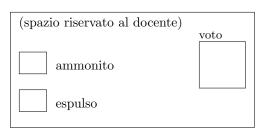
Analisi Matematica II e Complementi Prova scritta n. 2 Ingegneria, a.a. 2009-2010 5 giugno 2010

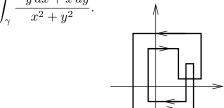


cognome										ne			matricola
	1	2	3	4	5	6	7	8	9	10	11	12	
risposte:													codice compito: DACA BBCD BDC

1. Il limite

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^3}{x^2+y^2}$$

- (A) vale 0, (B) vale $+\infty$, (C) vale 1, (D) non esiste.
- **2.** La funzione $f(x,y) = (x+y)(x-y^2)$ nel punto (0,0) (A) ha un massimo locale, (B) ha un minimo locale, (C) ha un punto sella, (D) non ha un punto critico.
- **3.** Sia γ la curva chiusa rappresentata in figura. Calcolare $\int_{\gamma} \frac{-y \, dx + x \, dy}{x^2 + y^2}.$



- (A) 4π , (B) $\frac{0}{0}$, (C) -2π , (D) π .
- **4.** Sapendo che $f: \mathbb{C} \to \mathbb{C}$ è olomorfa e la sua parte reale è x^2-y^2 , quale delle seguenti potrebbe essere la parte immaginaria di f?
- (A) $x^2 + y^2$, (B) 0, (C) 2xy, (D) y.
- 5. Calcolare

$$\int_{\mathcal{I}} \frac{\cos z}{z} \, dz$$

dove $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$. (A) 1, (B) π , (C) $2\pi i$, (D) 0.

- **6.** La \mathcal{L} -trasformata di $e^{-t} + \sin t$ è
- (A) $\frac{1}{s-1} + \frac{1}{s^2+1}$, (B) $\frac{1}{s-1} + \frac{s}{s^2+1}$, (C) $\frac{1}{s+1} + \frac{s}{s^2+1}$, (D) $\frac{1}{s+1} + \frac{1}{s^2+1}$

- 7. Il raggio di convergenza della serie di potenze $\sum_{k=1}^{\infty} \frac{z^k}{k}$ è
- (A) 1, (B) $\sqrt{2}$, (C) $+\infty$, (D) 0.
- **8.** Se y(t) risolve

$$\begin{cases} y'' + 2y' + y = 0\\ y(0) = 1, y'(0) = -2 \end{cases}$$

allora l'integrale $\int_0^{+\infty} y(t) dt$ vale (A) 0, (B) π , (C) -1, (D) $+\infty$.

- **9.** Calcolare $\int_{\mathbb{R}} \bar{z} dz \operatorname{con} \gamma(t) = e^{it}, t \in [0, 2\pi].$
- (A) $\sqrt{2}$, (B) -1, (C) i, (D) $2\pi i$.
- 10. Sia $D \subset \mathbb{R}^2$ un dominio regolare e sia $f: D \to \mathbb{R}$ una funzione regolare, positiva. Il volume dell'insieme

$$E = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, |z| \le f(x, y)\}$$

è dato da

- (A) $\int_{\partial^+ D} f_y dx f_x dy$, (B) $\frac{1}{2} \iint_D f^2(x, y) dx dy$, (C) $\int_{\partial^+ D} f_x dx + f_y dy$, (D) $2 \iint_D f(x, y) dx dy$.
- **11.** Sia $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2\}$ e sia $f : \mathbb{R}^2 \to \mathbb{R}$ una funzione differenziabile tale che

$$\sup_{(x,y)\in D} f(x,y) = f(1,1).$$

Allora tra le seguenti possibilità il vettore $\nabla f(1,1)$ potrebbe essere

(A)
$$(-1,-1)$$
, (B) $(1,-1)$, (C) $(1,1)$, (D) $(-1,1)$.

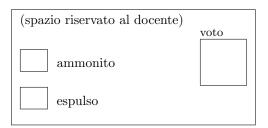
- **12.** Sia $f: \mathbb{C} \to \mathbb{C}$ una funzione olomorfa tale che $|f(z)| \le$ arctg |z| per ogni $z \in \mathbb{C}$. Allora possiamo affermare che
- (A) $f' = 1 + f^2$, (B) $\text{Res}(f, 0) = 2\pi i$, (C) $\int_{-\infty}^{+\infty} f(z) = \frac{\pi}{2}$,

(D)
$$f(z) = 0$$
.

