- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

28 gennaio 2020

			(Co	gnoi	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	0	\bigcirc	\bigcirc	_
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	0	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10	0	\bigcirc	\bigcirc	\bigcirc		

- 1. Dato il problema di Cauchy $y'(x)=\frac{x^3}{(y(x))^3}$ con y(1)=1. Allora y'(2) vale A: -1 B: N.A. C: 3/2 D: 0 E: 1/2
- 2. Il numero complesso $28 \, |i| + i + i^{2020}$ vale A: N.A. B: 1 + 29i C: i D: 1 2020i E: 2 + 28i
- 3. Data $f(x) = e^{x^3}$. Allora f'''(0) è uguale a A: 6 B: 1 C: N.A. D: 12 E: 1/2
- 4. Per $x \in [0, 2\pi]$, l'insieme di convergenza della serie

$$\sum_{n=1}^{\infty} \left(\sin(x)\right)^n$$

è

- A: |x| < 1 B: $x \neq \pi/4, 5\pi/4$ C: $x \neq 0, 2\pi$ D: N.A. E: $\frac{x}{\pi} < 1$
- 5. Il limite

$$\lim_{x \to 1^+} \frac{\sin(\pi x)}{e^{3x} - 1}$$

vale

A: N.A. B: N.E. C:
$$-\frac{3}{4}$$
 D: 0 E: $\frac{\pi}{3}$

6. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} \frac{n}{(n^2 + 1)^{1-\alpha}} < +\infty \}$$

valgono

A:
$$\{2, N.E., 2, 2\}$$
 B: $\{0, N.E., +\infty, N.E.\}$ C: $\{-\infty, N.E., 1, N.E.\}$ D: $\{-\infty, N.E., 0, N.E.\}$ E: N.A.

7. La funzione $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ definita da $f(x) = \log(|ex|^{\pi})$ è

A: iniettiva B: N.A. C: monotona crescente D: monotona decrescente E: limitata

8. L'integrale

$$\int_{1}^{2} \frac{x-1}{x^2-1} \, dx$$

vale

A: N.E. B:
$$\log(\frac{2}{3})$$
 C: $\frac{\log(3)}{2}$ D: $\log(\frac{3}{2})$ E: N.A.

9. Per quali $b \in \mathbb{R}$ la funzione $f(x) = \begin{cases} |x| + b & \text{per } x \leq \frac{\pi}{2} \\ 1 - \cos(|x|) & \text{per } x > \frac{\pi}{2} \end{cases}$ è derivabile in tutto \mathbb{R} .

A: $b > \pi$ B: N.E. C: N.A. D: $b = 1 - \pi/2$ E: $|b| < \pi/2$

10. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt[3]{k+x^2}$ in $x_0 = 0$ vale

A:
$$\frac{1}{2}(\frac{1}{\sqrt{k}} + \tan^2(k))x^2$$
 B: N.A. C: $-\frac{(\pi k)^2}{4}$ D: $\frac{\sqrt[3]{k}}{3}$ E: $1 + kx$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

28 gennaio 2020

																	1				
		 (Co	gnor	ne)				_	 		(No	me)			-	(N	lume	ro d	i ma	trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	0	\bigcirc	0	\bigcirc	\bigcirc
9	0	\bigcirc	0	\bigcirc	\bigcirc
10		\circ			

1. Il limite

$$\lim_{x \to 1^+} \frac{\sin(\pi x)}{e^{3x} - 1}$$

vale

A: N.A. B: 0 C: $\frac{\pi}{3}$ D: N.E. E: $-\frac{3}{4}$

2. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} \frac{n}{(n^2 + 1)^{1-\alpha}} < +\infty \}$$

valgono

A: $\{-\infty, N.E., 0, N.E.\}$ B: N.A. C: $\{0, N.E., +\infty, N.E.\}$ D: $\{-\infty, N.E., 1, N.E.\}$ E: $\{2, N.E., 2, 2\}$

3. Per quali $b \in \mathbb{R}$ la funzione $f(x) = \begin{cases} |x| + b & \text{per } x \leq \frac{\pi}{2} \\ 1 - \cos(|x|) & \text{per } x > \frac{\pi}{2} \end{cases}$ è derivabile in tutto \mathbb{R} .

