CORRIGENDUM TO "BACKWARD ITERATION IN STRONGLY CONVEX DOMAINS" ADV. IN MATH., 228, PP. 2837–2854.

MARCO ABATE AND JASMIN RAISSY*

ABSTRACT. We correct a gap in two lemmas in [2], providing a new proof of the main results of that paper for hyperbolic and strongly elliptic self-maps of a bounded strongly convex domain with C^2 boundary.

We have found a gap in the proofs of Lemmas 2.2 and 2.5 of our paper [2]. In this note we fill these gaps, giving a proof of the main results using different arguments.

More precisely we prove the following version of [2, Theorem 0.1]:

Theorem 1. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in \operatorname{Hol}(D,D)$ be either hyperbolic or strongly elliptic, with Wolff point $\tau \in \overline{D}$. Let $\{z_k\} \subset D$ be a backward orbit for f with bounded Kobayashi step. Then:

- (i) the sequence $\{z_k\}$ converges to a boundary fixed point $\sigma \in \partial D$;
- (ii) if $\sigma \neq \tau$ then σ is repelling;
- (iii) $\sigma \neq \tau$ if and only if $\{z_k\}$ goes to σ inside a K-region, that is, there exists M > 0 so that $z_k \in K_p(\sigma, M)$ eventually, where p is any point in D.

Remark 2. If f is strongly elliptic then clearly $\sigma \neq \tau$. We conjecture that $\sigma \neq \tau$ in the hyperbolic case too.

Remark 3. The following proof does not work in the parabolic case, considered in the original version of [2, Theorem 0.1]. Thus the behavior of backward orbits for a parabolic self-map is still not understood, even (as far as we know) in the unit ball of \mathbb{C}^n (see [4]).

Proof. The proof is divided into two cases according to whether f is hyperbolic or strongly elliptic. We will freely use the notations introduced in [2].

Hyperbolic case.

We begin by proving part (i) following the approach already indicated in [2, Remark 2.1].

Lemma 4. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in Hol(D,D)$ be hyperbolic with Wolff point $\tau \in \partial D$ and let $\{z_k\} \subset D$ be a backward orbit for f with bounded Kobayashi step a > 0. Then $\{z_k\}$ converges to a boundary fixed point $\sigma \in \partial D$.

Proof. First of all, recall that [3, Lemma 2.4 and Remark 3] yields a constant $C_1 > 0$ such that

(1)
$$||z_k - z_{k+1}||^2 + |\langle z_k - z_{k+1}, z_k \rangle| \le \frac{C_1^2}{1 - \hat{a}^2} d(z_k, \partial D),$$

and so

(2)
$$||z_k - z_{k+1}|| \le \frac{C_1}{\sqrt{1 - \hat{a}^2}} \sqrt{d(z_k, \partial D)} \le \frac{C_1}{1 - \hat{a}} \sqrt{d(z_k, \partial D)} ,$$

^{*}Partially supported by ANR project LAMBDA, ANR-13-BS01-0002.

where $\hat{a} = \tanh a \in (0, 1)$. On the other hand, given $p \in D$ the triangular inequality and the upper estimate [1, Theorem 2.3.51] on the boundary behaviour of the Kobayashi distance yield a constant $C_2 > 0$ such that

$$\frac{1}{2}\log h_{\tau,p}(z_k) \le k_D(p,z_k) \le C_2 - \frac{1}{2}\log d(z_k,\partial D)$$
,

that is

(3)
$$d(z_k, \partial D) \le \frac{e^{2C_2}}{h_{\tau, p}(z_k)},$$

and thus

(4)
$$||z_k - z_{k+1}|| \le \frac{C}{1 - \hat{a}} \sqrt{\frac{1}{h_{\tau, p}(z_k)}} ,$$

for a suitable C > 0. Therefore using [2, (2.1)] we obtain that for every $k, m \ge 0$ we have

