Compito di Geometria e algebra lineare del 9 gennaio 2023

Istruzioni: Avete 3 ore di tempo a disposizione. Non si possono usare libri, appunti, calcolatrice, cellulari, pena l'annullamento del compito. Scrivere chiaramente e motivare le risposte. Non saranno corretti esercizi scritti in modo illeggibile.

Esercizio 1.

- a) Si definisca l'immagine di una applicazione lineare $F:V\longrightarrow U$ e si dimostri che è un sottospazio vettoriale di U.
- b) Sia $V = \operatorname{Mat}_{3\times 3}(\mathbb{C})$ e sia W il sottospazio di V delle matrici simmetriche. Sia $F: V \longrightarrow \mathbb{C}^7$ e si supponga che $N(F) \oplus W = V$. Si dica se F è surgettiva.

Esercizio 2. Sia U il sottospazio di \mathbb{C}^3 definito dall'equazione x+y=0

Si determini due applicazioni lineari $F, G: \mathbb{C}^3 \longrightarrow \mathbb{C}^3$ con le seguenti proprietà.

- 0 e 1 sono autovalori di F.
- $F(U) \subset U$
- \bullet F non è diagonalizzabile.
- \bullet 0 e 1 sono autovalori di G.
- $G(U) \subset U$
- \bullet G è diagonalizzabile.

Si forniscano le matrici associate ad F e G rispetto alla base standard.

Esercizio 3. Si consideri le seguenti rette di \mathbb{R}^3 :

$$r = \mathbb{R}e_3$$
 $s = \{(x, y, z) \in \mathbb{R}^3 : x = 2 \ e \ y = z\}$

- a) Determinare una isometria F tale che F(r) = s tale che F non abbia punti fissi.
- b) Determinare una isometria G tale che G(r) = s tale che G abbia punti fissi.

Esercizio 4. Sia b_t il prodotto scalare su \mathbb{R}^4 , dipendente dal parametro reale t, che ha come matrice associata rispetto alla base standard la seguente:

$$B_t = \begin{pmatrix} t & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & t \end{pmatrix}$$

- a) Si determini la segnatura di b_1 ,
- b) Si determini la segnatura di b_0 .

Soluzioni del compito del 9 gennaio

Soluzione dell'esercizio 1.

$$\operatorname{Im} F = \{F(v) : v \in V\} = \{u \in U : esiste \quad v \in V \quad tale \ che \quad F(v) = u\}.$$

Verifichiamo che è un sottospazio di U.

- 1: $0_U \in \text{Im } F$. Infatti F è lineare e quindi $F(0_V) = O_U \in \text{Im } F$.
- 2: Se $u_1, u_2 \in \text{Im } F$ allora $u_1 + u_2 \in \text{Im } F$. Infatti se $u_1, u_2 \in \text{Im } F$ allora esistono $v_1, v_2 \in V$ tali che $F(v_1) = u_1$ e $F(v_2) = u_2$. Consideriamo $v = v_1 + v_2 \in V$ e calcoliamo F(v). Per linearità abbiamo

$$F(v) = F(v_1 + v_2) = F(v_1) + F(v_2) = u_1 + u_2$$

Quindi $u_1 + u_2$ è un elemento di Im F.

3: Se $u \in \operatorname{Im} F$ e $\lambda \in K$ allora $\lambda u \in \operatorname{Im} F$. Infatti se $u \in \operatorname{Im} F$ allora esiste $v \in V$ tale che F(v) = u. Consideriamo $v' = \lambda v \in V$ e calcoliamo F(v'). Per linearità abbiamo

$$F(v') = F(\lambda v) = \lambda F(v) = \lambda u$$

Quindi λu è un elemento di Im F.

b) Osserviamo che V ha dimensione 9 e che il sottospazio W delle matrici simmetriche ha dimensione 6. Poiché $W \oplus N(F) = V$ ne ricaviamo che N(F) ha dimensione 3. Dalla formula della dimensione ricaviamo che

$$\dim \text{Im } F = \dim V - \dim N(F) = 9 - 3 = 6$$

Quindi F non è surgettiva.

