
Chapter 3

Discrete-time dynamical

systems

In this chapter we consider discrete-time dynamical systems as defined in
Definition 1.2. Hence we need to specify a set X and a map T : X ! X.
The properties of X and T may vary and give rise to di↵erent areas of
research. Here we assume that X is a locally compact connected metric
space and T is a continuous map, and call (X,T ) a discrete-time continuous
dynamical system. In many situations one can simply consider X to be an
interval of the real line, and in fact some results of this chapter hold only
for one-dimensional spaces X or even for compact intervals of the real line.

We start with simple definitions.

Definition 3.1. Let (X,T ) and (X̃, T̃ ) be two discrete-time continuous
dynamical systems. We say that (X̃, T̃ ) is a topological factor of (X,T ) if
there exists a continuous map h : X ! X̃ that is surjective and satisfies

T̃ � h = h � T . (3.1)

If the map h : X ! X̃ is a homeomorphism and satisfies (3.1) then we
say that (X,T ) and (X̃, T̃ ) are topologically conjugate and h is a topological
conjugacy.

Example 3.1. Let’s consider the full shift (⌦A,N0,�) on two symbols A =
{0, 1} of Example 1.8, and the Bernoulli map T2 on S1 of Example 1.7.
Let J0 = [0, 1/2) and J1 = [1/2, 1) be a partition of S1, and let the map
h : ⌦{0,1} ! S1 be defined by

! = (!i)i2N0 7! h(!) =
\

i2N0

T�i

2 (J!i) .
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The map h is continuous and surjective, and satisfies T2 � h = h � �. Then
the Bernoulli map is a topological factor of the full shift on two symbols.

Example 3.2. Let’s consider the Tent map Ts with s = 2 of Example 1.5, and
the logistic map T� with � = 4 of Example 1.6. Let the map h : [0, 1] ! [0, 1]
be defined by

[0, 1] 3 x 7! h(x) = sin2
⇣⇡
2
x
⌘
.

The map h is a homeomorphism, and satisfies T4 � h = h � T2. Hence the
Tent map Ts with s = 2 is topologicall conjugate to the logistic map T� with
� = 4.

Remark 3.1. In some situations it is interesting to study the regularity of a
conjugacy. For example, if T and T̃ are Ck maps, with k 2 N0 [ {1,!}, a
natural question is whether there exists a conjugacy h between the systems
(X,T ) and (X̃, T̃ ) which is of class Ck. If it exists we say that (X,T ) and
(X̃, T̃ ) are Ck conjugate.

3.1 Stability in one dimension

Let T : X ! X be a continuous map of a one-dimensional space X =
[a, b], (a, b), [a,+1), (a,+1), (�1, b], (�1, b),R, S1.

Definition 3.2. A fixed point x0 2 X of T is called attractive if there exists
� > 0 such that, for all x 2 B�(x0), one has Tn(x) 2 B�(x0) for all n � 0,
and Tn(x) ! x0 as n ! +1.
A fixed point x0 2 X is called repulsive if there exists � > 0 such that, for
all x 2 B�(x0), x 6= x0, there exists n̄ 2 N for which T n̄(x) 62 B�(x0).

To study the dynamics in a neighbourhod of a fixed point x0, first it is
useful to try the linearization approach. Let T be di↵erentiable at x0. Then,
there exists " > 0 such that for all x 2 B"(x0)

T (x) = T (x0)+T 0(x0)(x�x0)+o(|x�x0|) = x0+T 0(x0)(x�x0)+o(|x�x0|) .

Hence,
|T (x)� x0| = |T 0(x0)| |x� x0|+ o(|x� x0|) . (3.2)

We deduce that, at the first order, it is the derivative T 0(x0) which may
determine whether the orbit of a point x 2 B"(x0) gets closer or further
from the fixed point x0. This justifies the following definition.

Definition 3.3. Let T be di↵erentiable at a fixed point x0. The fixed point
x0 2 X is called hyperbolic if |T 0(x0)| 6= 1.
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Theorem 3.2. Let x0 be a hyperbolic fixed point for a map T which is
di↵erentiable at x0. If |T 0(x0)| < 1 then the point is attractive, if |T 0(x0)| > 1
then the point is repulsive.

Proof. Let |T 0(x0)| < 1 and fix c 2 (|T 0(x0)|, 1). If we choose � > 0 such
that |T 0(x)|  c for all x 2 B�(x0), then we have that for all n � 1

|Tn(x)� x0|  cn |x� x0| , 8x 2 B�(x0) . (3.3)

From (3.3) and c 2 (0, 1), it follows that Tn(x) 2 B�(x0) for all n � 0 and
Tn(x) ! x0 as n ! +1.

