Prova	N.1:	ris	poste
1/10/00			

Matematica e Statistica 2016

Viticoltura ed Enologia

19 gennaio 2017

0				4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
risposte:	С	A	С	В	В	В	D	В	A	В	A	C	D	С	D	В	A	С	D	A

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- 1. Una quantità x viene prima aumentata del 20% e poi il risultato viene diminuito del 20%. Si ottiene una quantità yche rispetto a x è
- (A) non si può dire (B) esattamente uguale (C) inferiore
- (D) superiore
- 2. Calcolare $\lim_{x\to +\infty} \frac{1}{\ln \sin \operatorname{arctg} x}$ (A) $-\infty$ (B) $\frac{\pi}{2}$ (C) 0 (D) 1
- **3.** $X \cap (Y \setminus X)$ è uguale a
- (A) $X \cup Y$ (B) $X \cap Y$ (C) \emptyset (D) $Y \setminus X$
- 4. Andrea ha pensato un numero a caso da 1 a 10 e Daniele cerca di indovinarlo andando a tentativi. Qual è la probabilità che Daniele indovini il numero pensato da Andrea al terzo tentativo? (ovviamente Daniele prova sempre numeri diversi e appena indovina smette di fare tentativi).
- (A) 30% (B) 10% (C) 0.1% (D) 1%
- 5. Determinare il valore minimo assunto dalla funzione

$$f(x) = 3x^4 - 4x^3 + 2$$

- (A) 2 (B) 1 (C) 3 (D) 0
- 6. Determinare il numero di soluzioni dell'equazione

$$\ln(x^3) = x$$

- (A) 3 (B) 2 (C) 0 (D) 1
- 7. Calcolare $\int_1^{+\infty} \frac{1}{2\sqrt{x}} dx$
- (A) e (B) 2 (C) 1 (D) $+\infty$
- 8. Un distributore di palline colorate eroga palline che con probabilità 3/10 sono rosse, con probabilità 2/10 sono bianche e con probabilità 5/10 sono gialle. Qual è la probabilità che estraendo 4 palline esattamente 2 siano bianche?
- (A) 0.64% (B) 15.36% (C) 2.56% (D) 34.1%
- 9. Calcolare $\int_0^1 \sqrt{1-x^2} dx$ (A) $\frac{\pi}{4}$ (B) $-\frac{\pi}{2}$ (C) $-\frac{\pi}{4}$ (D) $\frac{\pi}{2}$

- 10. Calcolare $2\int_{1}^{e} \frac{(x+1)^{2}}{x} dx$ (A) $e^{2} 4e + 5$ (B) $e^{2} + 4e 3$ (C) $2e^{2} 4e + 3$
- (D) $2e^2 + 4e 5$

11. Dati $x_1 = -1, x_2 = 1, x_3 = 3, x_4 = 1, y_1 = 2, y_2 = 1$ $2, y_3 = 2, y_4 = 2$ calcolare cov(x, y)

- (A) 0 (B) 0.5 (C) -0.5 (D) 1
- 12. Calcolare $\lim_{x\to +\infty} \frac{\ln(2^x + \sin x)}{x}$ (A) 0 (B) 2 (C) $\ln 2$ (D) non esiste
- 13. Una macchina produce chiodi la cui lunghezza ha una distribuzione di media $\mu = 100 \, mm$ e deviazione standard $\sigma = 8 \, mm$. Calcolare la probabilità che la lunghezza media di 64 chiodi scelti a caso sia inferiore a $98.72\,mm$.
- (A) 1% (B) 16% (C) 5% (D) 10%
- 14. Un ubriaco si muove lungo una strada. Ogni secondo, con uguale probabilità: avanza di un metro, indietreggia di un metro oppure sta fermo. Qual è la probabilità che dopo dieci minuti l'ubriaco si trovi a più di 20 metri dal punto di parten-
- (A) 2% (B) 4.6% (C) 32% (D) 7%
- **15.** Calcolare $\int_0^1 2x \arctan x \, dx$. **(A)** 4π **(B)** 1 **(C)** 2π **(D)** $\frac{\pi}{2} 1$
- **16.** Calcolare la somma della serie $\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k}$
- **(A)** 1 **(B)** $\frac{2}{3}$ **(C)** $\ln 2$ **(D)** e-1
- **17.** Se $\int_0^4 f(x) dx = 42$ allora $\int_{-2}^2 |x| f(x^2) dx$ vale
- (A) 42 (B) 84 (C) 21 (D) 0
- **18.** Sia y(x) una funzione tale che $y'(x) = -e^{-y(x)}$ e y(0) = 0. Calcolare y(1-e).
- (A) 0 (B) $\ln 2$ (C) 1 (D) $\ln 3$
- 19. Sia X la variabile aleatoria che rappresenta l'esito del lancio di un dado. Calcolare $\sigma^2 = var(X)$. (A) $\frac{18}{5}$ (B) $\frac{25}{36}$ (C) $\frac{33}{42}$ (D) $\frac{35}{12}$
- **20.** Quale delle seguenti funzioni $f: \mathbb{R} \to \mathbb{R}$ è bigettiva?
- (A) $f(x) = x^3 + 3x^2 + 6x + 2$ (B) $f(x) = x^4 + 6x^3 + 6x + 2$
- (C) $f(x) = x^4 + 3x^2 + 6x + 2$ (D) $f(x) = x^3 + 6x^2 + 6x + 2$