A: N.A. B: N.E. C: $b = 1 - \pi/2$ D: $b > \pi$ E: $|b| < \pi/2$

4. L'integrale

$$\int_{1}^{2} \frac{x-1}{x^2-1} \, dx$$

vale

A: $\frac{\log(3)}{2}$ B: $\log(\frac{2}{3})$ C: $\log(\frac{3}{2})$ D: N.A. E: N.E.

5. Dato il problema di Cauchy $y'(x) = \frac{x^3}{(y(x))^3}$ con y(1) = 1. Allora y'(2) vale

A: N.A. B: -1 C: 3/2 D: 1/2 E: 0

6. Per $x \in [0, 2\pi]$, l'insieme di convergenza della serie

$$\sum_{n=1}^{\infty} \left(\sin(x) \right)^n$$

è

A: N.A. B: |x| < 1 C: $x \neq \pi/4, 5\pi/4$ D: $\frac{x}{\pi} < 1$ E: $x \neq 0, 2\pi$

7. La funzione $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ definita da $f(x) = \log(|ex|^{\pi})$ è

A: iniettiva B: monotona crescente C: monotona decrescente D: N.A. E: limitata

8. Data $f(x) = e^{x^3}$. Allora f'''(0) è uguale a

A: N.A. B: 12 C: 1 D: 6 E: 1/2

9. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt[3]{k+x^2}$ in $x_0 = 0$ vale

A: $\frac{1}{2}(\frac{1}{\sqrt{k}} + \tan^2(k))x^2$ B: $\frac{\sqrt[3]{k}}{3}$ C: $-\frac{(\pi k)^2}{4}$ D: 1 + kx E: N.A.

10. Il numero complesso $28|i| + i + i^{2020}$ vale

A: i B: 1 - 2020i C: N.A. D: 2 + 28i E: 1 + 29i

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

28 gennaio 2020

			gno	me)				_			(No	me)			-	ume	ı ma	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. Data $f(x) = e^{x^3}$. Allora f'''(0) è uguale a

A: N.A. B: 6 C: 12 D: 1/2 E: 1

2. Il numero complesso $28\left|i\right|+i+i^{2020}$ vale

A: i B: 2 + 28i C: 1 - 2020i D: N.A. E: 1 + 29i

3. La funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita da $f(x) = \log(|ex|^{\pi})$ è

A: monotona crescente B: iniettiva C: limitata D: N.A. E: monotona decrescente

4. Per $x \in [0, 2\pi]$, l'insieme di convergenza della serie

$$\sum_{n=1}^{\infty} \left(\sin(x) \right)^n$$

è

A: $x \neq \pi/4, 5\pi/4$ B: $\frac{x}{\pi} < 1$ C: |x| < 1 D: N.A. E: $x \neq 0, 2\pi$

5. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} \frac{n}{(n^2 + 1)^{1-\alpha}} < +\infty \}$$

valgono

 $\text{A:} \ \{-\infty, N.E., 1, N.E.\} \qquad \text{B:} \ \{2, N.E., 2, 2\} \qquad \text{C:} \ \text{N.A.} \qquad \text{D:} \ \{-\infty, N.E., 0, N.E.\} \qquad \text{E:} \ \{0, N.E., +\infty, N.E.\}$