We now prove (3.3) by induction. For n = 1, for all x 2 B�(x0) there
exists ⇠1 between x and x0 such that

|T (x)� x0| = |T (x)� T (x0)| = |T 0(⇠1)| |x� x0|  c |x� x0| ,

where |T 0(⇠1)|  c since ⇠1 2 B�(x0). Then, let’s assume that (3.3) holds for
a given n, and show that it holds for n+ 1. There exists ⇠n between Tn(x)
and x0 such that

|Tn+1(x)� x0| = |T (Tn(x))� T (x0)| = |T (⇠n)| |Tn(x)� x0| 

 c · cn |x� x0| = cn+1 |x� x0| ,
since ⇠n 2 B�(x0).

Let now |T 0(x0)| > 1, and first consider the case T 0(x0) > 1. Then we
fix c 2 (1, T 0(x0)) and choose � > 0 such that T 0(x) � c for all x 2 B�(x0).
We now argue by contradiction and assume that there exists x 2 B�(x0),
x 6= x0, such that Tn(x) 2 B�(x0) for all n � 1. Then, we can repeat the
argument above to show that

|Tn(x)� x0| � cn |x� x0| , 8n � 1 ,

from which we find that |Tn(x)� x0| ! +1 as n ! +1 since c > 1. This
gives the contradiction with the assumption Tn(x) 2 B�(x0) for all n � 1.

A similar argument works in the case |T 0(x0)| > 1 and T 0(x0) < �1.

When the fixed point is not hyperbolic, the approach in (3.2) suggests
that the higher derivatives of T at x0 may give some information.

Definition 3.4. A fixed point x0 2 X is called semi-attractive from the left
if there exists � > 0 such that it is attractive for points on (x0 � �, x0) and
repulsive for points on (x0, x0 + �). A fixed point x0 2 X is called semi-
attractive from the right if there exists � > 0 such that it is attractive for
points on (x0, x0 + �) and repulsive for points on (x0 � �, x0).
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Proposition 3.3. Let x0 be a fixed point for a map T which is di↵erentiable
at x0 with |T 0(x0)| = 1. The following possibilities hold:

(i) Let T 0(x0) = 1 and assume that T 2 C2(B"(x0)) for some " > 0, and
T 00(x0) 6= 0. Then,

– If T 00(x0) > 0, then x0 is semi-attractive from the left;

– If T 00(x0) < 0, then x0 is semi-attractive from the right;

(ii) Let T 0(x0) = 1 and assume that T 2 C3(B"(x0)) for some " > 0, that
T 00(x0) = 0, and T 000(x0) 6= 0. Then,

– If T 000(x0) > 0, then x0 is repulsive;

– If T 000(x0) < 0, then x0 is attractive;

(iii) Let T 0(x0) = �1 and assume that T 2 C3(B"(x0)) for some " > 0.
Then we look at ST (x0), the Schwarzian derivative of T at x0, where

ST (x) :=
T 000(x)

T 0(x)
� 3

2

✓
T 00(x)

T 0(x)

◆2

. (3.4)

Then,

– If ST (x0) > 0, then x0 is repulsive;

– If ST (x0) < 0, then x0 is attractive.

Proof. The proofs of (i) and (ii) are immediate from the graphical approach.
Let us prove (iii). Since T 0(x0) = �1, in a neighborhood of x0 the map T is
order-reversing. We look at G := T 2 for which G(x0) = x0, and use that x0
has the same stability for G and T . We have

G0(x) =T 0(T (x))T 0(x) ) G0(x0) = (T 0(x0))
2 = 1 ,

G00(x) =T 00(T (x)) (T 0(x))2 + T 0(T (x))T 00(x)

) G00(x0) = T 00(x0)
⇣
(T 0(x0))

2 � T 0(x0)
⌘
= 0 .

Moreover G 2 C3(B"(x0)), hence we can compute G000(x0). It holds

G000(x) =T 000(T (x)) (T 0(x))3 + 3T 00(T (x))T 0(x)T 00(x) + T 0(T (x))T 000(x)

) G000(x0) = T 000(x0)
⇣
(T 0(x0))

3 + T 0(x0)
⌘
+ 3 (T 00(x0))

2 T 0(x0)

) G000(x0) = 2ST (x0) .

The result follows from (ii).
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We conclude this section by studying the stability for periodic orbits.

Definition 3.5. Let x0 be a periodic point for T with minimal period p. The
orbit O(x0) is called attractive (respectively repulsive) if x0 is an attractive
(respectively repulsive) fixed point for T p.

Remark 3.4. Let x0 be a periodic point for T with minimal period p. If
T 2 C1, it is a straightforward corollary of the chain rule that the derivative
of T p is the same on all the points of the orbit of x0, i.e. (T p)0(T i(x0)) =
(T p)0(x0) for all i = 0, . . . , p� 1, since

(T p)0(x0) =
n�1Y

j=0

T 0(T j(x0)) .


