilde{T} \circ h = h \circ T \,. \tag{3.1}$$

If the map $h: X \to \tilde{X}$ is a homeomorphism and satisfies (3.1) then we say that (X,T) and (\tilde{X},\tilde{T}) are topologically conjugate and h is a topological conjugacy.

Example 3.1. Let's consider the full shift $(\Omega_{\mathcal{A}}, \mathbb{N}_0, \sigma)$ on two symbols $\mathcal{A} = \{0, 1\}$ of Example 1.8, and the Bernoulli map T_2 on S^1 of Example 1.7. Let $J_0 = [0, 1/2)$ and $J_1 = [1/2, 1)$ be a partition of S^1 , and let the map $h: \Omega_{\{0,1\}} \to S^1$ be defined by

$$\omega = (\omega_i)_{i \in \mathbb{N}_0} \mapsto h(\omega) = \bigcap_{i \in \mathbb{N}_0} T_2^{-i}(J_{\omega_i}).$$

The map h is continuous and surjective, and satisfies $T_2 \circ h = h \circ \sigma$. Then the Bernoulli map is a topological factor of the full shift on two symbols.

Example 3.2. Let's consider the Tent map T_s with s = 2 of Example 1.5, and the logistic map T_{λ} with $\lambda = 4$ of Example 1.6. Let the map $h : [0, 1] \rightarrow [0, 1]$ be defined by

$$[0,1] \ni x \mapsto h(x) = \sin^2\left(\frac{\pi}{2}x\right) \,.$$

The map h is a homeomorphism, and satisfies $T_4 \circ h = h \circ T_2$. Hence the Tent map T_s with s = 2 is topologicall conjugate to the logistic map T_λ with $\lambda = 4$.

Remark 3.1. In some situations it is interesting to study the regularity of a conjugacy. For example, if T and \tilde{T} are C^k maps, with $k \in \mathbb{N}_0 \cup \{\infty, \omega\}$, a natural question is whether there exists a conjugacy h between the systems (X,T) and (\tilde{X},\tilde{T}) which is of class C^k . If it exists we say that (X,T) and (\tilde{X},\tilde{T}) are C^k conjugate.

3.1 Stability in one dimension

Let $T: X \to X$ be a continuous map of a one-dimensional space $X = [a, b], (a, b), [a, +\infty), (a, +\infty), (-\infty, b], (-\infty, b), \mathbb{R}, S^1$.

Definition 3.2. A fixed point $x_0 \in X$ of T is called *attractive* if there exists $\delta > 0$ such that, for all $x \in B_{\delta}(x_0)$, one has $T^n(x) \in B_{\delta}(x_0)$ for all $n \ge 0$, and $T^n(x) \to x_0$ as $n \to +\infty$.

A fixed point $x_0 \in X$ is called *repulsive* if there exists $\delta > 0$ such that, for all $x \in B_{\delta}(x_0), x \neq x_0$, there exists $\bar{n} \in \mathbb{N}$ for which $T^{\bar{n}}(x) \notin B_{\delta}(x_0)$.

To study the dynamics in a neighbourhod of a fixed point x_0 , first it is useful to try the linearization approach. Let T be differentiable at x_0 . Then, there exists $\varepsilon > 0$ such that for all $x \in B_{\varepsilon}(x_0)$

$$T(x) = T(x_0) + T'(x_0)(x - x_0) + o(|x - x_0|) = x_0 + T'(x_0)(x - x_0) + o(|x - x_0|).$$

Hence,

$$|T(x) - x_0| = |T'(x_0)| |x - x_0| + o(|x - x_0|).$$
(3.2)

We deduce that, at the first order, it is the derivative $T'(x_0)$ which may determine whether the orbit of a point $x \in B_{\varepsilon}(x_0)$ gets closer or further from the fixed point x_0 . This justifies the following definition.

Definition 3.3. Let T be differentiable at a fixed point x_0 . The fixed point $x_0 \in X$ is called *hyperbolic* if $|T'(x_0)| \neq 1$.

Theorem 3.2. Let x_0 be a hyperbolic fixed point for a map T which is differentiable at x_0 . If $|T'(x_0)| < 1$ then the point is attractive, if $|T'(x_0)| > 1$ then the point is repulsive.

Proof. Let $|T'(x_0)| < 1$ and fix $c \in (|T'(x_0)|, 1)$. If we choose $\delta > 0$ such that $|T'(x)| \leq c$ for all $x \in B_{\delta}(x_0)$, then we have that for all $n \geq 1$

$$|T^{n}(x) - x_{0}| \le c^{n} |x - x_{0}|, \quad \forall x \in B_{\delta}(x_{0}).$$
(3.3)

From (3.3) and $c \in (0, 1)$, it follows that $T^n(x) \in B_{\delta}(x_0)$ for all $n \ge 0$ and $T^n(x) \to x_0$ as $n \to +\infty$.

We now prove (3.3) by induction. For n = 1, for all $x \in B_{\delta}(x_0)$ there exists ξ_1 between x and x_0 such that

$$|T(x) - x_0| = |T(x) - T(x_0)| = |T'(\xi_1)| |x - x_0| \le c |x - x_0|,$$

where $|T'(\xi_1)| \leq c$ since $\xi_1 \in B_{\delta}(x_0)$. Then, let's assume that (3.3) holds for a given n, and show that it holds for n + 1. There exists ξ_n between $T^n(x)$ and x_0 such that

$$|T^{n+1}(x) - x_0| = |T(T^n(x)) - T(x_0)| = |T(\xi_n)| |T^n(x) - x_0| \le \le c \cdot c^n |x - x_0| = c^{n+1} |x - x_0|,$$

since $\xi_n \in B_{\delta}(x_0)$.