Prova	N.1:	risposte
11010	T 4.T.	TISPOSTO

Matematica e Statistica 2016

Viticoltura ed Enologia

19 gennaio 2017

0																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
risposte:	В	В	D	С	С	A	A	A	D	С	A	D	В	В	-	-	A	В	-	Α

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- 1. Una quantità x viene prima aumentata del 30% e poi il risultato viene diminuito del 30%. Si ottiene una quantità y che rispetto a x è
- (A) non si può dire (B) inferiore
- (C) superiore
- (D) esattamente uguale
- **2.** Calcolare $\lim_{x \to a} \ln \cos \operatorname{arctg} x$
- (A) 1 (B) $-\infty$ (C) 0 (D) $\frac{\pi}{2}$
- **3.** $X \cup (Y \setminus X)$ è uguale a
- (A) $Y \setminus X$ (B) $X \cap Y$ (C) \emptyset (D) $X \cup Y$
- 4. Andrea ha pensato un numero a caso da 1 a 100 e Daniele cerca di indovinarlo andando a tentativi. Qual è la probabilità che Daniele indovini il numero pensato da Andrea al terzo tentativo? (ovviamente Daniele prova sempre numeri diversi e appena indovina smette di fare tentativi).
- (A) 0.1% (B) 10% (C) 1% (D) 3%
- 5. Determinare il valore massimo assunto dalla funzione

$$f(x) = 4x^3 - 3x^4 + 2$$

- (A) 2 (B) 1 (C) 3 (D) 0
- 6. Determinare il numero di soluzioni dell'equazione

$$\ln(x^3) = 2x$$

- (A) 0 (B) 1 (C) 2 (D) 3
- 7. Calcolare $\int_1^{+\infty} \frac{1}{\sqrt{x^3}} dx$

(A) 2 (B) 1 (C)
$$e^{x}$$
 (D) $+\infty$

- 8. Un distributore di palline colorate eroga palline che con probabilità 3/10 sono rosse, con probabilità 2/10 sono bianche e con probabilità 5/10 sono gialle. Qual è la probabilità che estraendo 4 palline esattamente 3 siano bianche?
- (A) 2.56% (B) 15.36% (C) 0.64% (D) 34.1%
- **9.** Calcolare $\int_{-1}^{1} \sqrt{1-x^2} \, dx$
- (A) $-\frac{\pi}{2}$ (B) $-\frac{\pi}{4}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$
- **10.** Calcolare $2 \int_{1}^{e} \frac{(x-1)^2}{x} dx$
- (A) $2e^2 4e + 3$ (B) $e^2 + 4e 3$ (C) $e^2 4e + 5$
- (D) $2e^2 + 4e 5$

11. Dati $x_1 = -1, x_2 = 1, x_3 = 3, x_4 = 1, y_1 = 1, y_2 = 1, y_3 = 1, y_4 = 1, y_5 = 1, y_6 = 1, y_6 = 1, y_6 = 1, y_6 = 1, y_7 = 1, y_8 = 1$ $3, y_3 = 2, y_4 = 2$ calcolare cov(x, y)

