Analisi Matematica 2 Soluzioni prova scritta preliminare n. 1

Corso di laurea in Matematica, a.a. 2009-2010

12 gennaio 2010

1. Si consideri la funzione

$$f(x,y) = \begin{cases} \frac{x^2y^3 + y^5}{x^4 + y^4} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

Studiare la continuità, derivabilità e differenziabilità della funzione nel punto (0,0).

Soluzione. Ricordando la disuguaglianza

$$2ab \le a^2 + b^2$$

(che si ottiene da $0 \le (a-b)^2 = a^2 + b^2 - 2ab$) osserviamo che si ha

$$(x^{2} + y^{2})^{2} = x^{4} + y^{4} + 2x^{2}y^{2} \le x^{4} + y^{4} + x^{4} + y^{4} = 2(x^{4} + y^{4})$$

Utilizzando anche le disuguaglianze

$$|x| \le \sqrt{x^2 + y^2}, \qquad |y| \le \sqrt{x^2 + y^2}$$

otteniamo

$$|f(x,y)| \leq \frac{2(x^2+y^2)^{\frac{5}{2}}}{\frac{(x^2+y^2)^2}{2}} = 4\sqrt{x^2+y^2} \to 0, \quad \text{per } (x,y) \to 0.$$

Dunque la funzione è continua nel punto (0,0).

Per quanto riguarda le derivate parziali notiamo che f(x,0)=0 e dunque $f_x(0,0)=0$. Invece

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^5}{h^4} - 0}{h} = 1.$$

Dunque la funzione è derivabile in (0,0).

Per la differenziabilità dobbiamo verificare che la seguente funzione abbia limite nullo per $(x, y) \rightarrow (0, 0)$:

$$g(x,y) = \frac{f(x,y) - f(0,0) - xf_x(0,0) - yf_y(0,0)}{\sqrt{x^2 + y^2}} = \frac{\frac{x^2y^3 + y^5}{x^4 + y^4} - y}{\sqrt{x^2 + y^2}}.$$

Valutiamo la funzione g sulle rette y = mx:

$$g(x, mx) = \frac{\frac{m^3 x^5 + m^5 x^5}{x^4 + m^4 x^4} - mx}{\sqrt{x^2 + m^2 x^2}} = \frac{\frac{m^3 + m^5}{1 + m^4} - m}{\sqrt{1 + m^2}}$$

che è diverso da zero se, ad esempio, scegliamo m=2.

Dunque la funzione è continua, derivabile ma non differenziabile nel punto (0,0).

Soluzione alternativa. Per quanto riguarda la continuità della funzione f, si poteva procedere anche nel seguente modo. Si osserva che

$$|x| \le \sqrt[4]{x^4 + y^4}, \quad |y| \le \sqrt[4]{x^4 + y^4}$$

da cui si ricava

$$|f(x,y)| \le \frac{2(x^4 + y^4)^{\frac{5}{4}}}{x^4 + y^4} = \sqrt[4]{x^4 + y^4} \to 0.$$

2. Trovare i punti critici della funzione

$$f(x,y) = x^6 - 2x^3y^3 + y^4 - y^6$$

e dire se sono massimi o minimi.

Soluzione. Calcoliamo innanzitutto le derivate parziali:

$$f_x = 6x^5 - 6x^2y^3 = 6x^2(x^3 - y^3)$$

$$f_y = -6x^3y^2 + 4y^3 - 6y^5$$

I punti critici sono i punti in cui si annullanno contemporaneamente f_x e f_y . Perché si annulli f_x deve essere x=0 oppure x=y. Se x=0 si trova $f_y=4y^3-6y^5=2y^3(2-3y^2)$ che si annulla per y=0 oppure $y=\pm\sqrt{2/3}$. Dunque troviamo i tre punti critici

$$p_1 = (0,0),$$
 $p_2 = (0,\sqrt{2/3}),$ $p_3 = (0,-\sqrt{2/3}).$

Se x = y si trova $f_y = -6x^5 + 4x^3 - 6x^5 = 4x^3(1 - 3x^2)$ che si annulla per x = 0 oppure $x = \pm 1/\sqrt{3}$. Oltre alla soluzione (0,0) che abbiamo già trovato, abbiamo dunque altri due punti critici:

$$p_4 = (1/\sqrt{3}, 1/\sqrt{3}), \qquad p_5 = (-1/\sqrt{3}, -1/\sqrt{3}).$$

Calcoliamo ora le derivate seconde:

$$f_{xx} = 30x^4 - 12xy^3$$

$$f_{xy} = -18x^2y^2$$

$$f_{yy} = -12x^3y + 12y^2 - 30y^4$$

Se x=0 si ha $f_{xx}=0$, $f_{xy}=0$ e dunque i punti p_1 , p_2 e p_3 hanno determinante hessiano nullo. Se x=y si ha $f_{xx}=18x^4$, $f_{xy}=-18x^4$, $f_{yy}=-42x^4+12x^2$ e dunque il determinante hessiano risulta

$$f_{xx}f_{yy} - f_{xy}^2 = -42 \cdot 18x^8 + 18 \cdot 12x^6 - 18^2x^8 = 18x^6(12 - 60x^2)$$

che per $x^2=1/3$ risulta essere una quantità negativa. Dunque i punti p_4 e p_5 sono punti a sella.