(5)
$$||z_k - z_{k+m}|| \le \sum_{j=k}^{k+m-1} ||z_j - z_{j+1}|| \le \frac{C}{1 - \hat{a}} \frac{1}{\sqrt{h_{\tau,p}(z_k)}} \sum_{j=0}^{m-1} \beta_{\tau}^{j/2}$$

$$\le \frac{C}{1 - \hat{a}} \frac{1}{1 - \beta_{\tau}^{1/2}} \frac{1}{\sqrt{h_{\tau,p}(z_k)}} .$$

Since $h_{p,\tau}(z_k) \to +\infty$ as $k \to +\infty$ by [2, Lemma 2.6] it follows that $\{z_k\}$ is a Cauchy sequence in \mathbb{C}^n , converging to a point σ , necessarily belonging to ∂D by [2, Lemma 2.1]. The proof is then completed by quoting [2, Lemma 2.3].

The following lemma, whose proof is identical to the proof of [2, Lemma 2.4], allows us to control the dilation coefficient at the limit of a backward orbit, giving in particular part (ii) of Theorem 1 in the hyperbolic case.

Lemma 5. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in \operatorname{Hol}(D,D)$ be hyperbolic or parabolic with Wolff point $\tau \in \partial D$ and dilation coefficient $0 < \beta_{\tau} \leq 1$. Let $\sigma \in \partial D \setminus \{\tau\}$ be a boundary fixed point with finite dilation coefficient β_{σ} . Then

$$\beta_{\sigma} \geq \frac{1}{\beta_{\sigma}} \geq 1$$
.

In particular, if f is hyperbolic then σ is repelling.

Proof. Argue as in the proof of [2, Lemma 2.4].

To deal with K-regions, we need the following remark.

Remark 6. In strongly convex domains K-regions are comparable to Stein admissible approach regions $A(\sigma, M)$ of vertex $\sigma \in \partial D$ and aperture M > 1:

(6)
$$A(\sigma, M) = \{ z \in D \mid ||z - \sigma||^2 < Md(z, \partial D), |\langle z - \sigma, n_\sigma \rangle| < Md(z, \partial D) \},$$

where n_{σ} is the outer unit normal vector to ∂D at σ . Here "comparable" means that for every $\sigma \in \partial D$ there exists a neighbourhood $U \subset \mathbb{C}^n$ of σ such that for any M > 1 and $p \in D$ there are $M_1, M_2 > 1$ such that

$$A(\sigma, M_1) \cap U \subseteq K_p(\sigma, M) \cap U \subseteq A(\sigma, M_2) \cap U$$
;

see, e.g., [1, Propositions 2.7.4, 2.7.6 and p. 380].

We can now prove the first half of Theorem 1.(iii) for the hyperbolic case.

Lemma 7. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in \operatorname{Hol}(D,D)$ be hyperbolic with Wolff point $\tau \in \partial D$ and dilation coefficient $0 < \beta_{\tau} < 1$, and let $\{z_k\} \subset D$ be a backward orbit with bounded Kobayashi step a > 0 converging to $\sigma \in \partial D \setminus \{\tau\}$. Then for every $p \in D$ there exists M > 0 such that $z_k \in K_p(\sigma, M)$ eventually.

Proof. Fix $p \in D$. By Remark 6 it suffices to prove that there exists M > 1 such that $\{z_k\}$ converges to σ inside an admissible approach region $A(\sigma, M)$.

Set $t_k := h_{\tau,p}(z_k)$. Thanks to [2, (2.1)] we have

$$\frac{1}{t_{k+m}} \le \beta_{\tau}^m \frac{1}{t_k}$$

for all $k, m \ge 0$. Moreover, thanks to [1, Corollary 2.3.55], since $\sigma \ne \tau$, there exists $\varepsilon > 0$ and K > 0 such that for any $w \in D \cap B(\tau, \varepsilon)$ and $k \in \mathbb{N}$ such that $z_k \in D \cap B(\sigma, \varepsilon)$ we have

$$k_D(z_k, w) \ge -\frac{1}{2} \log d(z_k, \partial D) - \frac{1}{2} \log d(w, \partial D) + K$$
,

where $B(x,\varepsilon)$ is the Euclidean ball of center x and radius ε .