Analisi Matematica II e Complementi Prova scritta n. 2

Ingegneria, a.a. 2009-2010

5 giugno 2010



cognome		nome										
	1	2	3	4	5	6	7	8	9	10	11	12
risposte:												

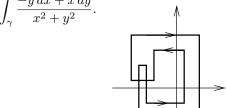
codice compito: DBDC ACDA ABBC

matricola

1. Il limite

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}$$

- (A) vale $+\infty$, (B) non esiste, (C) vale 1, (D) vale 0.
- **2.** La funzione $f(x,y) = x^2 + y^4$ nel punto (0,0)
- (A) non ha un punto critico, (B) ha un massimo locale,
- (C) ha un punto sella, (D) ha un minimo locale.
- **3.** Sia γ la curva chiusa rappresentata in figura. Calcolare $\int_{\gamma} \frac{-y \, dx + x \, dy}{x^2 + y^2}.$



(A)
$$\frac{0}{0}$$
, (B) π , (C) 4π , (D) -2π .

- **4.** Sapendo che $f: \mathbb{C} \to \mathbb{C}$ è olomorfa e la sua parte reale è $x^2 y^2$, quale delle seguenti potrebbe essere la parte immaginaria di f?
- (A) 0, (B) $x^2 + y^2$, (C) y, (D) 2xy.
- 5. Calcolare

$$\int_{\gamma} \frac{\sin z}{z} \, dz$$

dove $\gamma(t) = e^{it}, t \in [0, 2\pi].$ (A) 1, (B) $2\pi i$, (C) π , (D) 0.

6. La \mathcal{L} -transformata di $e^t + \cos t$ è (A) $\frac{1}{s-1} + \frac{s}{s^2+1}$, (B) $\frac{1}{s+1} + \frac{1}{s^2+1}$, (C) $\frac{1}{s-1} + \frac{1}{s^2+1}$, (D) $\frac{1}{s+1} + \frac{s}{s^2+1}$.

- 7. Il raggio di convergenza della serie di potenze $\sum_{k=1}^{\infty}kz^{k}$ è
- (A) $\sqrt{2}$, (B) $+\infty$, (C) 1, (D) 0.
- **8.** Se y(t) risolve

$$\begin{cases} y'' + 3y' + 2y = 0\\ y(0) = 1, y'(0) = -3 \end{cases}$$

allora l'integrale $\int_0^{+\infty} y(t)\,dt$ vale

(A)
$$-1$$
, (B) $+\infty$, (C) 0 , (D) π .

- **9.** Calcolare $\int_{\gamma} \bar{z} dz$ con $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$.
- (A) -1, (B) $2\pi i$, (C) i, (D) $\sqrt{2}$.
- **10.** Sia $D \subset \mathbb{R}^2$ un dominio regolare e sia $f: D \to \mathbb{R}$ una funzione regolare, positiva. Il volume dell'insieme

$$E = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, |z| \le f(x, y)\}$$

è dato da

- (A) $\int_{\partial^+ D} f_x dx + f_y dy$, (B) $\frac{1}{2} \iint_D f^2(x, y) dx dy$, (C) $\int_{\partial^+ D} f_y dx f_x dy$, (D) $\frac{2}{2} \iint_D f(x, y) dx dy$.
- **11.** Sia $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 2\}$ e sia $f : \mathbb{R}^2 \to \mathbb{R}$ una funzione differenziabile tale che

$$\inf_{(x,y)\in D} f(x,y) = f(1,1).$$

Allora tra le seguenti possibilità il vettore $\nabla f(1,1)$ potrebbe essere

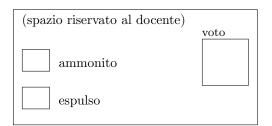
(A)
$$(-1,1)$$
, (B) $(1,-1)$, (C) $(1,1)$, (D) $(-1,-1)$.

