- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)												(No	me)			_	ume	i ma	trice	ola)					

1	0000
2	00000
3	
4	
5	
6	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
7	
8	
9	
10	00000

1. Data $f(x) = |\sin(x)|25^{x^2}$. Allora f'(0) è uguale a A: N.E. B: 0 C: $\pi/2$ D: N.A. E: 1

2. L'integrale

$$\int_0^\pi (x-\pi)\sin(x)\,dx$$

vale

A: N.A. B: $\pi/2$ C: $\sqrt{2}$ D: 0 E: $-\pi$

3. Il limite

$$\lim_{x \to 0^+} \frac{\log(|\log(x)|)}{\log(x)}$$

vale

A: $+\infty$ B: N.A. C: 1 D: N.E. E: 0

4. La funzione $f:[0,a] \to \mathbb{R}$ definita da $f(x) = \sin(x^2)$ è iniettiva per A: $a = \pi/2$ B: a = 4 C: $a = \sqrt{\pi}$ D: $a = \sqrt{\pi/2}$ E: N.A.

5. Una soluzione dell'equazione $y'(t) = t\sin(t^2)$ è A: $\sin(t^2) + 1$ B: $(t^2 + \pi)/2 + \cos(t)$ C: $t^3/2 - \cos(t)$ D: N.A. E: N.E.

6. L'insieme dove converge la serie di potenze

$$\sum_{n=\lceil\pi\rceil}^{+\infty} \frac{n+2+\mathrm{e}^{\sin(n)}}{n} x^n$$

è

A: |x| < 8 B: N.A. C: 0 < x < 1 D: |x| < 1 E: $0 < x \le 1$

7. La retta tangente al grafico di $y(x)=\mathrm{e}^{\sin(x)}$ nel punto $x_0=3\pi/2$ vale $\phi(x)=A$: 1-x B: N.A. C: $\mathrm{e}+(x-3\pi/2)$ D: $\frac{1}{\mathrm{e}}$ E: 1+x

8. Se esiste, il minimo di $f(x)=|\sin(x)-1|$ sull'insieme $A=\{x\in]-2\pi,0]\}$ vale A: N.A. B: N.E. C: 0 D: -1 E: 1

9. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{\mathrm{e}^x}{|-\mathrm{e}^x|}, \ x \neq k \frac{\pi}{2} \ \mathrm{con} \ k \in \mathbb{Z} \}$$

valgono

A: $\{1, 1, 1, 1\}$ B: $\{-1, -1, 1, 1\}$ C: $\{1, N.E., +\infty, N.E.\}$ D: $\{0, 0, 1, N.E.\}$ E: N.A

10. L'insieme definito da $\{x \in \mathbb{R}, x < |4i - 3|\}$ è

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

5 febbraio 2016

(Cognome)										_			(No	me)			-	(N	ume	ro d	i ma	trice	ola)				

1	0000
2	0000
3	0000
4	00000
5	00000
6	
7	
8	0000
9	00000
10	0000

1. Il limite

$$\lim_{x \to 0^+} \frac{\log(|\log(x)|)}{\log(x)}$$

vale

A: 1 B: $+\infty$ C: 0 D: N.A. E: N.E.

2. L'insieme definito da $\{x \in \mathbb{R}, x < |4i - 3|\}$ è

A: l'insieme vuoto B: Impossibile: non si confrontano numeri reali e complessi C: |x| < 4 D: $-\infty < x < 5$ E: N.A.

3. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{e^x}{|-e^x|}, \ x \neq k \frac{\pi}{2} \ \text{con } k \in \mathbb{Z} \}$$

valgono

A: $\{1, 1, 1, 1\}$ B: N.A. C: $\{-1, -1, 1, 1\}$ D: $\{1, N.E., +\infty, N.E.\}$ E: $\{0, 0, 1, N.E.\}$

4. Se esiste, il minimo di $f(x) = |\sin(x) - 1|$ sull'insieme $A = \{x \in]-2\pi, 0]\}$ vale

A: 1 B: N.E. C: 0 D: -1 E: N.A.