6. Il limite

$$\lim_{x \to 1^+} \frac{\sin(\pi x)}{e^{3x} - 1}$$

vale

A: N.A. B: 0 C: $-\frac{3}{4}$ D: N.E. E: $\frac{\pi}{3}$

7. Dato il problema di Cauchy $y'(x) = \frac{x^3}{(y(x))^3}$ con y(1) = 1. Allora y'(2) vale

A: 3/2 B: 1/2 C: 0 D: N.A. E: -1

8. Per quali $b \in \mathbb{R}$ la funzione $f(x) = \begin{cases} |x| + b & \text{per } x \leq \frac{\pi}{2} \\ & \text{è derivabile in tutto } \mathbb{R}. \\ 1 - \cos(|x|) & \text{per } x > \frac{\pi}{2} \end{cases}$

A: $b>\pi$ B: N.A. C: $b=1-\pi/2$ D: N.E. E: $|b|<\pi/2$

9. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt[3]{k+x^2}$ in $x_0 = 0$ vale

A: 1+kx B: $\frac{1}{2}(\frac{1}{\sqrt{k}}+\tan^2(k))x^2$ C: N.A. D: $-\frac{(\pi k)^2}{4}$ E: $\frac{\sqrt[3]{k}}{3}$

10. L'integrale

$$\int_1^2 \frac{x-1}{x^2-1} \, dx$$

vale

A: $\log(\frac{3}{2})$ B: N.A. C: $\log(\frac{2}{3})$ D: N.E. E: $\frac{\log(3)}{2}$

28 gennaio 2020

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	•	\bigcirc	\bigcirc	\bigcirc	
2	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	•	\bigcirc	
5	0	\bigcirc	\bigcirc	•	\bigcirc	
6	0	\bigcirc	\bigcirc	•	\bigcirc	
7	0	•	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	•	\bigcirc	
9	0		\bigcirc	\bigcirc	\bigcirc	
10	0	•	\bigcirc	\bigcirc	\bigcirc	

28 gennaio 2020

			(Co	gnoi	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	0	•	\bigcirc	\bigcirc	\bigcirc	
2	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	•	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	•	\bigcirc	\bigcirc	
5	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc		\bigcirc	
8	0	\bigcirc	\bigcirc	•	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	•	
10	0	\bigcirc		\bigcirc		

28 gennaio 2020

			(Co	gnoi	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	0	•	\bigcirc	\bigcirc	\bigcirc
2	0	\bigcirc	\bigcirc		\bigcirc
3	0	\bigcirc	0	•	0
4	0	\bigcirc	\bigcirc	•	\bigcirc
5	0	\bigcirc	\bigcirc	•	\bigcirc
6	0	•	\bigcirc	\bigcirc	\bigcirc
7	0	\bigcirc	\bigcirc	•	\bigcirc
8	0	\bigcirc	\bigcirc	•	\bigcirc
9	0	\bigcirc	•	0	\bigcirc
10	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

28 gennaio 2020

			(Co	gno	me)				_			(No	me)			-	ume	ı ma	trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. Il numero complesso $28i + |i| + i^{2020}$ vale

A: 2 + 28i B: 29i + 1 C: 1 - 2020i D: i E: N.A.

2. Per quali $b \in \mathbb{R}$ la funzione $f(x) = \begin{cases} |x| & \text{per } x \leq \frac{\pi}{2} \\ b - \cos(|x|) & \text{per } x > \frac{\pi}{2} \end{cases}$ è derivabile in tutto \mathbb{R} .

A: N.A. B: $b > \pi$ C: N.E. D: $b = \pi/2$ E: $|b| < \pi/2$

3. Data $f(x)=\mathrm{e}^{-x^3}.$ Allora $f^{\prime\prime\prime}(0)$ è uguale a

A: 6 B: 1/2 C: N.A. D: -6 E: 1

4. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt[3]{k+x^2}$ in $x_0 = 0$ vale

A: $-\frac{(\pi k)^2}{4}$ B: N.A. C: 1 + kx D: $\frac{\sqrt[3]{k}}{2}$ E: $\frac{1}{2}(\frac{1}{\sqrt{k}} + \tan^2(k))x^2$

5. L'integrale

$$\int_{1}^{2} \frac{x-1}{x^2-1} \, dx$$

vale

A: N.E. B: $\frac{\log(2)}{3}$ C: $\frac{\log(3)}{2}$ D: $\log(\frac{2}{3})$ E: N.A.

