Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il
libretto sul banco per il controllo.

Tempo 30 minuti. Durante la prova non si puo uscire dall’aula.

Non si possono consultare libri, manuali, appunti.

Non si possono usare calcolatrici, computer, dispositivi connessi alla rete.
Consegnare solo il foglio risposte.

Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
Ogni domanda ha una e una sola risposta giusta.

N.A. significa "nessuna delle altre”, mentre N.E. significa ”non esiste”
Non usare matite e/o penne rosse sul foglio risposte.

Indicare la risposta nell’apposita maschera con una ”?X”.

Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e
INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1
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PARTE A

. 11 limite )
L log(log(+?))
z—+00 1og(ac)
vale

A:1 B:N.A C:+400 D:NE. E: 0
. L’integrale

1/n )
/ e" ¥dr, conne€N,
0

vale
A: 61/7# B:1/n C:0 D:NA. E: 6251

. Il numero di soluzioni di z+iZ =0, e
A:infinito B:3 C:2 D:N.A. E:1

. La retta tangente al grafico di y(z) = logs(z + 1) nel punto 2o =1 &

. L z—1 . L_x—1 . In(2) z—1

. La funzione f(z): R — R definita da f(z) = z|z| &

A:limitata B:nonderivabileinz =0 C:noncontinuainz =0 D:N.A. E: iniettiva

. Il minimo e il massimo della funzione f(x) = xlog(x) per = €]0, e] sono

A: entrambi non esistono B: min =e”!, max =e, C:N.A. D:min= N.E., max = e!

E: min = -1, max =e

. Inf, min, sup e max dell’insieme

1
A= {y: prr € R\{O}},
valgono
A:{-oc0,N.E.,400,N.E.} B:{-1,N.E,1,N.E.} C:{0,N.E.,4+c0,N.E.} D:{0,N.E.,1,N.E.}
E: N.A.
. Il raggio di convergenza della serie di potenze

+oo

nlog(n) -
2 o Dloge) @ )

vale
A:R=400 B:R=1 C:NA. D:R=0 E:R=4/3

2
. Il numero complesso (% + ﬁ) vale
A:14+4 B:0 C:NA. D:-1 E:1¢

+oo 1
—d
/0 1+ 422 ™
vale

A:mw/4 B:—oco C:NA. D:0 E:1

. L’integrale
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il
libretto sul banco per il controllo.

Tempo 30 minuti. Durante la prova non si puo uscire dall’aula.

Non si possono consultare libri, manuali, appunti.

Non si possono usare calcolatrici, computer, dispositivi connessi alla rete.
Consegnare solo il foglio risposte.

Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
Ogni domanda ha una e una sola risposta giusta.

N.A. significa "nessuna delle altre”, mentre N.E. significa ”non esiste”
Non usare matite e/o penne rosse sul foglio risposte.

Indicare la risposta nell’apposita maschera con una ”?X”.

Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e
INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

CODICE=279811
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10.

PARTE A

. La funzione f(z): R — R definita da f(z) = z|z| ¢

A:iniettiva B:non derivabileinxz =0 C:N.A. D: limitata E: non continuainz =0
La retta tangente al grafico di y(z) = logs(z + 1) nel punto xg =1 ¢

. . . In(2) z—1 e |
A:N.A. B:z C: In(3) + 2In(3) D: Tl +In(2) E: Togs(3)

Il limite )
L log(log(+?))
z—+00 1og(x)
vale

A:1 B:NE C:+o0 D:0 E:N.A.

. Il raggio di convergenza della serie di potenze

= nlog(n) ( + eZ)n
E _ eV (o

= (n+1)log(n?)

vale

A:NA. B:R=0 C:R=4/3 D:R=1 E:R=+

Il minimo e il massimo della funzione f(z) = xlog(z) per z €]0, €] sono

A:min =e !, max =e, B:N.A. C:min= -1, max =e D: entrambi non esistono
E: min = N.E., max = e!