5. L'insieme dove converge la serie di potenze

$$\sum_{n=\lceil \pi \rceil}^{+\infty} \frac{n+2+\mathrm{e}^{\sin(n)}}{n} x^n$$

è

A: |x| < 1 B: $0 < x \le 1$ C: N.A. D: |x| < 8 E: 0 < x < 1

6. La funzione $f:[0,a]\to\mathbb{R}$ definita da $f(x)=\sin(x^2)$ è iniettiva per

A:
$$a = \sqrt{\pi/2}$$
 B: $a = 4$ C: N.A. D: $a = \sqrt{\pi}$ E: $a = \pi/2$

7. Una soluzione dell'equazione $y'(t) = t \sin(t^2)$ è

A:
$$t^3/2 - \cos(t)$$
 B: N.A. C: $\sin(t^2) + 1$ D: $(t^2 + \pi)/2 + \cos(t)$ E: N.E.

8. L'integrale

$$\int_0^\pi (x - \pi) \sin(x) \, dx$$

vale

A: $-\pi$ B: $\pi/2$ C: 0 D: $\sqrt{2}$ E: N.A.

9. La retta tangente al grafico di $y(x)=\mathrm{e}^{\sin(x)}$ nel punto $x_0=3\pi/2$ vale $\phi(x)=A$: $\mathrm{e}+(x-3\pi/2)$ B: $\frac{1}{\mathrm{e}}$ C: N.A. D: 1-x E: 1+x

10. Data $f(x) = |\sin(x)| 25^{x^2}$. Allora f'(0) è uguale a

A: N.E. B: 1 C: 0 D: $\pi/2$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

5 febbraio 2016

(Cognome)												(No	me)			_	ume	i ma	trice	ola)					

1	0000
2	0000
3	0000
4	0000
5	00000
6	00000
7	
8	0000
9	0000
10	00000

1. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{e^x}{|-e^x|}, \ x \neq k \frac{\pi}{2} \ \text{con } k \in \mathbb{Z} \}$$

valgono

A: N.A. B: $\{0,0,1,N.E.\}$ C: $\{1,N.E.,+\infty,N.E.\}$ D: $\{-1,-1,1,1\}$ E: $\{1,1,1,1\}$

2. L'insieme definito da $\{x \in \mathbb{R} , x < |4i - 3|\}$ è

A: |x| < 4 B: l'insieme vuoto C: Impossibile: non si confrontano numeri reali e complessi D: N.A. E: $-\infty < x < 5$

3. L'insieme dove converge la serie di potenze

$$\sum_{n=\lceil \pi \rceil}^{+\infty} \frac{n+2+\mathrm{e}^{\sin(n)}}{n} x^n$$

è

A: 0 < x < 1 B: |x| < 8 C: N.A. D: $0 < x \le 1$ E: |x| < 1

4. La funzione $f:[0,a]\to\mathbb{R}$ definita da $f(x)=\sin(x^2)$ è iniettiva per

A: $a = \sqrt{\pi}$ B: a = 4 C: $a = \pi/2$ D: N.A. E: $a = \sqrt{\pi/2}$

5. Se esiste, il minimo di $f(x) = |\sin(x) - 1|$ sull'insieme $A = \{x \in]-2\pi, 0]\}$ vale

A: N.E. B: N.A. C: 1 D: -1 E: 0

6. La retta tangente al grafico di $y(x) = e^{\sin(x)}$ nel punto $x_0 = 3\pi/2$ vale $\phi(x) = 0$

A: $\frac{1}{e}$ B: $e + (x - 3\pi/2)$ C: 1 + x D: 1 - x E: N.A.

7. L'integrale

$$\int_0^\pi (x - \pi) \sin(x) \, dx$$

vale

A: 0 B: N.A. C: $-\pi$ D: $\pi/2$ E: $\sqrt{2}$

8. Data $f(x) = |\sin(x)|25^{x^2}$. Allora f'(0) è uguale a

A: N.A. B: 1 C: 0 D: $\pi/2$ E: N.E.