Soluzione dell'esercizio 2. Osserviamo che $u_1 = e_2 - e_1$ e $u_2 = e_3$ è una base di U. Poiché e_1 non è un elemento di U osserviamo anche che e_1, u_1, u_2 è una base di V. In questa base è facile scrivere due applicazioni con le proprietà richieste. Per esempio

$$[G]_{e_1,u_1,u_2}^{e_1,u_1,u_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad [F]_{e_1,u_1,u_2}^{e_1,u_1,u_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Per scrivere le matrici associate a F e G rispetto alla base standard effettuiamo il cambiamento di base. Sia M la matrice di cambiamento di base dalla base e_1, u_1, u_2 alla base standard. Abbiamo

$$M = [Id]_{e_1, e_2, e_3}^{e_1, u_1, u_2} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad M^{-1} = [Id]_{e_1, u_1, u_2}^{e_1, e_2, e_3} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Abbiamo quindi

$$[G]_{e_1,e_2,e_3}^{e_1,e_2,e_3} = [Id]_{e_1,u_1,u_2}^{e_1,u_1,u_2} \cdot [G]_{e_1,u_1,u_2}^{e_1,u_1,u_2} \cdot [Id]_{e_1,e_2,e_3}^{e_1,e_2,e_3} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$[F]_{e_1,e_2,e_3}^{e_1,e_2,e_3} = [Id]_{e_1,u_1,u_2}^{e_1,u_1,u_2} \cdot [F]_{e_1,u_1,u_2}^{e_1,u_1,u_2} \cdot [Id]_{e_1,u_1,u_2}^{e_1,e_2,e_3} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Soluzione dell'esercizio 3. a) Consideriamo la retta s' passante per l'origine e parallela a s. Questa è la retta

$$s' = \mathbb{R}(e_2 + e_3)$$

e osserviamo che $s = s' + 2e_1$. L'asse $\mathbb{R}e_1$ è ortogonale ad entrambe le rette. Costruiamo F nel seguente modo, consideriamo la rotazione di asse $\mathbb{R}e_1$ di angolo 45 gradi che porta r in s'. Successivamente consideriamo la traslazione $v \mapsto v + 2e_1$ che porta s' in s. Otteniamo in questo modo una rototraslazione di asse $\mathbb{R}e_1$, che non ha punti fissi e che porta r in s. La matrice associata alla rotazione è

$$A = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1/\sqrt{2} & 1/\sqrt{2}\\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

e F è quindi data da

$$F(v) = A \cdot v + 2e_1.$$

b) Per costruire G procediamo in modo simile al precedente. Prima consideriamo la rotazione $v \mapsto A \cdot v$ che porta r in s' e poi per portare s' in s invece di considerare la traslazione $v \mapsto v + 2e_1$ consideriamo la riflessione R rispetto al piano x = 1. Questa composizione porta sicuramente r in s e lascia fisso il punto sull'asse $\mathbb{R}e_1$ con x = 1 perché è lasciato fisso da entrambe le trasformazioni. Dobbiamo calcolare R. Se v = (x, y, z) allora la proiezione di v sul piano v = 1 è v' = (1, y, z). v' sarà il punto medio tra $v \in R(v)$ ovvero R(v) = 2v' - v e quindi

$$R\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2-x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

Quindi l'applicazione G che abbiamo costruito è data da

$$G \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

Soluzione dell'esercizio 4. a) I determinanti dei minori principali di b_a sono 1, -1, -1, -1. In particolare la segnatura di b è uguale a (3, 1, 0).

b) In questo caso non possiamo applicare il criterio di Jacobi perché il primo minore della matrice è zero. Procediamo in altro modo. Intanto osserviamo che la matrice B_0 ha rango 2 quindi $i_0=2$. Osserviamo inoltre che se $u=e_1+e_2$ e $v=e_1-e_2$ abbiamo $b_0(u,u)=2$ e $b_0(v,v)=-2$. Quindi esistono rette su cui b_0 è definita positiva e rette su cui b_0 è definita negativa. Quindi i_+ e i_- non sono zero. Poiché $i_++i_-+i_0=4$ ricaviamo che la segnatura è (1,1,2).