Inf, min, sup e max dell’insieme

A= {y: ﬁ: CODZCER\{O}}a

valgono

A:{—oco,N.E.,+00,N.E} B:{-1,N.E.,1,N.E} C:{0,N.E.,1,N.E} D:N.A. E:
{0,N.E.,+o0, N.E.}

N2
Il numero complesso (% + %) vale
A:—1 B:NA C:0 D:i E:1+1
L’integrale
1/n )
/ e" ¥dr, conne€N,
0
vale
el/m_ e
A:NA. B:0 C:l/n D:e=L E:e3!

Il numero di soluzioni di z+iZ =0, e
A:NA. B:1 C:3 D:2 E: infinito

400 1
——d
/0 11422 "
vale

A:0 B:NA Cin/4 D:1 E: -0

L’integrale

CODICE=279811
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il
libretto sul banco per il controllo.

Tempo 30 minuti. Durante la prova non si puo uscire dall’aula.

Non si possono consultare libri, manuali, appunti.

Non si possono usare calcolatrici, computer, dispositivi connessi alla rete.
Consegnare solo il foglio risposte.

Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
Ogni domanda ha una e una sola risposta giusta.

N.A. significa "nessuna delle altre”, mentre N.E. significa ”non esiste”
Non usare matite e/o penne rosse sul foglio risposte.

Indicare la risposta nell’apposita maschera con una ”?X”.

Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e
INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

CODICE=949504
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10.

PARTE A

. Inf, min, sup e max dell’insieme

A= {y: ﬁ: CODIEER\{O}}a

valgono
A:{-1,NE,1,NE} B:NA C:{0,N.E,400,NE} D:{0,N.E.,1,NE} E:
{—o0,N.E., 400, N.E.}

2
Il numero complesso ( 75+ \}5) vale

A:7 B:—-1 C:NA. D:0 E:1+1
La funzione f(x): R — R definita da f(z) = z|z| ¢
A:iniettiva B:noncontinuainxz =0 C:limitata D:N.A. E: non derivabileinz =0

Il minimo e il massimo della funzione f(z) = xlog(z) per z €]0, €] sono

1 1

A: min = N.E., max = e B:min=e¢"", max =e, C:min= -1 max=e¢ D: N.A.

E: entrambi non esistono
Il raggio di convergenza della serie di potenze

+oo

nlogn) .,
2t Do) )

vale
A:R=4/3 B:R=0 C:R=1 D:NA E R=+c0

Il limite )
i Los(log(z7))
z—+00 1og(as)
vale

A:NE. B:1 C:0 D:NA E:+o

+oo 1
—d
/0 1+ 422 "
vale

A:—c0 B:NA. C:w/4 D:0 E:1

L’integrale

La retta tangente al grafico di y(z) = logs(z + 1) nel punto zg =1 &

. . z— . &= . In(2) z— .
A:NA. B %5 +In(2) Gy D tohy Ee

L’integrale
1/n )
/ e" Tdr, conne€lN,
0

vale
1/n71

A:NA B: <=L .0 D:<zL E:1/n

e
n n2

Il numero di soluzioni di z+iZ =0, e
A:1 B:NA. C:2 D:infinito E:3

CODICE=949504
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il
libretto sul banco per il controllo.

Tempo 30 minuti. Durante la prova non si puo uscire dall’aula.

Non si possono consultare libri, manuali, appunti.

Non si possono usare calcolatrici, computer, dispositivi connessi alla rete.
Consegnare solo il foglio risposte.

Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
Ogni domanda ha una e una sola risposta giusta.

N.A. significa "nessuna delle altre”, mentre N.E. significa ”non esiste”
Non usare matite e/o penne rosse sul foglio risposte.

Indicare la risposta nell’apposita maschera con una ”?X”.

Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e
INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

CODICE=501118
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10.

PARTE A

A: N.A. B: entrambi non esistono C: min = —1, max = e
E: min = N.E., max = e!