9. Una soluzione dell'equazione $y'(t) = t \sin(t^2)$ è

A: N.A. B: N.E. C: $(t^2 + \pi)/2 + \cos(t)$ D: $t^3/2 - \cos(t)$ E: $\sin(t^2) + 1$

10. Il limite

$$\lim_{x\to 0^+}\frac{\log(|\log(x)|)}{\log(x)}$$

vale

A: N.E. B: 0 C: $+\infty$ D: N.A. E: 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

(Cognome)												(No	me)			_	ume	i ma	trice	ola)					

Α	В	C	D	Е
	$\boldsymbol{\mathcal{L}}$	\sim	$\boldsymbol{\mathcal{L}}$	

1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	0000

1. Data $f(x) = |\sin(x)|25^{x^2}$. Allora f'(0) è uguale a A: N.A. B: $\pi/2$ C: 0 D: 1 E: N.E.

2. La retta tangente al grafico di $y(x) = e^{\sin(x)}$ nel punto $x_0 = 3\pi/2$ vale $\phi(x) = A$: 1 + x B: N.A. C: $e + (x - 3\pi/2)$ D: $\frac{1}{e}$ E: 1 - x

3. Se esiste, il minimo di $f(x)=|\sin(x)-1|$ sull'insieme $A=\{x\in]-2\pi,0]\}$ vale A: N.A. B: 0 C: 1 D: -1 E: N.E.

4. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{e^x}{|-e^x|}, \ x \neq k \frac{\pi}{2} \ \text{con } k \in \mathbb{Z} \}$$

valgono

A: $\{1, 1, 1, 1\}$ B: N.A. C: $\{1, N.E., +\infty, N.E.\}$ D: $\{0, 0, 1, N.E.\}$ E: $\{-1, -1, 1, 1\}$

5. L'integrale

$$\int_0^\pi (x - \pi) \sin(x) \, dx$$

vale

A: $-\pi$ B: N.A. C: 0 D: $\sqrt{2}$ E: $\pi/2$

6. Una soluzione dell'equazione $y'(t) = t \sin(t^2)$ è

A: $(t^2 + \pi)/2 + \cos(t)$ B: $\sin(t^2) + 1$ C: $t^3/2 - \cos(t)$ D: N.A. E: N.E.

7. L'insieme definito da $\{x \in \mathbb{R} , x < |4i - 3|\}$ è

A: $-\infty < x < 5$ B: |x| < 4 C: l'insieme vuoto D: N.A. E: Impossibile: non si confrontano numeri reali e complessi

8. Il limite

$$\lim_{x\to 0^+}\frac{\log(|\log(x)|)}{\log(x)}$$

vale

A: N.A. B: 1 C: N.E. D: $+\infty$ E: 0

9. La funzione $f:[0,a]\to\mathbb{R}$ definita da $f(x)=\sin(x^2)$ è iniettiva per A: N.A. B: $a=\sqrt{\pi/2}$ C: $a=\pi/2$ D: $a=\sqrt{\pi}$ E: a=4

10. L'insieme dove converge la serie di potenze

$$\sum_{n=[\pi]}^{+\infty} \frac{n+2+\mathrm{e}^{\sin(n)}}{n} x^n$$

À

A: $0 < x \le 1$ B: 0 < x < 1 C: |x| < 1 D: |x| < 8 E: N.A.

5 febbraio 2016

(Cognome)	(Nome)	(Numero di matricola)

A B C D E

$\bullet \circ \circ \circ \circ$

5 febbraio 2016

			(Co	gnor	me)						(No	me)				ume	i ma	trico	ola)

1	
2	
3	
4	
5	
6	
7	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
8	
9	
10	$lackbox{0}$

5 febbraio 2016

			(Co	gnor	me)						(No	me)				ume	i ma	trico	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

5 febbraio 2016

			(Co	gnoi	me)						(No	me)			-	(N	ume	ro d	atrico	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

5 febbraio 2016

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	00000
2	
3	
4	
5	
6	
7	
8	
9	
10	0000

1. Una soluzione dell'equazione $y'(t) = t \sin(t^2)$ è

A:
$$(t^2 + \pi)/2 + \cos(t)$$
 B: $\sin(t^2) + 1$ C: N.E. D: N.A. E: $t^3/2 - \cos(t)$

2. Se esiste, il minimo di $f(x) = |\cos(x) - 1|$ sull'insieme $A = \{x \in]-\pi/2,\pi/2]\}$ vale

A: N.A. B: N.E. C: 0 D: 1 E:
$$-1$$

3. Lo sviluppo di Taylor di $\sin(x+x^3)$ in $x_0=0$ al terz'ordine è

A:
$$x + 5x^3/6 + o(x^3)$$
 B: $x + O(x^4)$ C: $x + x^2/2! - x^3/3! + o(x^3)$ D: $x + x^3 + o(x^3)$ E: N A