6. Dato il problema di Cauchy $y'(x) = \frac{x^3}{(y(x))^3}$ con y(1) = 1. Allora y'(3) vale

A: 0 B: N.A. C: -1 D: 1/2 E: 3/2

7. Per $x \in [0, 2\pi]$, l'insieme di convergenza della serie

$$\sum_{n=1}^{\infty} \left(\cos(x)\right)^n$$

è

A: $\frac{x}{\pi} < 1$ B: N.A. C: $x \neq \pi/4, 5\pi/4$ D: $x \neq 0$ E: |x| < 1

8. Il limite

$$\lim_{x \to 1^+} \frac{\sin(\pi x)}{e^{4x} - 1}$$

vale

A: $\frac{\pi}{4}$ B: N.A. C: $-\frac{3}{4}$ D: N.E. E: 0

9. La funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita da $f(x) = \log(|\pi x|^e)$ è

A: iniettiva B: monotona decrescente C: limitata D: monotona crescente E: N.A.

10. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} \frac{n}{(n^2 + 1)^{1+\alpha}} < +\infty \}$$

valgono

A: $\{2, N.E., 2, 2\}$ B: $\{-\infty, N.E., 0, N.E.\}$ C: $\{-\infty, N.E., 1, N.E.\}$ D: $\{0, N.E., +\infty, N.E.\}$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

28 gennaio 2020

(Cognome)													(No	me)			(N	ume	ro d	i ma	trice	ola)			

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt[3]{k+x^2}$ in $x_0 = 0$ vale

A: N.A. B: $-\frac{(\pi k)^2}{4}$ C: $\frac{\sqrt[3]{k}}{2}$ D: $\frac{1}{2}(\frac{1}{\sqrt{k}} + \tan^2(k))x^2$ E: 1 + kx

2. Per quali $b \in \mathbb{R}$ la funzione $f(x) = \begin{cases} |x| & \text{per } x \leq \frac{\pi}{2} \\ b - \cos(|x|) & \text{per } x > \frac{\pi}{2} \end{cases}$ è derivabile in tutto \mathbb{R} .

A: $|b| < \pi/2$ B: $b > \pi$ C: N.E. D: $b = \pi/2$ E: N.A.

3. Dato il problema di Cauchy $y'(x)=\frac{x^3}{(y(x))^3}$ con y(1)=1. Allora y'(3) vale A: 0 B: 1/2 C: N.A. D: 3/2 E: -1

4. Per $x \in [0, 2\pi]$, l'insieme di convergenza della serie

$$\sum_{n=1}^{\infty} \left(\cos(x)\right)^n$$

è

A: $\frac{x}{\pi} < 1$ B: $x \neq \pi/4, 5\pi/4$ C: N.A. D: |x| < 1 E: $x \neq 0$

5. Il limite

$$\lim_{x \to 1^+} \frac{\sin(\pi x)}{e^{4x} - 1}$$

vale

A: N.E. B: N.A. C: 0 D: $-\frac{3}{4}$ E: $\frac{\pi}{4}$

6. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} \frac{n}{(n^2 + 1)^{1+\alpha}} < +\infty \}$$

valgono

 $A: \{0, N.E., +\infty, N.E.\} \quad B: \{2, N.E., 2, 2\} \quad C: N.A. \quad D: \{-\infty, N.E., 0, N.E.\} \quad E: \{-\infty, N.E., 1, N.E.\}$

7. L'integrale

$$\int_1^2 \frac{x-1}{x^2-1} \, dx$$

vale

A: $\frac{\log(2)}{3}$ B: N.E. C: $\frac{\log(3)}{2}$ D: N.A. E: $\log(\frac{2}{3})$