Il limite )
L log(log(+?))
z—+00 1og(ac)
vale

A:4+00 B:NE. C:0 D:NA E:1

Il numero di soluzioni di z+iZ =0, e
A:infinito B:2 C:3 D:1 E:N.A.

. Il minimo e il massimo della funzione f(x) = xlog(z) per x €]0, €] sono

D: min = e~ !, max = e,

La retta tangente al grafico di y(z) = logs(z + 1) nel punto zg =1 &

—1 E: N.A.

. o In(2 T
At 4 Bipiy Cio Doy oty

log;(3) In(3)
Il raggio di convergenza della serie di potenze

+oo

mlogn) .,
2 Do) )

vale

A:R=1 B:R=4c0 C:R:4/3 D:NA. E:R=0

2
1 i
Il numero complesso (W + ﬁ) vale

A:1+4 B:0 C:i D:-1 E:N.A.
L’integrale
1/n )
/ e" Tdr, conn€N,
0

vale
A:N.A. B:1/n C: ¢/"-1 e:l;l E: 0

n

Inf, min, sup e max dell’insieme
b ) p

A= {y: %: coanR\{O}}7

valgono

A: {O,N.E,1,N.E.} B:NA. C:{-00o,N.E.,+c0,N.E} D:{-1,N.E,1,N.E} E:

{0,N.E.,+00, N.E.}

L’integrale

+00 1
—d
/0 11422 "
vale

A:1 Bi—oc0o C:0 D:NA E:7n/4
La funzione f(x): R — R definita da f(z) = z|z| ¢

A:N.A. B:iniettiva C:noncontinuainx =0 D: limitata

E: non derivabilein z = 0
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Prova di Analisi Matematica 1
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

ABCDE
NN BORORONG
2 1 OO0 @O O
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(Nome) (Numero di matricola)
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il
libretto sul banco per il controllo.

Tempo 30 minuti. Durante la prova non si puo uscire dall’aula.

Non si possono consultare libri, manuali, appunti.

Non si possono usare calcolatrici, computer, dispositivi connessi alla rete.
Consegnare solo il foglio risposte.

Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
Ogni domanda ha una e una sola risposta giusta.

N.A. significa "nessuna delle altre”, mentre N.E. significa ”non esiste”
Non usare matite e/o penne rosse sul foglio risposte.

Indicare la risposta nell’apposita maschera con una ”?X”.

Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e
INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

CODICE=665651
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PARTE A

. Il numero di soluzioni di z — iz =0, e
A:N.A. B:3 C:0 D:2 E:1

. 11 limite
z(log(x))
—+00 log(a:Q)
vale

A:NA. B:NE. C:i4+o0 D:0 E: 1

. La funzione f(z) =R — R definita da f(x) = 2?|2?| &

A:N.A. B:iniettiva C:limitata D:non continuainx =0 E: non derivabilein x =0
. La retta tangente al grafico di y(x) = logs(x + 2) nel punto g =1 &

Lz—1 .o x—1 . . . log(3) z—1
A: 5 =+ 10g(5) B: Tog(5) C:x D: N.A. E: 102(5) + 310g(5)

. Il minimo e il massimo della funzione f(x) = 2xlog(x?) per = €]0, e| sono

A:min = N.E.,max =e¢° B:N.A. C: entrambi non esistono D: min = —4/e, max = 4e
E: min = —e™!, max = 4e,

N2
. Il numero complesso (% — ﬁ) vale
A:i B:1 C:0 D:NA. E:1+14

. Inf, min, sup e max dell’insieme

A= {y = % con x € R\{O}}v

valgono

A:NA. B:{-1,NE,1,NE} C:{-o0,N.E.,+c0,N.E.} D:{0,N.E,1,N.E} E:
{0, N.E., +00, N.E.}

. Il raggio di convergenza della serie di potenze

“+oo
( + Dlog(n?)
71:246 nlog(n) ( )

vale

A:R=400 B:R=3/2 C:NA. D:R=4/3 E:R=0

+oo 1
—d
/0 itz ™
vale

A:1 B:NA C:—-o0 D:7/2 E:0

. L’integrale

. L’integrale
1/n?
/ e"  conn €N,
0

vale
A:0 B:N.A. C: <5l D el/'% E: 1/(2n?)

n2

CODICE=665651
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il
libretto sul banco per il controllo.