- (A) 0.5 (B) -0.5 (C) 0 (D) 1
- 12. Calcolare $\lim_{x\to+\infty} \frac{\ln x}{\sin(2^x)}$
- **(A)** $\ln 2$ **(B)** 0 **(C)** 2 **(D)** non esiste
- 13. Una macchina produce chiodi la cui lunghezza ha una distribuzione di media $\mu = 100 \, mm$ e deviazione standard $\sigma = 4 \, mm$. Calcolare la probabilità che la lunghezza media di 64 chiodi scelti a caso sia inferiore a 99.18 mm.
- (A) 16% (B) 5% (C) 10% (D) 1%
- 14. Un ubriaco si muove lungo una strada. Ogni secondo, con uguale probabilità: avanza di un metro, indietreggia di un metro oppure sta fermo. Qual è la probabilità che dopo dieci minuti l'ubriaco si trovi a più di 40 metri dal punto di partenza?
- (A) 2% (B) 4.6% (C) 32% (D) 7%
- 15. -
- **16.** -
- **17.** Se $\int_0^2 f(2x) dx = 42$ allora $\int_0^2 x f(x^2) dx$ vale
- (A) 42 (B) 84 (C) 21 (D) 0
- **18.** Sia y(x) una funzione tale che $y'(x) = e^{-y(x)}$ e y(2) = 0. Calcolare y(4).
- (A) $\ln 2$ (B) $\ln 3$ (C) 0 (D) 1
- 19. -
- **20.** Quale delle seguenti funzioni $f: \mathbb{R} \to \mathbb{R}$ è bigettiva?
- (A) $f(x) = x^3 3x^2 + 6x 2$ (B) $f(x) = x^4 3x^2 + 6x 2$ (C) $f(x) = x^4 6x^3 + 6x 2$ (D) $f(x) = x^3 6x^2 + 6x 2$

Prova	N.1:	risposte
		- C1 1.

Matematica e Statistica 2016

Viticoltura ed Enologia

19 gennaio 2017

0		_	· - ·																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
risposte:	С	D	В	С	С	A	В	D	В	A	С	В	D	D	-	ı	-	-	-	В

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- 1. Una quantità x viene prima diminuita del 20% e poi il risultato viene aumentato del 20%. Si ottiene una quantità u che rispetto a x è
- (A) superiore (B) esattamente uguale (C) inferiore
- (D) non si può dire
- 2. Calcolare $\lim_{x\to 0} \frac{1}{\ln \cos \operatorname{arctg} x}$ (A) 1 (B) $\frac{\pi}{2}$ (C) 0 (D) $-\infty$
- **3.** $(X \cup Y) \setminus X$ è uguale a
- (A) \emptyset (B) $Y \setminus X$ (C) $X \cup Y$ (D) $X \cap Y$
- 4. Andrea ha pensato un numero a caso da 1 a 10 e Daniele cerca di indovinarlo andando a tentativi. Qual è la probabilità che Daniele indovini il numero pensato da Andrea al settimo tentativo? (ovviamente Daniele prova sempre numeri diversi e appena indovina smette di fare tentativi).
- (A) 0.1% (B) 30% (C) 10% (D) 1%
- 5. Determinare il valore minimo assunto dalla funzione

$$f(x) = 3x^4 + 4x^3 + 2$$

- (A) 2 (B) 3 (C) 1 (D) 0
- $\bf 6.$ Determinare il numero di soluzioni dell'equazione

$$\ln x + \frac{1}{x} = 1$$

- (A) 1 (B) 2 (C) 3 (D) 0
- **7.** Calcolare $\int_{1}^{+\infty} \frac{1}{1+x} dx$ (A) 2 (B) $+\infty$ (C) *e* (D) 1
- 8. Un distributore di palline colorate eroga palline che con probabilità 3/10 sono rosse, con probabilità 2/10 sono bianche e con probabilità 5/10 sono gialle. Qual è la probabilità che estraendo 5 palline esattamente 4 siano bianche?
- (A) 34.1% (B) 15.36% (C) 2.56% (D) 0.64%
- **9.** Calcolare $\int_{-1}^{0} \sqrt{1-x^2} \, dx$
- (A) $-\frac{\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $-\frac{\pi}{2}$ (D) $\frac{\pi}{2}$
- 10. Calcolare $2 \int_{1}^{e} \frac{(1-x)^{2}}{x} dx$ (A) $e^{2} 4e + 5$ (B) $2e^{2} 4e + 3$ (C) $e^{2} + 4e 3$
- (D) $2e^2 + 4e 5$