4. La funzione $f:[0,a]\to\mathbb{R}$ definita da $f(x)=\sin(x^2)$ è iniettiva per

A:
$$a = \sqrt{\pi}$$
 B: $a = \pi/2$ C: $a = \sqrt{\pi/2}$ D: N.A. E: $a = 4$

5. Inf, min, sup e max dell'insieme

$$A = \{y = \frac{1 + \log(x)}{|1 + \log(x)|}, \ x > e\}$$

valgono

$$A: \{-1, -1, +\infty, N.E.\} \quad B: \{1, 1, 1, 1\} \quad C: \{-1, N.E., +\infty, N.E.\} \quad D: N.A. \quad E: \{-\infty, N.E., +\infty, N.E.\}$$

6. La retta tangente al grafico di $y(x) = e^{\sin(x)}$ nel punto $x_0 = 3\pi/2$ vale $\phi(x) =$

A: N.A. B:
$$1 + x$$
 C: $\frac{1}{6}$ D: $e + (x - 3\pi/2)$ E: $1 - x$

7. L'insieme dove converge la serie di potenze

$$\sum_{n=[n]}^{+\infty} \frac{n+2-\mathrm{e}^{\cos(n)}}{n} x^n$$

è

A:
$$0 < x < 1$$
 B: $|x| < 8$ C: $0 < x \le 1$ D: $|x| < 1$ E: N.A.

8. L'integrale

$$\int_0^\pi (x - \pi) \cos(x) \, dx$$

vale

A:
$$\pi/2$$
 B: N.A. C: 0 D: $\sqrt{2}$ E: -2

9. Data $f(x) = |\cos(x)|25^{x^2}$. Allora f'(0) è uguale a

A:
$$\pi/2$$
 B: N.A. C: N.E. D: 0 E: 1

10. L'insieme definito da $\{x \in \mathbb{R} , x < |2i-2|\}$ è

A: l'insieme vuoto B: N.A. C: $-\infty < x < 2\sqrt{2}$ D: $|x|^2 < 8$ E: Impossibile: non si confrontano numeri reali e complessi

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	gnor	me)						(No	me)			_	ume	i ma	trice	ola)

Α	В	C	D	Е
	$\boldsymbol{\mathcal{L}}$	\sim	$\boldsymbol{\mathcal{L}}$	

1	0000
2	0000
3	0000
4	00000
5	00000
6	
7	0000
8	0000
9	0000
10	00000

1. La funzione $f:[0,a]\to\mathbb{R}$ definita da $f(x)=\sin(x^2)$ è iniettiva per

A: N.A. B:
$$a = \sqrt{\pi}$$
 C: $a = \sqrt{\pi/2}$ D: $a = \pi/2$ E: $a = 4$

2. L'insieme definito da $\{x\in\mathbbm{R} \ , \ x<|2i-2|\}$ è

A: N.A. B: Impossibile: non si confrontano numeri reali e complessi C: $|x|^2 < 8$ D: l'insieme vuoto E: $-\infty < x < 2\sqrt{2}$

3. L'integrale

$$\int_0^\pi (x - \pi) \cos(x) \, dx$$

vale

A:
$$\pi/2$$
 B: 0 C: -2 D: N.A. E: $\sqrt{2}$

4. La retta tangente al grafico di $y(x) = e^{\sin(x)}$ nel punto $x_0 = 3\pi/2$ vale $\phi(x) =$

A:
$$1 - x$$
 B: $1 + x$ C: $\frac{1}{e}$ D: $e + (x - 3\pi/2)$ E: N.A.

5. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{1 + \log(x)}{|1 + \log(x)|}, \ x > e \}$$

valgono

A: N.A. B:
$$\{-\infty, N.E., +\infty, N.E.\}$$
 C: $\{-1, N.E., +\infty, N.E.\}$ D: $\{1, 1, 1, 1\}$ E: $\{-1, -1, +\infty, N.E.\}$

6. L'insieme dove converge la serie di potenze

$$\sum_{n=[e]}^{+\infty} \frac{n+2-e^{\cos(n)}}{n} x^n$$

è

A:
$$0 < x \le 1$$
 B: $0 < x < 1$ C: $|x| < 8$ D: $|x| < 1$ E: N.A.

