Corso di Ingegneria Biomedica - Algebra Lineare Compito III, 11-2-2012

Risposta giusta=2 punti. Risposta sbagliata=-1 punto. Punteggio necessario $\geq 12/20$. Tenersi la parte di questo foglio sotto la riga (testo del quiz e risposte date). Questa parte del foglio va consegnata compilata sul retro in modo univocamente comprensibile.

Tagliano en guesta miga e consegnano la mante qui compo	
Tagliare su questa riga e consegnare la parte qui sopra	
1 -Si calcoli la dimensione dell'immagine dell'applicazione lineare \mathbb{R}^4 0 2 3 4	$\to \mathbb{R}^3$ associata alla
seguente matrice $\begin{vmatrix} 0 & 2 & 3 & 4 \\ 0 & 3 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix}$,. Il risultato è:	
B- 🗆 2	
C- □ 3 D- □ 4	
2 - Calcolare l'inversa della trasposta di $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D- □ nessuna di
queste	
3 - Si calcoli la dimensione del nucleo della seguente $ \begin{vmatrix} 1 & 2 & 3 \\ 3 & 2 & 0 \\ 1 & 0 & 1 \end{vmatrix} $	
A- □ 0 B- □ 1	
C- 🗆 2	
D- 🗆 3	
4 - Si calcolino gli autovalori della seguente $\begin{vmatrix} 3 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{vmatrix}$,	
A- \square {0, 2, 4} B- \square {2, 3, 4} C- \square {1, 2, 4}	
D- \square Nessuna di queste.	t11i 4
5 - Si calcoli l'autovettore relativo all' autovalore 4, della matrice propo	osta an esercizio 4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

COMPITO III - Nome: _____; Cognome: _____ 10 Risp:Tagliare su questa riga e consegnare la parte qui sopra dopo avervi trascritto le risposte 6 - Si consideri $A_a = \begin{bmatrix} a & a & a & a \\ 0 & a & 0 & 0 \\ 0 & 0 & a & 0 \\ a & a & a & a \end{bmatrix}$ $(a \in \mathbb{R})$. Quale delle seguenti è vera?, A- \Box $a \neq 0 \implies A_a$ è invertibile B- \Box $a > 0 \implies Ran(A_a) = 3$ C- \square $\forall a \in \mathbb{R}, \det(A_a) > 0$ D- \square nessuna delle precendenti è vera 7-Si consideri il seguente sistema Ax = y con $A = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$ e $y = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$ Quale delle seguenti è vera? A- □ Il sistema ha uno spazio di solizioni di dimensione 0 B- Il sistema ha uno spazio di soluzioni di dimensione 1 C-

Il sistema ha uno spazio di soluzioni di dimensione 2 D- \square Nessuna delle precedenti 8-Si consideri la matrice $A_a = \begin{vmatrix} a & a & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{vmatrix}$, .Quale delle seguenti è vera ? A- \square A_a non si diagonalizza (su \mathbb{R}) per nessun valore di a B- \square A_a si diagonalizza (su \mathbb{R}) se $a \neq 1$ C- \square A_a si diagonalizza (su \mathbb{R}) solo per a=0D- \square nessuna di queste 9 - Si consideri in \mathbb{R}^3 il piano γ di equazione x+2y=3. Quale delle seguenti è vera? A- \square Il piano considerato è un sottospazio vettoriale di \mathbb{R}^3 B- \square Non esiste nessuna applicazione lineare T avente γ come immagine. C- 🗆 Esistono infinite applicazioni lineari aventi γ come nucleo. D- \square Nessuna di queste. 10-Si determini una base del nucleo della seguente matrice $\begin{vmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{vmatrix}$: $A- \Box \quad \left\{ \left| \begin{array}{c|c} -1 \\ 1 \\ 1 \\ 0 \end{array} \right|, \left| \begin{array}{c} -1 \\ 0 \\ 1 \end{array} \right| \right\} \quad B- \Box \quad \left\{ \left| \begin{array}{c|c} 1 \\ 0 \\ -1 \\ 1 \end{array} \right|, \left| \begin{array}{c} -1 \\ 0 \\ 0 \\ 1 \end{array} \right| \right\} \quad C- \Box \quad \left\{ \left| \begin{array}{c|c} -1 \\ 0 \\ 0 \\ 1 \end{array} \right| \right\}$