Università di Pisa

Geometria e Algebra Lineare per Ingegneria Aerospaziale, Ingegneria Meccanica, Ingegneria della Sicurezza

Cognome e Nome:

Corso di studi:

Anno di iscrizione:

Numero di matricola:

E-mail

Scritto n.3 del 2014

Esercizio 1. a) Al variare dei parametri reali h e k si studi il seguente sistema \mathcal{S}

$$\begin{cases} x - y + (h - 2) z = -h + 1 \\ h x + y - z = 0 \\ (h - 2) x + 3 y - (2 h + 1) z = k - h. \end{cases}$$

b) Si determinino i valori di h e k per cui le soluzioni del sistema costituiscono un sottospazio di \mathbb{R}^3 .

Esercizio 2. Determinare le soluzioni complesse z dell'equazione

$$\exp(z) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Tra le soluzioni determinate individuare quelle per cui z^n è un numero immaginario puro.

Esercizio 3. Si consideri la superficie Q di equazione $x^2 + z^2 - 2xz - y + z = 0$ e la sua sezione γ con il piano $\alpha : x - y = 0$.

- a) Si classifichi la superficie Q.
- b) Si classifichi la curva γ precisando la posizione di α rispetto a \mathcal{Q} .
- c) Si determini l'equazione cartesiana del cilindro \mathcal{Q}' avente come direttrice γ' , sezione di \mathcal{Q} con il piano $\beta: z=1$ e generatrici parallele al vettore $d=(1,0,1)^T$.
- d) Quali sono le possibili sezioni piane di Q'?

Esercizio 4. Si considerino, al variare del parametro $h \in \mathbb{R}$, le matrici reali

$$A = \begin{pmatrix} -k & 0 & 0 \\ k & 1 - k & 1 \\ -k & 1 & -1 + k \end{pmatrix}$$

- a) Studiare la triangolabilità e diagonalizzabilità al variare dei parametri k.
- b) Determinare i valori di k per cui esiste una matrice ortogonale Q tale che $Q^T A Q$ sia una matrice diagonale e determinare in corrispondenza una matrice ortogonale Q.

Esercizio 5. Si consideri il fascio di coniche generato dalle coniche $\gamma_1: y^2 - x = 0$ e $\gamma_2: xy - 3y + 2 = 0$ per il quale consideriamo l'equazione

$$y^2 - x + \lambda (xy - 3y + 2) = 0.$$

- a) Studiare γ_1 e γ_2 .
- b) Determinare i punti base del fascio propri ed impropri.
- c) Classificare, al variare di λ , le coniche del fascio.
- c) Determinare un'eventuale iperbole avente un asintoto parallelo alla retta r: 2x 3y = 0.