7. Se esiste, il minimo di $f(x) = |\cos(x) - 1|$ sull'insieme $A = \{x \in]-\pi/2,\pi/2]\}$ vale

A: 0 B:
$$-1$$
 C: N.E. D: N.A. E: 1

8. Data $f(x) = |\cos(x)|25^{x^2}$. Allora f'(0) è uguale a

A: N.A. B: 1 C:
$$\pi/2$$
 D: N.E. E: 0

9. Lo sviluppo di Taylor di $\sin(x+x^3)$ in $x_0=0$ al terz'ordine è

A: N.A. B:
$$x+x^3+o(x^3)$$
 C: $x+5x^3/6+o(x^3)$ D: $x+O(x^4)$ E: $x+x^2/2!-x^3/3!+o(x^3)$

10. Una soluzione dell'equazione $y'(t) = t\sin(t^2)$ è

A: N.E. B: N.A. C:
$$\sin(t^2) + 1$$
 D: $t^3/2 - \cos(t)$ E: $(t^2 + \pi)/2 + \cos(t)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	gnor	me)						(No	me)			_	ume	i ma	trice	ola)

Α	В	С	D	Е
	_	\sim	_	

1	
2	
3	00000
4	
5	00000
6	
7	
8	
9	00000
10	0000

- 1. La funzione $f:[0,a] \to \mathbb{R}$ definita da $f(x) = \sin(x^2)$ è iniettiva per A: $a = \pi/2$ B: $a = \sqrt{\pi/2}$ C: a = 4 D: N.A. E: $a = \sqrt{\pi}$
- 2. L'insieme dove converge la serie di potenze

$$\sum_{n=[e]}^{+\infty} \frac{n+2-e^{\cos(n)}}{n} x^n$$

è

A: N.A. B: 0 < x < 1 C: |x| < 8 D: $0 < x \le 1$ E: |x| < 1

- 3. Lo sviluppo di Taylor di $\sin(x+x^3)$ in $x_0=0$ al terz'ordine è A: $x+x^3+o(x^3)$ B: $x+5x^3/6+o(x^3)$ C: $x+O(x^4)$ D: N.A. E: $x+x^2/2!-x^3/3!+o(x^3)$
- 4. Inf, min, sup e max dell'insieme

$$A = \{y = \frac{1 + \log(x)}{|1 + \log(x)|}, \ x > e\}$$

valgono

 $\text{A: } \{-1,-1,+\infty,N.E.\} \quad \text{B: N.A.} \quad \text{C: } \{1,1,1,1\} \quad \text{D: } \{-1,N.E.,+\infty,N.E.\} \quad \text{E: } \{-\infty,N.E.,+\infty,N.E.\}$

5. La retta tangente al grafico di $y(x) = e^{\sin(x)}$ nel punto $x_0 = 3\pi/2$ vale $\phi(x) = \frac{\pi}{2}$

A: 1-x B: N.A. C: $e + (x-3\pi/2)$ D: 1+x E: $\frac{1}{e}$

- 6. Se esiste, il minimo di $f(x) = |\cos(x) 1|$ sull'insieme $A = \{x \in]-\pi/2,\pi/2]\}$ vale A: N.A. B: -1 C: 1 D: 0 E: N.E.
- 7. L'insieme definito da $\{x \in \mathbb{R} , x < |2i-2|\}$ è

A: $|x|^2 < 8$ B: $-\infty < x < 2\sqrt{2}$ C: N.A. D: l'insieme vuoto E: Impossibile: non si confrontano numeri reali e complessi

8. Una soluzione dell'equazione $y'(t) = t \sin(t^2)$ è

A: $t^3/2 - \cos(t)$ B: N.A. C: $(t^2 + \pi)/2 + \cos(t)$ D: $\sin(t^2) + 1$ E: N.E.