8. La funzione $f: \mathbb{R}\backslash\{0\} \to \mathbb{R}$ definita da $f(x) = \log(|\pi x|^{\mathrm{e}})$ è

A: N.A. B: iniettiva C: limitata D: monotona crescente E: monotona decrescente

9. Il numero complesso $28i + |i| + i^{2020}$ vale

A: 2 + 28i B: i C: N.A. D: 29i + 1 E: 1 - 2020i

10. Data $f(x) = e^{-x^3}$. Allora f'''(0) è uguale a

A: 1 B: N.A. C: -6 D: 1/2 E: 6

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

28 gennaio 2020

(Cognome)													(No	me)			(N	ume	ro d	i ma	trice	ola)			

0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	0	0	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc

- 1. Data $f(x) = e^{-x^3}$. Allora f'''(0) è uguale a A: N.A. B: -6 C: 1 D: 1/2 E: 6
- 2. Inf, min, sup e max dell'insieme

$$A = \{ \alpha \in \mathbb{R} : \sum_{n=1}^{+\infty} \frac{n}{(n^2 + 1)^{1+\alpha}} < +\infty \}$$

valgono

A: N.A. B: $\{-\infty, N.E., 0, N.E.\}$ C: $\{-\infty, N.E., 1, N.E.\}$ D: $\{2, N.E., 2, 2\}$ E: $\{0, N.E., +\infty, N.E.\}$

- 3. Il numero complesso $28 i + |i| + i^{2020}$ vale A: 29i + 1 B: N.A. C: 2 + 28i D: i E: 1 - 2020i
- 4. L'integrale

$$\int_{1}^{2} \frac{x-1}{x^2-1} \, dx$$

vale

A:
$$\frac{\log(3)}{2}$$
 B: $\log(\frac{2}{3})$ C: $\frac{\log(2)}{3}$ D: N.E. E: N.A.

- 5. La funzione $f: \mathbb{R}\setminus\{0\} \to \mathbb{R}$ definita da $f(x) = \log(|\pi x|^e)$ è

 A: monotona decrescente B: iniettiva C: N.A. D: monotona crescente E: limitata
- 6. Per $k \in \mathbb{R}^+$, la retta tangente al grafico di $y(x) = \sqrt[3]{k+x^2}$ in $x_0 = 0$ vale

A:
$$\frac{\sqrt[3]{k}}{2}$$
 B: N.A. C: $\frac{1}{2}(\frac{1}{\sqrt{k}} + \tan^2(k))x^2$ D: $1 + kx$ E: $-\frac{(\pi k)^2}{4}$

7. Il limite

$$\lim_{x \to 1^+} \frac{\sin(\pi x)}{e^{4x} - 1}$$

vale

A:
$$-\frac{3}{4}$$
 B: N.A. C: N.E. D: $\frac{\pi}{4}$ E: 0

- 8. Dato il problema di Cauchy $y'(x) = \frac{x^3}{(y(x))^3}$ con y(1) = 1. Allora y'(3) vale A: -1 B: 3/2 C: 0 D: 1/2 E: N.A.
- 9. Per $x \in [0, 2\pi]$, l'insieme di convergenza della serie

$$\sum_{n=1}^{\infty} \left(\cos(x)\right)^n$$

è

A:
$$|x|<1$$
 B: $\frac{x}{\pi}<1$ C: N.A. D: $x\neq 0$ E: $x\neq \pi/4, 5\pi/4$

10. Per quali $b \in \mathbb{R}$ la funzione $f(x) = \begin{cases} |x| & \text{per } x \leq \frac{\pi}{2} \\ b - \cos(|x|) & \text{per } x > \frac{\pi}{2} \end{cases}$ è derivabile in tutto \mathbb{R} .

A:
$$b > \pi$$
 B: N.E. C: $|b| < \pi/2$ D: $b = \pi/2$ E: N.A.