11. Dati $x_1 = -1, x_2 = 1, x_3 = 3, x_4 = 1, y_1 = 3, y_2 = 3$ $1, y_3 = 2, y_4 = 2$ calcolare cov(x, y)

- (A) 0.5 (B) 0 (C) -0.5 (D) 1
- 12. Calcolare $\lim_{x \to +\infty} \frac{z^{-1}}{\ln x}$
- **(A)** $\ln 2$ **(B)** 0 **(C)** non esiste **(D)** 2
- 13. Una macchina produce chiodi la cui lunghezza ha una distribuzione di media $\mu = 100 \, mm$ e deviazione standard $\sigma = 16 \, mm$. Calcolare la probabilità che la lunghezza media di 64 chiodi scelti a caso sia inferiore a 95.34 mm.
- (A) 16% (B) 10% (C) 5% (D) 1%
- 14. Un ubriaco si muove lungo una strada. Ogni secondo, con uguale probabilità: avanza di un metro, indietreggia di un metro oppure sta fermo. Qual è la probabilità che dopo dieci minuti l'ubriaco si trovi a più di 46.6 metri dal punto di partenza?
- (A) 4.6% (B) 7% (C) 32% (D) 2%
- 15. -
- **16.** -
- **17.** –
- 18. –
- **19.** –
- **20.** Quale delle seguenti funzioni $f: \mathbb{R} \to \mathbb{R}$ è bigettiva?
- (A) $f(x) = x^4 + 3x^2 + 6x 2$ (B) $f(x) = x^3 + 3x^2 + 6x 2$
- (C) $f(x) = x^3 + 6x^2 + 6x 2$ (D) $f(x) = x^4 + 6x^3 + 6x 2$

Prova N.1: risposte

Matematica e Statistica 2016

Viticoltura ed Enologia

19 gennaio 2017

VARIANTE: 4

- 0-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
risposte:	D	-	С	D	С	С	D	-	D	A	A	A	_	-	-	-	-	-	-	Α

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- 1. Una quantità x viene prima diminuita del 30% e poi il risultato viene aumentato del 30%. Si ottiene una quantità y che rispetto a x è
- (A) superiore (B) non si può dire (C) esattamente uguale
- (D) inferiore
- $2._{-}$
- **3.** $(X \cap Y) \setminus X$ è uguale a
- (C) \emptyset (D) $Y \setminus X$ (A) $X \cap Y$ (B) $X \cup Y$
- 4. Andrea ha pensato un numero a caso da 1 a 100 e Daniele cerca di indovinarlo andando a tentativi. Qual è la probabilità che Daniele indovini il numero pensato da Andrea al settimo tentativo? (ovviamente Daniele prova sempre numeri diversi e appena indovina smette di fare tentativi).
- (A) 3% (B) 10% (C) 0,1% (D) 1%
- ${f 5.}$ Determinare il valore massimo assunto dalla funzione

$$f(x) = 2 - 3x^4 - 4x^3$$

- (A) 1 (B) 0 (C) 3 (D) 2
- 6. Determinare il numero di soluzioni dell'equazione

$$\ln x + \frac{1}{x} = 2$$

- (A) 3 (B) 1 (C) 2 (D) 0
- **7.** Calcolare $\int_{1}^{+\infty} x^{-2} dx$ (A) 2 (B) $+\infty$ (C) e (D) 1

- **9.** Calcolare $\int_{1}^{0} \sqrt{1-x^2} dx$
- (A) $-\frac{\pi}{2}$ (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{4}$ (D) $-\frac{\pi}{4}$
- **10.** Calcolare $\int_1^e \frac{(2x+1)^2}{x} dx$
- (A) $2e^2 + 4e 5$ (B) $2e^2 4e + 3$ (C) $e^2 + 4e 3$
- (D) $e^2 4e + 5$