9. Data $f(x) = |\cos(x)|25^{x^2}$. Allora f'(0) è uguale a

A: N.E. B: N.A. C: $\pi/2$ D: 0 E: 1

10. L'integrale

$$\int_0^\pi (x - \pi) \cos(x) \, dx$$

vale

A: -2 B: $\sqrt{2}$ C: N.A. D: 0 E: $\pi/2$

5 febbraio 2016

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

5 febbraio 2016

(Cognome)									_	(Nome)										-	(Numero di matricola)											

1	0000
2	0000
3	0000
4	00000
5	00000
6	
7	0000
8	0000
9	00000
10	0000

PARTE A

1. Data $f(x) = |\cos(x)|25^{x^2}$. Allora f'(0) è uguale a A: N.E. B: 1 C: 0 D: N.A. E: $\pi/2$

2. Lo sviluppo di Taylor di $\sin(x+x^3)$ in $x_0=0$ al terz'ordine è A: $x+O(x^4)$ B: $x+5x^3/6+o(x^3)$ C: $x+x^2/2!-x^3/3!+o(x^3)$ D: $x+x^3+o(x^3)$ E: N A

3. La funzione $f:[0,a]\to\mathbb{R}$ definita da $f(x)=\sin(x^2)$ è iniettiva per A: $a=\sqrt{\pi/2}$ B: $a=\pi/2$ C: N.A. D: $a=\sqrt{\pi}$ E: a=4

4. L'insieme definito da $\{x\in\mathbb{R}\ ,\ x<|2i-2|\}$ è A: Impossibile: non si confrontano numeri reali e complessi B: $|x|^2<8$ C: N.A. D $-\infty < x < 2\sqrt{2}$ E: l'insieme vuoto

5. Una soluzione dell'equazione $y'(t) = t\sin(t^2)$ è A: $\sin(t^2) + 1$ B: N.E. C: N.A. D: $(t^2 + \pi)/2 + \cos(t)$ E: $t^3/2 - \cos(t)$

6. Inf, min, sup e max dell'insieme

$$A = \{ y = \frac{1 + \log(x)}{|1 + \log(x)|}, \ x > e \}$$

valgono

 $A: \{-1, N.E., +\infty, N.E.\} \quad B: N.A. \quad C: \{-\infty, N.E., +\infty, N.E.\} \quad D: \{1, 1, 1, 1\} \quad E: \{-1, -1, +\infty, N.E.\}$

7. Se esiste, il minimo di $f(x)=|\cos(x)-1|$ sull'insieme $A=\{x\in]-\pi/2,\pi/2]\}$ vale A: 1 B: 0 C: N.A. D: N.E. E: -1

8. L'insieme dove converge la serie di potenze

$$\sum_{n=[e]}^{+\infty} \frac{n+2-e^{\cos(n)}}{n} x^n$$

è

A: $0 < x \le 1$ B: 0 < x < 1 C: |x| < 8 D: N.A. E: |x| < 1

9. La retta tangente al grafico di $y(x)=\mathrm{e}^{\sin(x)}$ nel punto $x_0=3\pi/2$ vale $\phi(x)=$ A: 1-xB: N.A. C: $\mathrm{e}+(x-3\pi/2)$ D: 1+xE: $\frac{1}{\mathrm{e}}$

10. L'integrale

$$\int_0^\pi (x - \pi) \cos(x) \, dx$$

vale

A: N.A. B: $\pi/2$ C: 0 D: $\sqrt{2}$ E: -2

5 febbraio 2016

(Cognome)	(Nome)	(Numero di matricola)					

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

5 febbraio 2016

(Cognome)	(Nome)	(Numero di matricola)					

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	$\bigcirc \overline{\bullet \bigcirc \bigcirc \bigcirc}$

5 febbraio 2016

(Cognome)									(Nome)										_	(Numero di matricola)											

1	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
2	
3	
4	
5	
6	
7	
8	
9	
10	

5 febbraio 2016

(Cognome)								(Nome)										-	(N	ume	ro d	atrico	ola)							

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

5 febbraio 2016

PARTE B

1. Studiare il grafico della funzione

$$f(x) = \frac{1 - \log(x^2)}{(\log(x))^2}.$$

Soluzione: L'insieme più grande dove può essere definita la funzione è $\{x>0\}\setminus\{1\}$ e in tale insieme si ha

$$f(x) = \frac{1 - 2\log(x)}{(\log(x))^2} \qquad x \in D =]0, +\infty[\setminus\{1\}.$$

Agli estremi del dominio si hanno i seguenti limiti

$$\lim_{x \to 0^+} f(x) = 0 \qquad \lim_{x \to 1} f(x) = +\infty \qquad \lim_{x \to +\infty} f(x) = 0.$$