Let now $|T'(x_0)| > 1$, and first consider the case $T'(x_0) > 1$. Then we fix $c \in (1, T'(x_0))$ and choose $\delta > 0$ such that $T'(x) \ge c$ for all $x \in B_{\delta}(x_0)$. We now argue by contradiction and assume that there exists $x \in B_{\delta}(x_0)$, $x \ne x_0$, such that $T^n(x) \in B_{\delta}(x_0)$ for all $n \ge 1$. Then, we can repeat the argument above to show that

$$|T^{n}(x) - x_{0}| \ge c^{n} |x - x_{0}|, \quad \forall n \ge 1,$$

from which we find that $|T^n(x) - x_0| \to +\infty$ as $n \to +\infty$ since c > 1. This gives the contradiction with the assumption $T^n(x) \in B_{\delta}(x_0)$ for all $n \ge 1$.

A similar argument works in the case $|T'(x_0)| > 1$ and $T'(x_0) < -1$. \Box

When the fixed point is not hyperbolic, the approach in (3.2) suggests that the higher derivatives of T at x_0 may give some information.

Definition 3.4. A fixed point $x_0 \in X$ is called *semi-attractive from the left* if there exists $\delta > 0$ such that it is attractive for points on $(x_0 - \delta, x_0)$ and repulsive for points on $(x_0, x_0 + \delta)$. A fixed point $x_0 \in X$ is called *semi-attractive from the right* if there exists $\delta > 0$ such that it is attractive for points on $(x_0, x_0 + \delta)$ and repulsive for points on $(x_0 - \delta, x_0)$.

Proposition 3.3. Let x_0 be a fixed point for a map T which is differentiable at x_0 with $|T'(x_0)| = 1$. The following possibilities hold:

- (i) Let $T'(x_0) = 1$ and assume that $T \in C^2(B_{\varepsilon}(x_0))$ for some $\varepsilon > 0$, and $T''(x_0) \neq 0$. Then,
 - If $T''(x_0) > 0$, then x_0 is semi-attractive from the left;
 - If $T''(x_0) < 0$, then x_0 is semi-attractive from the right;
- (ii) Let $T'(x_0) = 1$ and assume that $T \in C^3(B_{\varepsilon}(x_0))$ for some $\varepsilon > 0$, that $T''(x_0) = 0$, and $T'''(x_0) \neq 0$. Then,
 - If $T'''(x_0) > 0$, then x_0 is repulsive;
 - If $T'''(x_0) < 0$, then x_0 is attractive;
- (iii) Let $T'(x_0) = -1$ and assume that $T \in C^3(B_{\varepsilon}(x_0))$ for some $\varepsilon > 0$. Then we look at $ST(x_0)$, the Schwarzian derivative of T at x_0 , where

$$ST(x) := \frac{T'''(x)}{T'(x)} - \frac{3}{2} \left(\frac{T''(x)}{T'(x)}\right)^2.$$
(3.4)

Then,

- If $ST(x_0) > 0$, then x_0 is repulsive; - If $ST(x_0) < 0$, then x_0 is attractive.

Proof. The proofs of (i) and (ii) are immediate from the graphical approach. Let us prove (iii). Since $T'(x_0) = -1$, in a neighborhood of x_0 the map T is order-reversing. We look at $G := T^2$ for which $G(x_0) = x_0$, and use that x_0 has the same stability for G and T. We have

$$G'(x) = T'(T(x)) T'(x) \implies G'(x_0) = (T'(x_0))^2 = 1,$$

$$G''(x) = T''(T(x)) (T'(x))^2 + T'(T(x)) T''(x)$$

$$\implies G''(x_0) = T''(x_0) \left((T'(x_0))^2 - T'(x_0) \right) = 0$$

Moreover $G \in C^{3}(B_{\varepsilon}(x_{0}))$, hence we can compute $G'''(x_{0})$. It holds $G'''(x) = T'''(T(x)) (T'(x))^{3} + 3T''(T(x)) T'(x) T''(x) + T'(T(x)) T'''(x)$ $\Rightarrow G'''(x_{0}) = T'''(x_{0}) ((T'(x_{0}))^{3} + T'(x_{0})) + 3(T''(x_{0}))^{2} T'(x_{0})$ $\Rightarrow G'''(x_{0}) = 2ST(x_{0}).$

The result follows from (ii).

3.1. STABILITY IN ONE DIMENSION

We conclude this section by studying the stability for periodic orbits.

Definition 3.5. Let x_0 be a periodic point for T with minimal period p. The orbit $\mathcal{O}(x_0)$ is called *attractive* (respectively *repulsive*) if x_0 is an attractive (respectively repulsive) fixed point for T^p .

Remark 3.4. Let x_0 be a periodic point for T with minimal period p. If $T \in C^1$, it is a straightforward corollary of the chain rule that the derivative of T^p is the same on all the points of the orbit of x_0 , i.e. $(T^p)'(T^i(x_0)) = (T^p)'(x_0)$ for all $i = 0, \ldots, p-1$, since

$$(T^p)'(x_0) = \prod_{j=0}^{n-1} T'(T^j(x_0)).$$