- **11.** Dati $x_1 = -1, x_2 = 1, x_3 = 3, x_4 = 1, y_1 = 1, y_2 = 1$ $2, y_3 = 3, y_4 = 4$ calcolare cov(x, y)
- (A) 1 (B) 0 (C) 0.5 (D) -0.5
- 12. Calcolare $\lim_{x\to +\infty} \frac{\ln(x+\sin(x))}{2^x}$ (A) 0 (B) non esiste (C) 2 (D) $\ln 2$
- 13. -
- 14. -
- 15. -
- **16.** –
- 17. -
- 18. -
- 19. -
- **20.** Quale delle seguenti funzioni $f: \mathbb{R} \to \mathbb{R}$ è bigettiva?
- (A) $f(x) = x^3 3x^2 + 6x + 2$ (B) $f(x) = x^4 6x^3 + 6x + 2$
- (C) $f(x) = x^4 3x^2 + 6x + 2$ (D) $f(x) = x^3 6x^2 + 6x + 2$

Prova N.1: risposte

Matematica e Statistica 2016 Viticoltura ed Enologia

19 gennaio 2017

0																					
			-		-	-		-	-	-			-		15	-		_	-	-	
risposte:	С	_	A	_	-	A	_	_	A	В	-	-	_	-	_	_	-	_	_	_	

Ricordiamo che se Z ha distribuzione normale standard, si ha P(Z > 1.00) = 16%, P(Z > 1.28) = 10%, P(Z > 1.64) = 5%, P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58) = 0.5%, P(Z > 3.00) = 0.1%.

- 1. Una quantità x viene prima diminuita del 20% e poi il risultato viene aumentato del 25%. Si ottiene una quantità y
- che rispetto a x è (A) superiore (B) non si può dire (C) esattamente uguale
- (**D**) inferiore 2. -
- **3.** $(X \setminus Y) \cup Y$ è uguale a
- (A) $X \cup Y$ (B) $X \cap Y$ (C) $Y \setminus X$ (D) \emptyset
- 4. -
- 5. -
- 6. Determinare il numero di soluzioni dell'equazione
 - $\ln x + \frac{1}{x} = 0$
- (A) 0 (B) 1 (C) 3 (D) 2
- **9.** Calcolare $\int_{1}^{1} \sqrt{1-x^2} dx$
- (A) $-\frac{\pi}{2}$ (B) $-\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{4}$
- 10. Calcolare $\int_{1}^{e} \frac{(2x-1)^{2}}{x} dx$ (A) $e^{2} 4e + 5$ (B) $2e^{2} 4e + 3$ (C) $e^{2} + 4e 3$
- (D) $2e^2 + 4e 5$

11. -

- 12. -
- 13. -
- 14. -
- 15. -
- 16. -
- 17. -
- 18. -
- 19. -
- 20. -

Prova N.1: risposte Matematica e Statistica 2016 Viticoltura ed Enologia 19 gennaio 2017

VARIANTE: 6

19 gennaio 2017								VALIA	MIE: 0
1 2 3 4 5 6 7 8 9	.0 11 12	13	14 15	16 17	18	19	20		
risposte: B - C D	- - -	_	- -	- -	_	_	_		
Ricordiamo che se Z ha distribuzione normale stand	ard, si ha P	P(Z > 1)	0.00 = 1	6%, P(Z)	> 1.5	(28) =	$\overline{10\%}$, $P(Z)$	> 1.64)=5%,
P(Z > 2.00) = 2.3%, P(Z > 2.33) = 1%, P(Z > 2.58)) = 0.5%, P($\hat{C}(Z>3)$.00) = 0.	1%.		,		•	
		`	,						
1									
1. Una quantità x viene prima aumentata del 25%		11. -							
risultato viene diminuito del 20%. Si ottiene una q	ıantità y –								
che rispetto a x è	1	12. –							
(A) non si può dire (B) esattamente uguale (C)	inferiore 📑	L <i>4</i> •							
(D) superiore	-1	1.0							
	1	13. –							
2									
3. $X \setminus (X \setminus Y)$ è uguale a	1	14. —							
(A) \emptyset (B) $X \cup Y$ (C) $X \cap Y$ (D) $Y \setminus X$	_								
$\overline{\Delta}$ _	1	15	-						

6. -<u>7. – </u>

9. Calcolare $\int_{1}^{0} \sqrt{1-x^2} dx$ (A) $\frac{\pi}{2}$ (B) $-\frac{\pi}{2}$ (C) $\frac{\pi}{4}$ (D) $-\frac{\pi}{4}$ $\overline{10.}$

19. -20. -

16. —

17. —

18. -