On the other hand, [1, Theorem 2.3.51] yields $c_1 \in \mathbb{R}$ such that

$$k_D(w, p) \le c_1 - \frac{1}{2} \log d(w, \partial D)$$

for any $w \in D$. So for $w \in D \cap B(\tau, \varepsilon)$ and k sufficiently large we have

$$k_D(z_k, w) - k_D(w, p) \ge -\frac{1}{2} \log d(z_k, \partial D) - \frac{1}{2} \log d(w, \partial D) + \frac{1}{2} \log d(w, \partial D) - c_1 + K$$

which implies

$$t_k = h_{\tau,p}(z_k) = \lim_{w \to \tau} [k_D(z_k, w) - k_D(w, p)] \ge -\frac{1}{2} \log d(z_k, \partial D) + K - c_1$$

that is

(8)
$$\frac{1}{t_k} \le \widetilde{C}_1 d(z_k, \partial D),$$

for some $\widetilde{C}_1 > 0$.

Therefore, thanks to (5), for all $m \geq 0$ and k large enough we have

(9)
$$||z_k - z_{k+m}|| \le \frac{C\tilde{C}_1}{1 - \hat{a}} \frac{1}{1 - \beta_{\tau}^{1/2}} \sqrt{d(z_k, \partial D)}$$

for some C > 0, where $\hat{a} = \tanh a$, and letting m tend to infinity we obtain that for k sufficiently large there is $M_1 > 1$ such that

(10)
$$||z_k - \sigma|| < M_1 \sqrt{d(z_k, \partial D)}.$$

On the other hand, up to translating the domain, without loss of generality we can assume that D contains the origin. In particular, D being bounded and strongly convex, we can replace n_{σ} by σ in the definition of $A(\sigma, M)$. Therefore, to conclude the proof it suffices to prove that there exists $M_2 > 1$ such that

$$|\langle z_k - \sigma, \sigma \rangle| \le M_2 d(z_k, \partial D)$$

for k large enough. Now

$$|\langle z_i - z_{i+1}, z_i - \sigma \rangle| \le ||z_i - z_{i+1}|| ||z_i - \sigma||,$$

and so, thanks to (1), (8) and (10), for k large enough and $m \ge 0$ we have

$$|\langle z_{k} - z_{k+m}, \sigma \rangle| \leq \sum_{j=k}^{k+m-1} |\langle z_{j} - z_{j+1}, \sigma \rangle|$$

$$\leq \sum_{j=k}^{k+m-1} \left(|\langle z_{j} - z_{j+1}, z_{j} - \sigma \rangle| + |\langle z_{j} - z_{j+1}, z_{j} \rangle| \right)$$

$$\leq \sum_{j=k}^{k+m-1} \left(||z_{j} - z_{j+1}|| ||z_{j} - \sigma|| + \frac{C_{1}^{2}}{1 - \hat{a}^{2}} d(z_{j}, \partial D) \right)$$

$$\leq \sum_{j=k}^{k+m-1} \left(\frac{M_{1}C_{1}}{1 - \hat{a}} d(z_{j}, \partial D) + \frac{C_{1}^{2}}{1 - \hat{a}^{2}} d(z_{j}, \partial D) \right)$$

$$\leq C' \sum_{j=k}^{k+m-1} d(z_{j}, \partial D),$$

for some C' > 0. Arguing as in (5), using (3), (7) and (8) we obtain

$$|\langle z_k - z_{k+m}, \sigma \rangle| \le M_2 d(z_k, \partial D)$$

for $m \geq 0$, k large enough and for some $M_2 > 1$. Letting m tend to infinity we finally have

$$|\langle z_k - \sigma, \sigma \rangle| \leq M_2 d(z_k, \partial D).$$

as claimed. \Box

The following lemma completes the proof of Theorem 1.(iii):

Lemma 8. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in \operatorname{Hol}(D,D)$ be hyperbolic with Wolff point $\tau \in \partial D$ and dilation coefficient $0 < \beta_{\tau} < 1$, and let $\{z_k\} \subset D$ be a backward orbit with bounded Kobayashi step converging to $\sigma \in \partial D \setminus \{\tau\}$ inside a K-region. Then $\sigma \neq \tau$.