Tempo 30 minuti. Durante la prova non si puo uscire dall’aula.

Non si possono consultare libri, manuali, appunti.

Non si possono usare calcolatrici, computer, dispositivi connessi alla rete.
Consegnare solo il foglio risposte.

Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
Ogni domanda ha una e una sola risposta giusta.

N.A. significa "nessuna delle altre”, mentre N.E. significa ”non esiste”
Non usare matite e/o penne rosse sul foglio risposte.

Indicare la risposta nell’apposita maschera con una ”?X”.

Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e
INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

CODICE=115767



Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

>
o)
Q
-,
€3]

= W

© oo N O

OlO[O[O]O]O0]0|0]|0]0
OlO[O[O]O0]O0]0|0]|0]0
OlO[O[O]O0]O0]0|0]|0]0
OlO[O[O]O0]O0]0|0]0]0
OlO[O[O]O]O0]0|0]|0]0

(Nome) (Numero di matricola)

CODICE=115767



10.

PARTE A

. L’integrale

1/n?
/ e"”  conn €N,
0

vale

A: 61/1% B:0 C:1/(2n%?) D:NA. E: <31

n2

. Il numero di soluzioni di z —iZ =0, e

A:1 B:NA. C:3 D:2 E:0

Il minimo e il massimo della funzione f(x) = 2z log(x?) per x €]0, €] sono

A:min = —4/e, max =4e B:N.A. C: entrambi non esistono D: min = N.E., max = e°
E: min = —e™!, max = 4e,

L’integrale

“+o0
1
—d
/0 i+a2 ™
vale

A:NA. B:1 Cn/2 D:0 E:—-c0

Il raggio di convergenza della serie di potenze

+o00
(w4 1)log(n®)
n;(j nlog(n) ( )

vale

A:N.A. B:R=4/3 C:R=3/2 D:R=+4c0 E R=0

La funzione f(x) = R — R definita da f(z) = 2%|2?| &

A:non continuainz =0 B:N.A. C:limitata D:iniettiva E: non derivabilein z =0

Il limite )
L a(los(@))
r— 400 log(:pz)
vale

A:NA. B:4+o0o C:NE. D:0 E:1

Inf, min, sup e max dell’insieme

A= {y = % con x € IR\{O}},

valgono

A: {-1,N.E,1,N.E} B:NA. C:{0,N.E,1,N.E.} D:{0,N.E,4o00,N.E.} E:
{—oc0,N.E., 400, N.E.}

N2
Il numero complesso (% - ﬁ) vale

A:i B:1 C:NA. D:14i E:0
La retta tangente al grafico di y(z) = logs(z + 2) nel punto zyp =1 &

. Lx—1 . log(3) z—1 . . z—1
Az B: 5 +10g(5) C: 10§(5) + 310g(5) D: N.A. E: Tog(5)

CODICE=115767
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Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il
libretto sul banco per il controllo.

Tempo 30 minuti. Durante la prova non si puo uscire dall’aula.

Non si possono consultare libri, manuali, appunti.

Non si possono usare calcolatrici, computer, dispositivi connessi alla rete.
Consegnare solo il foglio risposte.

Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
Ogni domanda ha una e una sola risposta giusta.

N.A. significa "nessuna delle altre”, mentre N.E. significa ”non esiste”
Non usare matite e/o penne rosse sul foglio risposte.

Indicare la risposta nell’apposita maschera con una ”?X”.

Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e
INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

CODICE=720421



Corso di Laurea in Ingegneria Informatica
Prova di Analisi Matematica 1

27 gennaio 2026

>
o)
Q
-,
€3]

= W

© oo N O

OlO[O[O]O]O0]0|0]|0]0
OlO[O[O]O0]O0]0|0]|0]0
OlO[O[O]O0]O0]0|0]|0]0
OlO[O[O]O0]O0]0|0]0]0
OlO[O[O]O]O0]0|0]|0]0

(Nome) (Numero di matricola)

CODICE=720421



10.

PARTE A

. 11 limite

z(log(x))
T—+00 log(xQ)

vale

A:NE B:NA. C:1 D:0 E:+o0

Il raggio di convergenza della serie di potenze

+oo
(0 + Dlog(n?)
124:6 nlog(n) ( )

vale
A:R=+4+00 B:R=3/2 C:R=4/3 D:NA. E R=0
La funzione f(r) = R — R definita da f(z) = 2%|2?| &

A:iniettiva B:non continuainxz =0 C:limitata D:N.A. E: non derivabileinz =0

. L’integrale

1/n?
/ e"  conn €N,
0

vale

A: CIMT_l B:1/(2n?) C:N.A. D: -1 E: 0

TL2

+oo 1
——d
/0 itz ™
vale

A:—c0 B:0 C:7/2 D:NA. E:l

. L’integrale

La retta tangente al grafico di y(z) = logs(z + 2) nel punto zg =1 &

.ozl . . . log(3) z—1 L z—1
A: Tog(5) B: N.A. C:z D: 105(5) + 310g(5) E: 5 +10g(5)

2
L ,

Il numero complesso (W — %) vale

A:1 B:144¢ C:i D:0 E:N.A.

Il numero di soluzioni di z — ¢z =0, ¢

A:1 B:0 C:2 D:3 E:N.A.

Il minimo e il massimo della funzione f(x) = 2zlog(x?) per z €]0, €] sono

A: min = —e™!, max = 4e, DB: entrambi non esistono C: N.A.  D: min = N.E.,

max = e° E: min = —4/e, max = 4e

Inf, min, sup e max dell’insieme

A={y= = cnzemp}},

valgono

A:N.A. B:{0,N.E.,1,N.E} C:{—o0o,N.E.,+00,N.E} D:{-1,N.E.,1,N.E.} E:
{0,N.E.,+o0, N.E.}
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Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il
libretto sul banco per il controllo.

Tempo 30 minuti. Durante la prova non si puo uscire dall’aula.

Non si possono consultare libri, manuali, appunti.

Non si possono usare calcolatrici, computer, dispositivi connessi alla rete.
Consegnare solo il foglio risposte.

Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
Ogni domanda ha una e una sola risposta giusta.

N.A. significa "nessuna delle altre”, mentre N.E. significa ”non esiste”
Non usare matite e/o penne rosse sul foglio risposte.

Indicare la risposta nell’apposita maschera con una ”?X”.

Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e
INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.
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PARTE A

. Il numero di soluzioni di z —iZ =0, e

A:0 B:3 C:1 D:NA. E:2

. Il minimo e il massimo della funzione f(x) = 2xlog(x?) per = €]0, e sono
A: min = —4/e, max = 4e  B: entrambi non esistono  C: min = N.E., max = e¢° D:
N.A. E:min = —e"!, max = 4e,

. L’integrale
1/n?
/ e"”  conn €N,
0

vale

A:N.A. B: 02;1 Cc:0 D: <=l E 1/(2n?)

n

. La retta tangente al grafico di y(z) = logs(x + 2) nel punto 2o =1 &

Lox—1 . log(3) z—1 . Lz—1 .
A. 10g(5) B 102(5) + 310g(5) C X D 5 + 10g(5) E NA

N2
. Il numero complesso (% - \%) vale
A:1 B:NA. C:0 D:1+i E:4

. Inf, min, sup e max dell’insieme

A= {y = # con x € R\{O}}7

valgono

A {0,N.E.,400,N.E.} B:{-1,N.E,1,N.E} C:{0,N.E.,1,N.E} D:{—00,N.E., +00, N.E.}
E: N.A.