- **12.** Sia $f: \mathbb{C} \to \mathbb{C}$ una funzione olomorfa tale che $|f(z)| \le$ arctg |z| per ogni $z \in \mathbb{C}$. Allora possiamo affermare che
- (A) f(z) = 0, (B) $\int_{-\infty}^{+\infty} f(z) = \frac{\pi}{2}$, (C) $\text{Res}(f, 0) = 2\pi i$,
- **(D)** $f' = 1 + f^2$

Analisi Matematica II e Complementi Prova scritta n. 2

Ingegneria, a.a. 2009-2010

5 giugno 2010



cognome		nome											
	1	2	3	4	5	6	7	8	9	10	11	12	
risposte:													

codice compito: ADBA DBDC CBAC

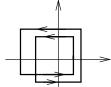
matricola

1. Il limite

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2}$$

- (A) non esiste, (B) vale 0, (C) vale $+\infty$, (D) vale 1.
- **2.** La funzione f(x,y) = (x+y)(x-y-1) nel punto (0,0)
- (A) ha un massimo locale, (B) non ha un punto critico,
- (C) ha un punto sella, (D) ha un minimo locale.
- **3.** Sia γ la curva chiusa rappresentata in figura. Calcolare

$$\int_{\gamma} \frac{-y \, dx + x \, dy}{x^2 + y^2}.$$



(A)
$$-2\pi$$
, (B) π , (C) 4π , (D) 0.

- **4.** Sapendo che $f: \mathbb{C} \to \mathbb{C}$ è olomorfa e la sua parte reale è $x^2 - y^2$, quale delle seguenti potrebbe essere la parte immaginaria di f?
- (A) 0, (B) $x^2 + y^2$, (C) y, (D) 2xy.
- 5. Calcolare

$$\int_{z} \frac{e^z}{z} dz$$

dove $\gamma(t) = e^{it}, t \in [0, 2\pi].$

- (A) 1, (B) $2\pi i$, (C) 0, (D) π .
- **6.** La \mathcal{L} -trasformata di $e^t + \sin t$ è

(A)
$$\frac{1}{s+1} + \frac{s}{s^2+1}$$
, (B) $\frac{1}{s-1} + \frac{s}{s^2+1}$, (C) $\frac{1}{s-1} + \frac{1}{s^2+1}$, (D) $\frac{1}{s+1} + \frac{1}{s^2+1}$

- 7. Il raggio di convergenza della serie di potenze $\sum_{k=0}^{\infty} \frac{z^k}{k}$ è
- (A) 1, (B) $+\infty$, (C) 0, (D) $\sqrt{2}$.
- **8.** Se y(t) risolve

$$\begin{cases} y'' + 2y' + y = 0 \\ y(0) = 1, y'(0) = -2 \end{cases}$$

allora l'integrale $\int_0^{+\infty} y(t) dt$ vale

(A)
$$\pi$$
, **(B)** -1 , **(C)** $\frac{10}{10}$, **(D)** $+\infty$.

- **9.** Calcolare $\int_{\gamma} \bar{z} dz$ con $\gamma(t) = e^{it}, t \in [0, 2\pi]$.
- (A) i, (B) $\frac{2\pi i}{2\pi i}$, (C) $\sqrt{2}$, (D) -1.
- **10.** Sia $D \subset \mathbb{R}^2$ un dominio regolare e sia $f: D \to \mathbb{R}$ una funzione regolare, positiva. Il volume dell'insieme

$$E = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, |z| \le f(x, y)\}$$

è dato da

- (A) $2 \iint_D f(x, y) dx dy$, (B) $\int_{\partial^+ D} f_x dx + f_y dy$, (C) $\int_{\partial^+ D} f_y dx f_x dy$, (D) $\frac{1}{2} \iint_D f^2(x, y) dx dy$.
- **11.** Sia $D=\{(x,y)\in\mathbb{R}^2\colon x^2+y^2\leq 2\}$ e sia $f\colon\mathbb{R}^2\to\mathbb{R}$ una funzione differenziabile tale che

$$\sup_{(x,y)\in D} f(x,y) = f(1,1).$$

Allora tra le seguenti possibilità il vettore $\nabla f(1,1)$ potrebbe

(A)
$$(-1, -1)$$
, (B) $(-1, 1)$, (C) $(1, -1)$, (D) $(1, 1)$.