28 gennaio 2020

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc		\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc		\bigcirc	
4	0	•	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	•	
6	0		\bigcirc	\bigcirc	\bigcirc	
7	0		\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	•	
9	0	\bigcirc	\bigcirc	\bigcirc	•	
10	0	\bigcirc	\bigcirc		\bigcirc	

28 gennaio 2020

(Cognome)												(No	me)			(N	ume	ro di	ma	trico	ola)			

1		\bigcirc	\bigcirc	\bigcirc	0	
2	0	\bigcirc	•	\bigcirc	\bigcirc	
3	0	\bigcirc	•	\bigcirc	\bigcirc	
4	0	\bigcirc	•	\bigcirc	\bigcirc	
5	0	\bigcirc	•	\bigcirc	\bigcirc	
6		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	•	\bigcirc	
8		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	•	\circ	0	\circ	0	
10						

28 gennaio 2020

			(Co	gnoi	me)				-			(No	me)			=	ume	ro d	i ma	trice	ola)

1	0	•	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	•	
3	0	\bigcirc	•	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	•	
5	0	\bigcirc	•	\bigcirc	\bigcirc	
6	0	•	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	•	
8	0	\bigcirc	0	\bigcirc	•	
9	0	\bigcirc	•	\bigcirc	\bigcirc	
10	0		\bigcirc	\bigcirc		

28 gennaio 2020

PARTE B

1. Studiare la funzione

$$f(x) = (|x+1| - |x-1|)\sin(\pi x).$$

Soluzione. La funzione f(x) risulta continua perchè prodotto di funzioni continue e $\lim_{x\to +\pm\infty} f(x) = N.E$. Analizzando il valore assoluto si ha

$$f(x) = \begin{cases} 2\sin(\pi x) & \text{per } x \ge 1, \\ 2x\sin(\pi x) & \text{per } -1 < x < 1, \\ -2\sin(\pi x) & \text{per } x < -1, \end{cases}$$

e quindi la funzione risulta pari e basterà studiar
la per $x \geq 0$. Calcolando la derivata prima si ha

$$f'(x) = \begin{cases} 2\pi \cos(\pi x) & \text{per } x > 1, \\ 2\sin(\pi x) + 2\pi x \cos(\pi x) & \text{per } -1 < x < 1, \\ -2\pi \cos(\pi x) & \text{per } x < -1. \end{cases}$$

Inoltre, studiandone i limiti si ha $f'_{+}(1) = -2\pi = f'_{-}(1)$ e dunque la funzione risulta di classe C^{1} su tutto \mathbb{R} .

Per x > 1 la funzione risulta essere simile a 2 sin ma con periodo T = 2.

Per 0 < x < 1 la funzione derivata prima si annulla se $\sin(\pi x) + \pi x \cos(\pi x) = 0$. Considerando la variabile $X = \pi x$

$$\frac{\sin(X)}{\cos(X)} = \tan(X) = -X \qquad 0 \le X \le \pi$$

l'equazione ammette (oltre alla soluzione X=0) una sola soluzione \overline{X} in $]\frac{\pi}{2}, \pi[$, cioè per $\frac{1}{2} < \overline{x} < 1$. Dallo studio del segno della derivata si ha quindi un minimo locale per x=0 e un massimo locale per $x=\overline{x}$. Osserviamo che il valore del minimo in 0 risulta f(0)=0, mentre il massimo in \overline{x} è sicuramente minore di 2 e quindi il massimo assoluto vale 2 e il minimo assoluto -2, che vengono assunti infinite volte per x<-1 e x>1.

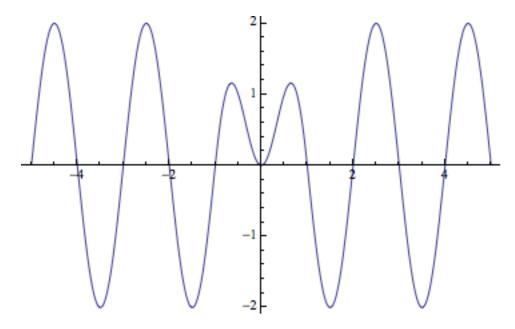


Figura 1: Grafico di $f(x) = (|x+1| - |x-1|)\sin(\pi x)$.