. La funzione f(x) = R — R definita da f(z) = 22|2?| &

A:iniettiva B:limitata C:N.A. D:non continuainz =0 E: non derivabilein z =0

. Il raggio di convergenza della serie di potenze

— (M’ +1)log(n?,
n;é, nlog(n) (@ —m)

vale
A:R=3/2 B:R=+4+o C:R=4/3 D:NA. E:R=0

. Il limite |
1 wllog(@)
r—+00 log(mZ)
vale

A:NA. B:0 C:1 D:+occ E:NE.

“+o0
1
——d
/0 1+22 "
vale

A:1 B:NA. C:n/2 D:0 E:—o0

. L’integrale
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PARTE B

Studiare, al variare di @ € R, la natura degli eventuali punti critici della funzione

f(z)=az® —a®2®> + . +1 r e R.

Soluzione: Cerchiamo intanto i punti critici che risolvono I’equazione
/() = 3az® — 2a*x +1 = 0.

Si tratta di una equazione di secondo grado e il discriminante (funzione di a) risulta essere
A, = 4a* — 12a = 4a(a® — 3). Dallo studio del segno si vede che

A, >0 pera €] —oo,0[U]33 +oof;
A,=0 pera=0,31/3;
A, <0 pera€]0,33].

Pertanto per a €]0,3/3[ non ci sono punti critici. Per a = 0, 'equazione non ha soluzione,
e per a = 3'/3 ¢’& un solo punto critico. In tal caso, dato che a > 0 si ha che la funzione f
risulta con derivata positiva in tutti i punti eccetto che in uno in cui si annulla. f & pertanto
strettamente crescente e I'unico punto stazionario z; = 3~2/3 & punto di flesso.

Per a €] — 00, 0[U]3'/3, +o0[ si hanno due punti stazionari distinti
a? + /a(a® - 3) a? — \/a(a® —3)

xr1 = o =
3a 3a

Calcolando la derivata seconda di f si ha f”(x) = 6ax — 2a? e quindi

f(x1) =2va(@®-3)>0 e  f’(z1) =—2v/a(a®—3) <0.

Quindi abbiamo un minimo (relativo) in x; e un massimo relativo in 5. Osserviamo che
per a < 0 si ha x; > 2, mentre per a > 3'/3 si ha Popposto xg > 1.

Lo stesso risultato si poteva anche ottenere studiando i cambi di segno della derivata prima.

Al variare del parametro reale 5 > 0, determinare la convergenza assoluta della serie

> [ (1 5) - ()]

Soluzione.



Per determinare il carattere della serie, analizziamo il comportamento del termine generale
an =In (1 + n%) — sin (#) per n — oco. Utilizziamo gli sviluppi di Taylor centrati in ¢t = 0:

In(l1+¢t)=t— g +o(t?), sin(t) =t + o(t?)

Sostituendo ¢t = 1/n® e t = 1/n?, il termine generale diventa:

(1 1 1 1 1
i =\p T o\ ) et

Lo studio si divide in tre casi basati sul confronto tra gli esponenti 8 e 2:

1. Caso (0 < 8 < 2). Per < 2,1l termine dominante & # Infatti:

1 ) 1 n5+ 1
n=—(1—-———+... | ~=
nb 2nB  n? np

Per il criterio del confronto asintotico con la serie armonica generalizzata:

e Se 0 < B <1, laserie diverge (positivamente).
e Se 1 < < 2, la serie converge asssolutamente.
2. Caso (B > 2). Per 8 > 2, il termine 1/n? & l'infinitesimo di ordine minore rispetto a
1/n%. Quindi:
1

ap, ~ ——5
n2

Poiché I’esponente 2 > 1, la serie converge assolutamente.

3. Caso (B = 2) In questo caso, i termini di ordine 1/n? si cancellano:

1 1 1 1 1 1 1
=\ o to\a)) e to\nr)) T T o\
1

Dato che a, ~ —5 7,

la serie converge assolutamente.