La funzione risulta derivabile in De si ha

$$f'(x) = \frac{2(\log(x) - 1)}{x \log^3(x)}$$

Pertanto

$$f' > 0$$
 se e solo se $x \in]0,1[\cup]e,+\infty[$

e la funzione risulta crescente in]0,1[e in $]e,+\infty[$ e decrescente in]1,e[e nel punto x= e si ha un punto di minimo relativo con f(e)=-1. Il valore -1 risulta anche essere il minimo assoluto della funzione. La derivata seconda vale

$$f''(x) = -\frac{2\left(\log^2(x) + \log(x) - 3\right)}{x^2 \log^4(x)}$$

e per trovare gli intervalli di convessità risolviamo, ponendo $y = \log(x)$, l'equazione biquadratica

$$y^2 + y - 3 > 0$$

da cui si ha

$$f''(x) > 0 \leftrightarrow \log(x) < \frac{-1 - \sqrt{13}}{2} \lor \log(x) > \frac{-1 + \sqrt{13}}{2} \leftrightarrow x < e^{\frac{-1 - \sqrt{13}}{2}} \lor x > e^{\frac{-1 + \sqrt{13}}{2}}$$

da cui si ha che f è convessa in $[e^{\frac{-1-\sqrt{13}}{2}},1[\cup]e^{\frac{-1+\sqrt{13}}{2}},+\infty[$. Osserviamo infatti che dato che $-1-\sqrt{13}<0$ il primo cambio di convessità si ha nell'intervallo]0,1[, mentre dato che $-1+\sqrt{13}>2>0$ il secondo si ha per x>e>1.

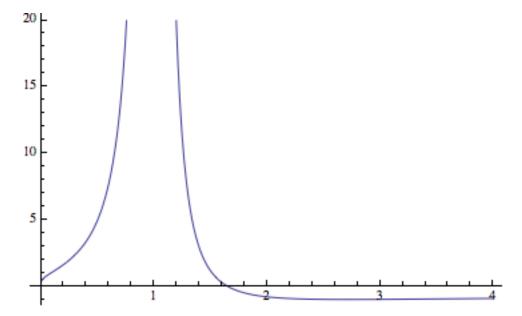


Figura 1: Grafico di f(x)

2. Studiare per $x \in \mathbb{R}$ la convergenza della serie

$$\sum_{n=1}^{\infty} \frac{1+n^2}{n^3} x^n.$$

Soluzione: Utilizziamo il criterio della radice per le serie di potenze:

$$\lim_{n \to \infty} \sqrt[n]{\left|\frac{1+n^2}{n^3}\right|} = 1$$

Quindi serie converge assolutamente per |x| < 1 e non converge per |x| > 1.

In x=1 abbiamo la serie

$$\sum_{n=1}^{\infty} \frac{1+n^2}{n^3}$$

che non converge perché si comporta asintoticamente come la serie armonica.

In x = -1 abbiamo la serie

$$\sum_{n=1}^{\infty} (-1)^n \frac{1+n^2}{n^3}.$$

Questa serie converge perché a segno alterno e con termini decrescenti.

3. Si consideri l'equazione differenziale

$$y''(x) + 4y(x) = \sin(\alpha x)$$

con $\alpha \geq 0$ reale.

- (a) Calcolare l'integrale generale.
- (b) Esistono α per cui la soluzione non è limitata inferiormente?
- (c) Nei casi $\alpha=2$ e $\alpha=4$ risolvere l'equazione con le condizioni iniziali y(0)=y'(0)=1

Soluzione:

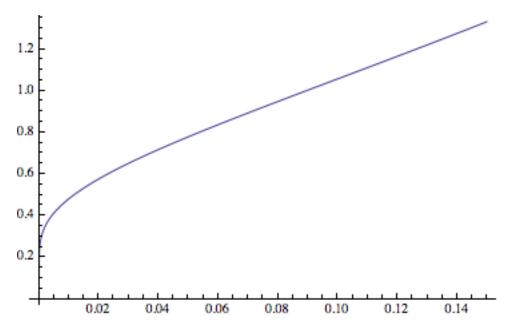


Figura 2: Grafico di f(x) vicino al primo punto di flesso $x=\mathrm{e}^{\frac{-1-\sqrt{13}}{2}}\sim 0.0999809$