- **12.** Sia $f: \mathbb{C} \to \mathbb{C}$ una funzione olomorfa tale che $|f(z)| < \mathbb{C}$ $\operatorname{arctg}|z|$ per ogni $z \in \mathbb{C}$. Allora possiamo affermare che
- (A) $Res(f,0) = 2\pi i$, (B) $f' = 1 + f^2$, (C) f(z) = 0,

(D)
$$\int_{-\infty}^{+\infty} f(z) = \frac{\pi}{2}.$$

Analisi Matematica II e Complementi

Prova scritta n. 2

Ingegneria, a.a. 2009-2010

5 giugno 2010

(spazio riservato al docente)	
	voto
ammonito	
espulso	

cognome			nom	e								
	1	2	3	4	5	6	7	8	9	10	11	12
risposte:												

codice compito: CABA DDCD CBAB

matricola

1. Il limite

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^3}{x^2 + y^2}$$

- (A) vale 1, (B) non esiste, (C) vale 0, (D) vale $+\infty$.
- **2.** La funzione $f(x,y) = (x+y)(x-y^2)$ nel punto (0,0)(A) non ha un punto critico, (B) ha un punto sella, (C) ha un minimo locale, (**D**) ha un massimo locale.
- **3.** Sia γ la curva chiusa rappresentata in figura. Calcolare

$$\int_{\gamma} \frac{-y \, dx + x \, dy}{x^2 + y^2}$$



(A)
$$4\pi$$
, (B) 0 , (C) -2π , (D) π .

- **4.** Sapendo che $f: \mathbb{C} \to \mathbb{C}$ è olomorfa e la sua parte reale è x^2-y^2 , quale delle seguenti potrebbe essere la parte immaginaria di f?
- (A) $x^2 + y^2$, (B) y, (C) 2xy, (D) 0.
- 5. Calcolare

$$\int_{\gamma} \frac{\cos z}{z} \, dz$$

dove $\gamma(t) = e^{it}, t \in [0, 2\pi].$

(A)
$$\pi$$
, (B) $2\pi i$, (C) 0, (D) 1.

6. La
$$\mathcal{L}$$
-trasformata di $e^{-t} + \cos t$ è (A) $\frac{1}{s+1} + \frac{1}{s^2+1}$, (B) $\frac{1}{s-1} + \frac{s}{s^2+1}$, (C) $\frac{1}{s-1} + \frac{1}{s^2+1}$, (D) $\frac{1}{s+1} + \frac{s}{s^2+1}$.

- 7. Il raggio di convergenza della serie di potenze $\sum^{\infty} kz^k$ è
- (A) 1, (B) $+\infty$, (C) 0, (D) $\sqrt{2}$.
- **8.** Se y(t) risolve

$$\begin{cases} y'' + 3y' + 2y = 0\\ y(0) = 1, y'(0) = -3 \end{cases}$$

allora l'integrale $\int_{0}^{+\infty} y(t) dt$ vale

(A)
$$+\infty$$
, (B) $\frac{1}{0}$, (C) -1 , (D) π .

- **9.** Calcolare $\int_{\gamma} \bar{z} dz$ con $\gamma(t) = e^{it}, t \in [0, 2\pi]$.
- (A) -1, (B) $2\pi i$, (C) i, (D) $\sqrt{2}$.
- **10.** Sia $D \subset \mathbb{R}^2$ un dominio regolare e sia $f: D \to \mathbb{R}$ una funzione regolare, positiva. Il volume dell'insieme

$$E = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, |z| \le f(x, y)\}$$

è dato da

- (A) $\frac{1}{2} \iint_D f^2(x, y) dx dy$, (B) $\int_{\partial^+ D} f_y dx f_x dy$, (C) $2 \iint_D f(x, y) dx dy$, (D) $\int_{\partial^+ D} f_x dx + f_y dy$.
- **11.** Sia $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 2\}$ e sia $f : \mathbb{R}^2 \to \mathbb{R}$ una funzione differenziabile tale che

$$\inf_{(x,y)\in D} f(x,y) = f(1,1).$$

Allora tra le seguenti possibilità il vettore $\nabla f(1,1)$ potrebbe

(A)
$$(1,1)$$
, (B) $(-1,1)$, (C) $(-1,-1)$, (D) $(1,-1)$.

- **12.** Sia $f: \mathbb{C} \to \mathbb{C}$ una funzione olomorfa tale che $|f(z)| \le$ $\operatorname{arctg} |z|$ per ogni $z \in \mathbb{C}$. Allora possiamo affermare che
- (A) Res $(f,0) = 2\pi i$, (B) $\int_{-\infty}^{+\infty} f(z) = \frac{\pi}{2}$, (C) $f' = 1 + f^2$,

(D)
$$f(z) = 0$$
.