2. Si risolva il problema di Cauchy

$$\begin{cases} y' + \frac{y(x)}{x} = \cos(x^2) \\ y(\sqrt{\pi}) = 1 \end{cases}$$

Soluzione. Si tratta di un'equazione lineare a coefficienti non costanti del primo ordine, che può essere risolta con il metodo del fattore integrante. In questo caso $a(x) = \frac{1}{x}$ e quindi una primitiva è $A(x) = \log(x)$ e moltiplicando per $e^{A(x)} = x$ l'equazione diventa

$$\frac{d}{dx} [xy(x)] = \cos(x^2)x.$$

Integrando si ottiene quindi

$$xy(x) = \frac{1}{2}\sin(x^2) + c,$$

e pertanto per $x \neq 0$

$$y(x) = \frac{1}{2x}\sin(x^2) + \frac{c}{x},$$

e imponendo la condizione iniziale

$$y(x) = \frac{1}{2x}\sin(x^2) + \frac{\sqrt{\pi}}{x},$$

che risulta essere l'unica soluzione del problema di Cauchy, nel dominio massimale $]0, +\infty[$.

3. Studiare la convergenza della serie

$$\sum_{n=0}^{\infty} (-1)^n \frac{n-4}{n^2+1}.$$

Soluzione. Si tratta di una serie a segno non costante con $a_n = \frac{n-4}{n^2+1}$. La serie non risulta assolutamente convergente perchè

$$\left|(-1)^n\frac{n-4}{n^2+1}\right|=\frac{|n-4|}{n^2+1}\sim\frac{1}{n}\text{ per }n\to+\infty.$$

Vediamo se il criterio di Leibniz risulta applicabile. Risulta che

$$a_n \ge 0$$
 se $n \ge 4$,

quindi la prima condizione e verificata definitivamente. Poi ovviamente $a_n \to 0$ per $n \to +\infty$ e anche la seconda condizione risulta verificata.

Riguardo alla decrescenza si ha $a_{n+1} < a_n$ se

$$\frac{n+1-4}{(n+1)^2+1} < \frac{n-4}{n^2+1},$$

che diventa, svolgendo i calcoli, equivalente a

$$n^2 - 7n - 5 > 0.$$

L'ultima diseguaglianza è verificata per $8 \le n \in \mathbb{N}$. Quindi essendo definitivamente verificate le tre condizioni la serie risulta convergente.

4. Studiare la convergenza ed eventualmente calcolare

$$\int_{1}^{3} [x]^{\{x\}} dx,$$

dove [x] è la parte intera di x e $\{x\}$ la parte frazionaria di x.

Soluzione La funzione $[x]^{\{x\}}$, usando la definizione di parte intera e frazionaria, risulta essere

$$[x]^{\{x\}} = \begin{cases} 1^{x-1} = 1 & \text{se } 1 \le x < 2, \\ 2^{x-2} & \text{se } 2 \le x < 3, \\ 3^{x-3} = 1 & \text{se } x = 3, \end{cases}$$

e quindi risulta continua eccetto che per x=3. Inoltre $\lim_{x\to 3^-}=[x]^{\{x\}}=2$, che è finito. La funzione essendo "continua a tratti" su [1,3] risulta pertanto integrabile.

Inoltre

$$\int_{1}^{3} [x]^{\{x\}} dx = \int_{1}^{2} 1 dx + \int_{2}^{3} 2^{x-2} dx = 1 + \frac{1}{2^{2}} \frac{2^{x}}{\log(2)} \Big|_{2}^{3} = 1 + \frac{1}{\log(2)}.$$