Compito di geometria e algebra lineare del 23 gennaio 2025

Istruzioni: Avete 2 ore e 30' di tempo. Non è sufficiente dare la risposta giusta, dovete fornire delle giiustificazioni. Durante lo svolgimento non si possono usare libri, appunti, calcolatrice, cellulari né altri oggetti elettronici, pena l'annullamento del compito. Buon lavoro!

Esercizio 1. Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ una funzione lineare. Per ciascuna delle seguenti affermazioni, determina se è vera o falsa fornendo una motivazione: se l'affermazione è vera scrivi una dimostrazione, se è falsa fornisci un controesempio (in cui scegli f esplicitamente).

- (1) Se f è diagonalizzabile, allora anche f^k è diagonalizzabile per ogni k > 1.
- (2) Se f non è isomorfismo, allora esiste un k > 1 tale che f^k sia la funzione nulla.
- (3) Se f non è la funzione nulla, allora f^k non è la funzione nulla per ogni k > 1.

Esercizio 2. Sia $V = \mathbb{R}_2[x]$ lo spazio vettoriale dei polinomi a coefficienti reali di grado ≤ 2 . Considera i seguenti sottospazi di V:

$$U = \{ p \in V \mid p(0) = p(1) = 0 \},$$

$$W = \{ q \in V \mid q'(\frac{1}{2}) = 0 \}.$$

Qui q'(x) indica la derivata di q(x). Determina le dimensioni di $U, W, U \cap W, U + W$.

Esercizio 3. Considera nello spazio i punti

$$P = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \quad R = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \quad S = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}.$$

Siano r la retta passante per P e Q, e s la retta passante per R e S.

- (1) Calcola la distanza fra $r \in s$,
- (2) Determina una isometria f(x) = Ax + b tale che f(r) = s. Spiega prima a parole come intendi costruirla, e poi determina A e b.

Esercizio 4. Determina la segnatura della matrice

$$\begin{pmatrix} 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & t \end{pmatrix}$$

al variare del parametro $t \in \mathbb{R}$.

Esercizio 1.

- (1) È vero. Se v_1, v_2 è una base di autovettori per f, allora $f(v_i) = \lambda_i v_i$, e quindi per linearità $f^k(v_i) = \lambda_i^k v_i$. Segue che v_1, v_2 sono autovettori anche per f^k .
- (2) È falso. Ad esempio se f(x,y) = (x,0) otteniamo che $f^k(x,y) = (x,0)$ per ogni k, e non è mai la funzione nulla.
- (3) È falso. Ad esempio, se f(x,y) = (y,0) otteniamo $f^2(x,y) = (0,0)$.

Esercizio 2. Troviamo che

$$U = \operatorname{Span}(x^2 - x) \qquad W = \operatorname{Span}(1, x^2 - x)$$

Quindi $U \subset W$, e allora $U \cap W = U$ hanno entrambi dimensione 1 e U + W = W hanno entrambi dimensione 2.

Esercizio 3. Facendo il disegno si vede che r e s sono due rette sghembe con perpendicolare comune la retta l parallela all'asse x di equazione y=z=1. La retta l interseca r e s nei punti (1,1,1) e (2,1,1), quindi le due rette hanno distanza 1.

Una possibile isometria f è una rototraslazione di asse l, passo 1, e angolo $\pi/2$. Facendo i conti viene

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

Esercizio 4. Se t = 0, la matrice ha rango 2, quindi $i_0 = 2$. Inoltre la sottomatrice

$$\begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

ha determinante negativo, quindi $i_+, i_- \ge 1$. Segue che l'unica possibile segnatura è (1, 1, 2). Se $t \ne 0$, applico il criterio di Jacobi sulla sottomatrice

$$\begin{pmatrix}
2 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & t
\end{pmatrix}$$

e scopro che la sua segnatura è (2,1,0) se t < 0 e (1,2,0) se t > 0. Poiché la matrice iniziale ha rango 3, ha $i_0 = 1$, e quindi la sua segnatura è necessariamente (2,1,1) se t < 0 e (1,2,1) se t > 0.

2