Proof. Assume, by contradiction, that $\sigma = \tau$. Fix $p \in D$, and let M > 1 be such that $z_k \in K_p(\tau, M)$. Given $\varepsilon > 0$, [1, Lemma 2.7.1] yields r > 0 such that if $k_D(z_k, p) \ge r$ then $z_k \in E_p(\tau, \varepsilon)$, that is $h_{\tau,p}(z_k) < \varepsilon$. Since $k_D(z_k, p) \to +\infty$, it follows that $h_{\tau,p}(z_k) \to 0$ as $k \to +\infty$. But [2, Lemma 2.6] implies that $h_{\tau,p}(z_k) \to +\infty$, contradiction.

Strongly elliptic case. We start by proving by contradiction that any backward orbit has to accumulate to the boundary of the domain D.

Lemma 9. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in \operatorname{Hol}(D,D)$ be strongly elliptic with Wolff point $p \in D$, and let $\{z_k\} \subset D$ be a backward orbit with bounded Kobayashi step $a = \frac{1}{2} \log \alpha$. Then $z_k \to \partial D$ as $k \to +\infty$.

Proof. Define $\ell_k > 0$ by setting $\frac{1}{2} \log \ell_k = k_D(z_k, p)$. Since f is strongly elliptic, we have $k_D(z_k, p) < k_D(z_{k+1}, p)$,

and thus the sequence $\{\ell_k\}$ is strictly increasing. Assume, by contradiction, that it has a finite limit ℓ_{∞} . This means that every limit point z_{∞} of the sequence $\{z_k\}$ satisfies $k_D(z_{\infty},p)=\frac{1}{2}\log\ell_{\infty}$. But $f(z_{\infty})$ is a limit point of the sequence $\{f(z_k)\}=\{z_{k-1}\}$ and thus we again have $k_D(f(z_{\infty}),p)=\frac{1}{2}\log\ell_{\infty}$, which is impossible by [2, Lemma 1.1] because f is strongly elliptic. Therefore $\ell_{\infty}=+\infty$, which means that $z_k\to\partial D$.

This allows us to prove the following key result.

Lemma 10. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in \text{Hol}(D,D)$ be strongly elliptic with Wolff point $p \in D$. Let $\{z_k\} \subset D$ be a backward orbit with bounded Kobayashi step. Then there exists a constant 0 < c < 1 such that

$$k_D(z_k, p) - k_D(z_{k+1}, p) \le \frac{1}{2} \log c < 0$$

for all $k \in \mathbb{N}$.

Proof. Assume, by contradiction, that for every 0 < c < 1 there is $k(c) \in \mathbb{N}$ such that

$$k_D(z_{k(c)}, p) - k_D(z_{k(c)+1}, p) > \frac{1}{2} \log c$$
,

that is

$$k_D(z_{k(c)+1}, p) - k_D(f(z_{k(c)+1}), p) < -\frac{1}{2}\log c$$
.

Consider the sequences $\{z_{k(1-\frac{1}{j})+1}\}$ and $\{z_{k(1-\frac{1}{j})}=f(z_{k(1-\frac{1}{j})+1})\}$. Thanks to Lemma 9, we know that both these sequences accumulate on ∂D ; therefore, by extracting subsequences, we can find a subsequence $\{z_{k_i}\}$ such that $z_{k_j} \to \sigma_1 \in \partial D$, $f(z_{k_j}) \to \sigma_2 \in \partial D$ as $j \to +\infty$ and

$$\lim_{j \to +\infty} \left[k_D(z_{k_j}, p) - k_D(f(z_{k_j}), p) \right] \le 0.$$