(a) L'equazione associata all'omogenea è $\lambda^2+4=0$, con soluzione $\lambda_{1,2}=\pm 2i$. La soluzione dell'equazione omogenea è

$$y_0(x) = A\cos(2x) + B\sin(2x).$$

Per $\alpha = 0$, l'equazione si riduce ad un'omogenea, quindi la soluzione generale è

$$y = A\cos(2x) + B\sin(2x).$$

Per $\alpha>0$ e $\alpha\neq 2$, siamo nel caso in cui non c'è risonanza. La soluzione particolare $y_1(x)$ sarà della forma

$$y_1(x) = a\cos(\alpha x) + b\sin(\alpha x)$$

quindi

$$y_1''(x) = -a\alpha^2 \cos(\alpha x) - \alpha^2 b \sin(\alpha x)$$

Vogliamo che

$$y_1''(x) + 4y_1(x) = \sin(\alpha x)$$

quindi $a(4-\alpha^2)=0,\,b(4-\alpha^2)=1$ quindi una soluzione particolare ha la forma

$$y_1(x) = \frac{1}{4 - \alpha^2} \sin(\alpha x)$$

La soluzione generale è

$$y(x) = A\cos(2x) + B\sin(2x) + \frac{1}{4 - \alpha^2}\sin(\alpha x)$$

Nel caso $\alpha = 2$ dobbiamo cercare una soluzione particolare della forma

$$y_1(x) = ax\sin(2x) + bx\cos(2x)$$

abbiamo che

$$y_1''(x) = 4a\cos(2x) + 4ax\sin(2x) - 4b\sin(2x) - 4bx\cos(2x)$$

Vogliamo che

$$y_1''(x) + 4y_1(x) = \sin(2x)$$

da cui ricaviamo che a=0 e b=-1/4. Quindi la soluzione generale dell'equazione ha la forma

$$y_f(x) = A\cos(2x) + B\sin(2x) - \frac{1}{4}x\cos(2x).$$

- (b) Tra queste soluzioni l'unica che non è limitata inferiormente è quella che si ottiene nel caso $\alpha=2$, che ha il termine $x\cos(2x)$ che non è limitato né inferiormente né superiormente.
- (c) Per $\alpha=2$ la soluzione generale è stata determinata nel punto (a). Dalle condizioni iniziali otteniamo A=1, imponendo che y(0)=1, e B=5/8 imponendo che y'(0)=1. La soluzione del problema di Cauchy è data da

$$y_f(x) = \cos(2x) + \frac{5}{8}\sin(2x) - \frac{1}{4}x\cos(2x).$$

Per $\alpha = 4$ la soluzione generale è

$$y(x) = A\cos(2x) + B\sin(2x) - \frac{1}{12}\sin(4x)$$

e per avere la soluzione cercata dobbiamo determinare A,B. Abbiamo che A=1 imponendo che y(0)=1 e $B=\frac{2}{3}$ imponendo che y'(0)=1. La soluzione è quindi

$$y(x) = \cos(2x) + \frac{2}{3}\sin(2x) - \frac{1}{12}\sin(4x).$$

- 4. Dimostrare che data $f \in C([a,b])$
 - (a) la funzione $F(x) = \max\{f(x), 0\}$ è continua in [a, b];
 - (b) data $g \in C([a, b])$ la funzione $G(x) = \max\{f(x), g(x)\}$ è continua in [a, b];
 - (c) può accadere che g non sia continua in tutto [a,b] ma $G(x)=\max\{f(x),g(x)\}$ sia ancora continua in [a,b]?

Soluzione. a) Osserviamo che dato $x \in \mathbb{R}$ si ha

$$\frac{x+|x|}{2} = \begin{cases} x \text{ se } x \ge 0\\ 0 \text{ se } x < 0 \end{cases}$$

quindi $\frac{x+|x|}{2} = \max\{x, 0\}$. Pertanto

$$\max\{f(x), 0\} = \frac{f(x) + |f(x)|}{2}$$

che essendo composizione e somma di funzioni continue è continua.

b) Con lo stesso ragionamento si ha che

$$\max\{f(x), g(x)\} = \frac{f(x) - g(x) + |f(x) - g(x)|}{2} + g(x)$$

e quindi essendo composizione di funzioni continue risulta continua.

c) Si, può accadere. Sia per esempio f(x)=0 e sia g una funzione tale che g(x)<0 per ogni $x\in\mathbb{R}$. Anche se g non è continua in qualche punto si ha che $\max\{f(x),g(x)\}=0$ che è continua.