1. Compito del 10 febbraio 2025

Avete 2 ore e 40 minuti di tempo. Non si possono usare libri, appunti, calcolatrice, cellulari, pena l'annullamento del compito. Scrivere chiaramente e motivare le risposte. Non saranno corretti esercizi scritti in modo illeggibile.

Esercizio 1. Sia V lo spazio vettoriale delle matrici simmetriche a 2×2 a coefficienti reali. Sia A una matrice 2×2 (non necessariamente simmetrica). Si consideri l'applicazione $C_A : V \longrightarrow V$ definita da $C_A(X) = A \cdot X \cdot A^t$.

- a) Verificare che l'applicazione C_A è lineare.
- b) Si consideri su V il prodotto scalare $(X|Y) = Tr(XY^t)$. Questo è un prodotto scalare definito positivo (questo non si chiede di verificarlo). Dimostrare che se A è simmetrica allora C_A rispetto a questo prodotto scalare è un operatore autoaggiunto.
- c) Dimostrare che se A è simmetrica allora C_A è diagonalizzabile.

Esercizio 2. Sia V lo spazio vettoriale dei polinomi a coefficienti complessi di grado minore o uguale a 3. Sia W il sottospazio di V dei polinomi che si annullano in -1. Sia $F:V\longrightarrow V$ una applicazione lineare. Per ogni $p(t)\in W$ abbiamo

$$F(p(t)) = p'(t)$$
 e inoltre $F(t^2) = 0$

- a) Scrivere la matrice associata a F rispetto alla base standard di V in partenza e in arrivo.
- b) Dire se F è diagonalizzabile.

Esercizio 3. Sia R(x) = Ax una riflessione rispetto ad un piano di \mathbb{R}^3 passante per l'origine.

- a) Sapendo che R(1,1,1)=(1,-1,-1) determinare il piano in questione.
- b) Sia $R_a(v) = R(v) + (a-1, a, a)$. Per quali valori di a l'applicazione R_a è una riflessione rispetto ad un piano?

Esercizio 4. Si consideri il prodotto scalare su \mathbb{R}^3 che rispetto alla base standard ha matrice associata

$$\begin{pmatrix} 0 & a+1 & 2 \\ a+1 & a+1 & a+1 \\ 2 & a+1 & 2 \end{pmatrix}$$

- a) determinare la segnatura al variare del parametro a
- b) per a = 1 determinare un piano fatto tutto di vettori isotropi.

2. Soluzioni del compito del 10 febbraio 2025

Soluzione dell'esercizio 1. a) Verifichiamo le due proprietà che caratterizzano la linearità di una applicazione:

$$C_A(X+Y) = A(X+Y)A^t = AXA^t + AYA^t = C_A(X) + C_A(Y).$$

$$C_A(\lambda X) = A\lambda XA^t = \lambda AXA^t = \lambda C_A(X).$$

b) Dobbiamo verificare che $(C_A(X)|Y) = (X|C_A(Y))$, infatti:

$$(C_A(X)|Y) = Tr(AXAY^t) = Tr(XAY^tA) = Tr(X \cdot (AYA)^t) = (X|C_A(Y)).$$

dove: i) la prima uguaglianza e la quarta uguaglianza sono conseguenza uguaglianza dalla definizione del prodotto scalare, di C_A e del fatto che $A=A^t$. ii) la seconda uguaglianza segue da Tr(MN)=Tr(NM). iii) la terza uguaglianza segue da $(MN)^t=N^tM^t$.

c) Dal punto 2 sappiamo che C_A è autoaggiunta e quindi per il teorema spettrale è diagonalizzabile.

Soluzione esercizio 2. Osserviamo che

$$1 = (1 - t^{2}) + t^{2}$$
$$t = (t + t^{2}) - t^{2}$$
$$t^{3} = (t^{3} + t^{2}) - t^{2}$$

1

dove il polinomio scritto tra parentesi è sempre un elemento di W e l'altro addendo è uguale a $\pm t^2$. Quindi

$$F(1) = F(1 - t^{2}) + F(t^{2}) = -2t$$

$$F(t) = F(t + t^{2}) - F(t^{2}) = 1 + 2t$$

$$F(t^{2}) = 0$$

$$F(t^{3}) = F(t^{3} + t^{2}) - F(t^{2}) = 3t^{2} + 2t$$

quindi

$$[F]_{1,t,t^2,t^3}^{1,t,t^2,t^3} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -2 & 2 & 0 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

b) Il polinomio caratteristico di F è quindi uguale a $t^2 \cdot (t(t-2)+2)$ In particolare 0 ha molteplicità algebrica 2, ma F ha rango 3 e quindi 0 ha molteplicità geometrica 1. Quindi F non è diagonalizzabile.

Soluzione dell'esercizio 3. a) Il piano cercato sarà ortogonale alla retta che congiunge (1,1,1) e (1,-1,-1) e quindi sarà ortogonale a (0,1,1) sarà quindi della forma y+z=0.

b) Consideriamo la riflessione $R_a(v)$. Se ha un punto fisso P è una riflessione rispetto al piano parallelo al precedente e passante per questo punto se non ha un punto fisso non può essere una riflessione.

Studiamo quindi $R_a(P) = P$ otteniamo (A - I)(P) = a. Quindi R_a è una riflessione se e solo se a è nell'immagine di A - I. Nel caso di una riflessione A - I ha rango uno e l'immagine è la retta ortogonale al piano passante per l'origine, in questo caso la retta $\mathbb{R}(0,1,1)$. Quindi se $a \in \mathbb{R}(0,0,1)$ è una riflessione altrimenti non lo è.

Soluzione dell'esercizio 4. Calcolando il determinante della matrice otteniamo

$$-(a+1)\det \begin{pmatrix} a+1 & a+1 \\ 2 & 2 \end{pmatrix} + 2\det \begin{pmatrix} a+1 & a+1 \\ 2 & a+1 \end{pmatrix} = 0 + 2(a+1)(a-1)$$

Studiamo prima i casi in cui il determinante sia uguale a zero

Per a = 1 otteniamo la matrice

$$\begin{pmatrix} 0 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

il rango della matrice è 2 quindi $i_0 = 1$. Inoltre se ci restringiamo al piano generato da e_1 ed e_2 osserviamo che la segnatura è (1, 1, 0) quindi la segnatura in questo caso è (1, 1, 1).

Per a = -1 otteniamo la matrice

$$\begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$

il rango della matrice è 2 quindi $i_0 = 1$. Inoltre se ci restringiamo al piano generato da e_1 ed e_3 osserviamo che la segnatura è (1,1,0) quindi la segnatura in questo caso è (1,1,1).

Supponiamo ora che $a \neq \pm 1$ quindi la matrice ha rango 3 e $i_0 = 0$. Se ci restringiamo al piano generato da e_1 ed e_2 osserviamo che la segnatura è (1,1,0), quindi abbiamo $i_+,i_- \geqslant 1$. Infine

se -1 < a < 1 il determinante è negativo e quindi i_- è dispari. Quindi la segnatura è (2,1,0).

se -1 > a o 1 < a il determinante è positivo e quindi i_- è dispari. Quindi la segnatura è (1,2,0).

b) se a=1 osserviamo che il nucleo della matrice è generato dal vettore e_2-e_3 e che e_1 è un vettore isotropo. Il piano geberato da questi due vettori pertanto fatto di vettori tutti isotropi.