If $\sigma_1 \neq \sigma_2$, then [1, Corollary 2.3.55], together with the fact that $\{z_k\}$ has bounded Kobayashi step, lead to a contradiction since for k large enough there is $K \in \mathbb{R}$ such that

$$a \ge k_D(z_{k_j}, f(z_{k_j})) \ge -\frac{1}{2}\log d(z_{k_j}, \partial D) - \frac{1}{2}\log d(f(z_{k_j}), \partial D) + K$$

whereas the right-hand side tends to infinity. Therefore, $\sigma_1 = \sigma_2$ and we have

$$\liminf_{z \to \sigma_1} \left[k_D(z, p) - k_D(f(z), p) \right] \le 0.$$

Then we can apply [1, Proposition 2.4.15, Theorem 2.4.16 and Proposition 2.7.15], obtaining that σ_1 is a boundary fixed point and that for any R > 0 we have $f(E_p(\sigma_1, R)) \subseteq E_p(\sigma_1, R)$. We can then choose R < 1 so that $p \notin \overline{E_p(\sigma_1, R)}$, and let $w \in \overline{E_p(\sigma_1, R)}$ be a point closest to p with respect to the Kobayashi distance. Since $f(w) \in \overline{E_p(\sigma_1, R)}$ this means that $k_D(f(w), p) \ge k_D(w, p)$, which is impossible because $w \ne p$ and f is strongly elliptic.

We can now prove, using the argument already suggested in [2, Remark 2.2], that the whole backward orbit converges to a boundary fixed point $\sigma \in \partial D$, which is obviously different from the Wolff point $p \in D$.

Lemma 11. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in \operatorname{Hol}(D,D)$ be strongly elliptic with Wolff point $p \in D$, and let $\{z_k\} \subset D$ be a backward orbit with bounded Kobayashi step $a = \frac{1}{2} \log \alpha$. Then $\{z_k\}$ converges to a boundary fixed point $\sigma \in \partial D$ with $\beta_{\sigma} \leq \alpha$.

Proof. Without loss of generality, we can assume that $z_0 \neq p$. We consider $s_k > 0$ defined by setting $-\frac{1}{2} \log s_k = k_D(z_k, p)$. Taking the constant 0 < c < 1 given by the Lemma 10, we therefore have

$$-\frac{1}{2}\log s_k + \frac{1}{2}\log s_{k+1} \le \frac{1}{2}\log c ,$$

that is

$$(12) s_{k+1} \le c s_k .$$

Therefore $s_{k+m} \leq c^m s_k$ for every $k, m \in \mathbb{N}$, and using again (1) and [1, Theorem 2.3.51] as in the proof of Lemma 4, for all $j \in \mathbb{N}$ we obtain

$$||z_j - z_{j+1}|| \le \frac{C}{1 - \hat{a}} \sqrt{s_j}$$

for a suitable C > 0, where $\hat{a} = \tanh a$. Arguing exactly as in (5) we then obtain that

(13)
$$||z_k - z_{k+m}|| \le \frac{C}{1 - \hat{a}} \frac{1}{1 - c^{1/2}} \sqrt{s_k},$$

for any $m \geq 0$ and k large enough. So $\{z_k\}$ is a Cauchy sequence in \mathbb{C}^n converging to a point $\sigma \in \partial D$ by Lemma 10, and the assertion follows from [2, Lemma 2.3].

The following general result proves Theorem 1.(ii) in the strongly elliptic case.

Lemma 12. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in \operatorname{Hol}(D,D)$ be strongly elliptic with Wolff point $p \in D$. If $\sigma \in \partial D$ is a boundary fixed point then $\beta_{\sigma} > 1$.

