3. Compito del 25 gennaio 2024

Avete 2 ore e 40 minuti di tempo. Non si possono usare libri, appunti, calcolatrice, cellulari, pena l'annullamento del compito. Scrivere chiaramente e motivare le risposte. Non saranno corretti esercizi scritti in modo illeggibile.

Esercizio 1. Sia V uno spazio vettorale reale e sia $F:V\longrightarrow V$ una applicazione lineare.

- a) Cosa vuol dire che 3 è un autovalore di F?
- b) Dimostrare che se F è diagonalizzabile allora lo è anche F^2 .
- c) Fare un esempio in cui F^2 è diagonalizzabile ma F non è diagonalizzabile.

Esercizio 2. Sia M la matrice

$$M = \begin{pmatrix} 19 & -80 \\ 4 & -17 \end{pmatrix}.$$

- a) Dire se M è diagonalizzabile.
- b) Calcolare M^{155} .

Esercizio 3. Nello spazio euclideo \mathbb{R}^3 si consideri il piano $\pi = \operatorname{Span}(e_1, e_2)$ e una retta ℓ passante per l'origine e contenuta nel piano $\operatorname{Span}(e_1, e_3)$. Sia P la riflessione rispetto al piano e R la rotazione attorno alla retta di 180^o .

- a) Si dimostri che -1 è un autovalore di $R \circ P$
- b) Si dimostri che se la retta è ortogonale al piano allora $R \circ P$ è diagonalizzabile.
- c) Determinare tutte le rette ℓ tali che l'applicazione $R \circ P$ è diagonalizzabile.

Esercizio 4. Sia S la matrice simmetrica

$$\begin{pmatrix} 1 & t & t & 0 \\ t & 1 & 0 & 1 \\ t & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

dipendente da un parametro $t \in \mathbb{R}$. La matrice determina un prodotto scalare g_t su \mathbb{R}^4 .

- a) per quali valori di t il vettore $v = e_1 + e_2$ è isotropo rispetto al prodotto scalare g_t ?
- b) per quali valori di t la restrizione di g_t al sottospazio $W = \text{Span}\{e_1 + e_2, e_3 + e_4\}$ è definita positiva?

Soluzione dell'esercizio 1. a) 3 è un autovalore di F se esiste $v \in V$ diverso da zero tale che F(v) = 3v.

- b) Se v_1, \ldots, v_n è una base di V composta di autovettori di F con $F(v_i) = \lambda_i v_i$ allora $F^2(v_i) = \lambda_i^2 v_i$ e quindi v_1, \ldots, v_n è anche una base di V composta di autovettori di F^2 .
 - c) Un esempio è $F = L_A$ con

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Soluzione dell'esercizio 2. Il polinomio caratteristico di M è uguale a $\lambda^2 - 2\lambda - 3$. Quindi M ha autovalori uguali a 3 e -1 e l'applicazione è diagonalizzabile. Un autovettore per l'autovalore 3 è il vettore $v_1 = 5e_1 + e_2$ un autovettore per l'autovalore -1 è il vettore $v_2 = 4e_1 + e_2$. Quindi

$$M = N \cdot \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \cdot N^{-1}.$$

e con

$$N = [Id]_{e_1, e_2}^{v_1, v_2} = \begin{pmatrix} 5 & 4 \\ 1 & 1 \end{pmatrix} \quad \text{e} \quad N^{-1} = [Id]_{v_1, v_2}^{e_1, e_2} = \begin{pmatrix} 1 & -4 \\ -1 & 5 \end{pmatrix}$$

da cui

$$M^{155} = N \begin{pmatrix} 3^{155} & 0 \\ 0 & -1 \end{pmatrix} N^{-1} = \begin{pmatrix} 5 & 4 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3^{155} & -4 \cdot 3^{155} \\ 1 & -5 \end{pmatrix} = \begin{pmatrix} 5 \cdot 3^{155} + 4 & -20 \cdot 3^{155} - 20 \\ 3^{155} + 1 & -4 \cdot 3^{155} - 5 \end{pmatrix}$$

Soluzione dell'esercizio 3. Le matrici associate a P e R rispetto alla base canonica C sono

$$[P]_{\mathcal{C}}^{\mathcal{C}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad [R]_{\mathcal{C}}^{\mathcal{C}} = \begin{pmatrix} \cos(2\theta) & \sin(2\theta) & 0 \\ \sin(2\theta) & -\cos(2\theta) & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

da cui

$$[R \circ P]_{\mathcal{C}}^{\mathcal{C}} = \begin{pmatrix} -\cos(2\theta) & -\sin(2\theta) & 0\\ \sin(2\theta) & -\cos(2\theta) & 0\\ 0 & 0 & -1 \end{pmatrix}$$

Il polinomio caratteristico è $-(1+\lambda)(\lambda^2+2\cos(2\theta)\lambda+1)$ Quindi -1 è un autovalore mentre il delta del fattore di secondo grado è uguale a $4(\cos^2(2\theta)-1)=-4\sin(2\theta)^2$ che è negativo se $\theta\neq 0,\pi/2$ e quindi l'applicazione non è diagonalizzabile in questo caso. Per $\theta=0,\pi/2$ invece l'applicazione è già scritta in forma diagonale.

Soluzione dell'esercizio 4. a) Calcoliamo $g_t(e_1 + e_2, e_1 + e_2) = 2 + 2t$. Quindi tale vettore è isotropo per t = -1

b) Sia $v_1=e_1+e_2$ e $v_2=e_3+e_4$, la matrice associata alla restrizione di g_t a W rispetto alla base v_1,v_2 è uguale a

$$C_t = \begin{pmatrix} 2+2t & t+1 \\ t+1 & 3 \end{pmatrix}$$

La restrizione di questo prodotto scalare è definita positiva se e solo se 2+2t>0 e det $C_t>0$ ovvero per

$$t > -1$$
 e $6(1+t) - (t+1)^2 = (t+1)(5-t) > 0$

Quindi la restrizione di g_t a W è definita positiva per -1 < t < 5.