Università di Pisa

Geometria e Algebra Lineare per Ingegneria Aerospaziale, Ingegneria Meccanica, Ingegneria della Sicurezza

Cognome e Nome:

Corso di studi:

Anno di iscrizione:

Numero di matricola:

Scritto n.1 del 2010

Esercizio 1. Discutere il seguente sistema reale

$$\begin{cases} h x + y + h z = h \\ 2 x + (1 - h) z = 3 h \\ 2 h x + y + h z = h - h^2 \end{cases}$$

Esercizio 2. Risolvere

$$\exp^2 z + (-1 + i\sqrt{3}) \exp z + |z| \left(\exp^2 z + (-1 + i\sqrt{3}) \exp z \right) = 0$$

Esercizio 3. Determinare le equazioni delle eventuali sfere tangenti al piano $\pi: x+y+z=0$ nell'origine e intersecanti il piano $\alpha: x-y+z+1=0$ in una circonferenza di raggio $\sqrt{3}$.

Esercizio 4. Si consideri la matrice reale A

$$A = \left(\begin{array}{ccc} h & h - 2 & 0 \\ 1 & h - 2 & 1 \\ 0 & 0 & h \end{array}\right)$$

Al variare del parametro $h \in \mathbb{R}$ si studi:

- a) la triangolabilità di A
- b) la diagonalizzabilità di A
- b) la dimensione di Im(A).

Esercizio 5. Determinare l'equazione del fascio di coniche tangenti alla retta x - 2y = 1 nel punto A(1; 0) e passanti per i punti B(3; 0) e C(1; -4). Si dica se esistono parabole nel fascio.

Esercizio 6. Sono assegnate in $\mathbb{P}_2(\mathbb{R})$ le rette $r_1: x_1 = 0, r_2: x_2 = 0, r_3: x_3 = 0$ e il punto P(1, 5, -2). Determinare la proiettività φ di $\mathbb{P}_2(\mathbb{R})$ tale che

$$\varphi(r_1) = r_2$$
 ; $\varphi(r_2) = r_3$; $\varphi(r_3) = r_1$; $\varphi(P) = (-2, 1, 40)$.

Si determinino i punti fissi di φ .

Esercizio 6 bis

- In un campione di 80 sfere prodotte da una ditta A si calcola un diametro medio $\bar{x}_A = 8$ mm ed uno scarto quadratico $s_A = 0,7$ mm. In un altro campione di 42 sfere prodotte da una ditta B si misura un diametro medio di $\bar{x}_B = 7,5$ mm ed uno scarto quadratico $s_B = 0,4$ mm. Determinare se, a livello di confidenza del 5 %, ci siano elementi per ritenere le due medie diverse.
- Se una popolazione X con distribuzione gaussiana ha media μ e varianza σ^2 , quali si possono ritenere la media e la varianza della variabile \overline{X} , calcolata su un campione molto numeroso? Dare un traccia della spiegazione.