Proof. Since p is a fixed point of f, we already know that

$$\frac{1}{2}\log \beta_{\sigma} = \liminf_{z \to \sigma} \left[k_D(z, p) - k_D(f(z), p) \right] \ge 0.$$

Assume, by contradiction, that $\beta_{\sigma} = 1$. Then [1, Proposition 2.4.15, Theorem 2.4.16 and Proposition 2.7.15] yields $f(E_p(\sigma, R)) \subseteq E_p(\sigma, R)$ for any R > 0 because σ is a boundary fixed point. Choose R < 1 so that $p \notin \overline{E_p(\sigma, R)}$, and let $w \in \overline{E_p(\sigma, R)}$ be a point closest to p with respect to the Kobayashi distance. Since $f(w) \in \overline{E_p(\sigma, R)}$ this means that $k_D(f(w), p) \ge k_D(w, p)$, which is impossible because $w \ne p$ and f is strongly elliptic.

We conclude by proving Theorem 1.(iii) in the strongly elliptic case.

Lemma 13. Let $D \in \mathbb{C}^n$ be a bounded strongly convex domain with C^2 boundary. Let $f \in \operatorname{Hol}(D,D)$ be strongly elliptic, with Wolff point $p \in D$. Let $\{z_k\} \subset D$ be a backward orbit for f with bounded Kobayashi step converging to $\sigma \in \partial D$. Then for every $q \in D$ there exists M > 0 such that $z_k \in K_q(\sigma,M)$ eventually.

Proof. It suffices again to prove that there exists M > 1 such that $\{z_k\}$ converges to σ inside an admissible approach region $A(\sigma, M)$.

Without loss of generality, we can assume that $z_0 \neq p$. We consider again $s_k > 0$ defined by setting $-\frac{1}{2} \log s_k = k_D(z_k, p)$. Thanks to (12), there is a constant 0 < c < 1 such that

$$(14) s_{k+m} \le c^m s_k$$

for all k, m > 0.

Now, [1, Theorem 2.3.51, Theorem 2.3.52] yield constants $\widetilde{C}_1, \widetilde{C}_2 > 0$ such that

(15)
$$\widetilde{C}_1 d(z_j, \partial D) \le s_j \le \widetilde{C}_2 d(z_j, \partial D)$$

for all $j \in \mathbb{N}$, and so plugging this in (13) we have

$$\|z_k-z_{k+m}\| \leq \frac{C}{1-\hat{a}}\frac{1}{1-c}\sqrt{s_k} \leq \frac{C}{1-\hat{a}}\frac{1}{1-c}\sqrt{\tilde{C}_2}\sqrt{d(z_k,\partial D)}$$

for any $m \geq 0$ and k large enough. Letting m tend to infinity we then obtain

(16)
$$||z_k - \sigma|| \le M_1 \sqrt{d(z_k, \partial D)},$$

for some $M_1 > 1$.

On the other hand, up to translating the domain, without loss of generality we can assume that D contains the origin. In particular, since D is bounded and strongly convex we can replace n_{σ} by σ in the definition of $A(\sigma, M)$. Therefore, it suffices to prove that there exists $M_2 > 1$ such that

$$|\langle z_k - \sigma, \sigma \rangle| \le M_2 d(z_k, \partial D)$$

for k large enough. But this follows by arguing as in the proof of Lemma 7 using s_k instead of t_k , thanks to (14) and (15).

This concludes the proof of Theorem 1 in both cases.

References

- [1] M. Abate, **Iteration theory of holomorphic maps on taut manifolds** Mediterranean Press, Rende (1989)
- [2] M. Abate, J. Raissy, Backward iteration in strongly convex domains, Adv. in Math., 228, Issue 5, pp. 2837–2854 (2011)
- [3] M. Abate, A. Saracco, Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc. (2) 83, 587–605 (2011)
- [4] O. OSTAPYUK, Backward iteration in the unit ball. Illinois J. Math. 55, 1569–1602 (2011)

Marco Abate, Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy.

 $E ext{-}mail\ address: marco.abate@unipi.it}$

Jasmin Raissy, Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS IMT, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France

 $E ext{-}mail\ address: jraissy@math.univ-toulouse.fr}$