Conclusione: La serie ) |a,| converge se e solo se a > 1.
Sia w > 0. Si consideri ’equazione differenziale lineare del secondo ordine:
Yy’ (x) + dy(x) = cos(w).

a) Trovare la soluzione y,, del problema di Cauchy con condizioni iniziali y(0) = 0,4'(0) =0
nel caso non risonante (w # 2);

b) Trovare la soluzione dello stesso problema di Cauchy nel caso w = 2;

¢) Studiare se le soluzioni gy, convergono (a x fissato) quando w — 2, alla soluzione
risonante dello stesso problema con w = 2.

Soluzione. L’equazione omogenea associata ¢ Y” +4Y = 0. Il polinomio caratteristico ¢
A2 +4 =0, le cui radici sono A = £2i. La soluzione dell’omogenea &:

Y (x) = ¢1 cos(2x) + o sin(2z)
e una soluzione particolare nel caso “Non Risonante” (w # 2) deve essere della forma

ynr(x) = Acos(wz) + Bsin(wz).



Dall’altro lato, le soluzioni nel caso “Risonante” devono essere della formas:

yr(z) = (A cos(2z) + Bsin(2z)).

a) Caso non risonante (w # 2): Cerchiamo una soluzione particolare y;(z) = A cos(wz)+
Bsin(wz). Sostituendo: si trova B = 0 e A(—w? + 4) cos(wz) = cos(wz) = A = 1.
Pertanto, la soluzione generale (integrale generale) &

1
y(z) = ¢1 cos(2x) + cosin(2z) + e cos(wx)

Imponendo le condizioni iniziali y(0) =0 e y’(0) = 0, otteniamo la soluzione:

1
4 — w?

y(z) = (cos(wz) — cos(2x)).

b) Caso risonante: Calcoli analoghi mostrano che la soluzione nel caso w = 2 vale
1.
yo(x) = Vi sin(2x).

c) Limite: Supponendo che la soluzione risonante y2(x) sia il limite puntuale (ciog il limite
calcolato a x fissato, per ogni « € R) di y,(z), dobbiamo calcolare

cos(wz) — cos(2x)

Poiché per w = 2 otteniamo una forma indeterminata %, applichiamo la regola di de 'Hopital
derivando rispetto al parametro w (per z fissato):

yo(z) = lim A (cos(wz) — cos(2z))
2 w2 (4 —y?)
. —wsin(wz) —xsin(2z) 1 |
= i1_>m2 — = ) =1 sin(2x).

. Sia f : R — R una funzione due volte derivabile. tale che

(a) £(0) = f(1) =0;

(b) f'(0) = f'(1) = 0;

(c) |f"(x)] <1 per ogni z € (0,1).
Dimostrare che |f(z)| < 3 min{z?, (1 — z)?} per ogni z € [0, 1].

Soluzione. Sia z € (0,1). Possiamo usare le ipotesi che f(0) = f'(0) = 0 per dedurre che
()= f(0)+ fot f(s)ds = fg f"(s)ds e quindi integrando ancora che f(z) = [ f'(t)dt e
dunque che

x t
f@ = [ ([ 1s)ds)an
o Jo
Allor stesso modo usando che f(1) = f/(1) = 0 otteniamo

f(z) = / 1 ( /t ") ds) dt.

Usando quindi che |f”] <1 si ricavano le seguenti stime:



e Se z € (0, 1], allora

sl < [ ede=ga*
0

e Sez€[i,1), allora
2

' x

Pertanto, osservando che x2 < (1 — z)? per 0 < x < 1/2 e anche che 22 > (1 — x)? per
1/2 <z <1,siha

1 1

§x2:§min{$2,(1—x)2} 0<z<1/2
1 2 _ 1 . 0o 2

i(lfx) :5111111{:5,(17:17)} 1/2<x <1,

da cui la tesi.