Studiamo con maggiore dettaglio i punti con hessiano nullo. Dal segno della derivata parziale f_x osserviamo che fissato \bar{y} la funzione $x\mapsto f(x,\bar{y})$ ha derivata positiva per $x>\bar{y}$ e negativa per $x<\bar{y}$ e $x\neq 0$. Dunque la funzione $f(x,\bar{y})$, al variare di x, assume valore minimo per $x=\bar{y}$. Questo significa che $f(x,y)\geq f(y,y)$ per ogni x e y.

Studiamo ora cosa succede sulla curva y=x. Posto $g(x)=f(x,x)=x^6-2x^6+x^4-x^6=x^4-2x^6=x^4(1-2x^2)$ abbiamo che $g(x)\geq 0$ se $|x|\leq 1/\sqrt{2}$ e di conseguenza $g(x)\geq g(0)=0$ per tali valori di x.

Vogliamo ora mostrare che il punto (0,0) è un minimo locale. Preso infatti un qualunque punto (x,y) con $x,y\in [-1/\sqrt{3},1/\sqrt{3}]$ abbiamo dimostrato che si ha $f(x,y)\geq f(y,y)=g(y)\geq g(0)=f(0,0)$.

Vediamo cosa succede nei punti $p_2 = (0, \sqrt{2/3})$ e $p_3 = -p_2$. Dal segno di f_x possiamo affermare che sulla retta $y = \sqrt{2/3}$ la funzione f è strettamente decrescente in un intorno di x = 0. Questo significa che il punto p_2 non può essere né massimo né minimo. Discorso analogo si può fare nel punto p_3 .

In conclusione: il punto p_1 è un minimo relativo, i punti p_2 e p_3 sono punti di sella e i punti p_4 e p_5 non sono né massimi né minimi.

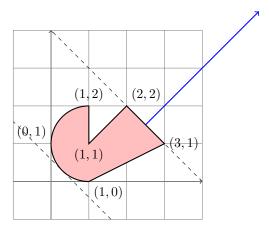


Figura 1: La figura relativa all'esercizio 3. La lunga freccia rappresenta il vettore gradiente. Le linee tratteggiate sono le rette perpendicolari al gradiente (curve di livello di f) dove vengono assunti il massimo e il minimo

3. Determinare il valore massimo e minimo assunti dalla funzione

$$f(x,y) = 3x + 3y + 2$$

sulla regione chiusa delimitata da 4 segmenti e una semicirconferenza rappresentata in figura.

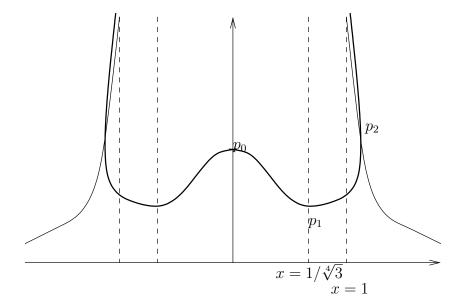
Soluzione. La funzione da minimizzare è lineare con gradiente (3,3). Gli insiemi di livello saranno dunque le rette perpendicolari al gradiente, ovvero le rette con coefficiente angolare -1. L'intero insieme è compreso tra la rette x+y=4, passante dai punti (2,2) e (3,1) dove la funzione f ha valore costante 14 e la retta $x+y=2-\sqrt{2}$, tangente alla semicirconferenza, dove la funzione ha valore $8-3\sqrt{2}$. Nella striscia compresa tra le due rette la funzione assume i valori intermedi, e dunque questi valori sono il massimo e il minimo valore assunto da f sull'insieme dato.

4. Disegnare approssimativamente l'insieme di livello $\{f(x,y)=0\}$ della funzione

$$f(x,y) = x^6y - x^2y - \log y.$$

In particolare

(a) determinare i punti in cui l'insieme di livello non si può rappresentare localmente come il grafico di una funzione (rispetto a x o rispetto a y);



- (b) dimostrare che il livello è simmetrico rispetto all'asse delle y;
- (c) trovare gli asintoti verticali del livello.
- (d) verificare che il livello è connesso;

Soluzione. Notiamo innanzitutto che la funzione f è definita solo nel semipiano y>0. Calcoliamo le derivate parziali

$$f_x = 6x^5y - 2xy = 2xy(3x^4 - 1)$$
$$f_y = x^6 - x^2 - \frac{1}{y}$$

e studiamone il segno. La derivata f_x si annulla sulle rette x=0 e $x=\pm 1/\sqrt[4]{3}$, è positiva per $x\to\infty$ e cambia segno ogni volta che si attraversa una di queste rette. La derivata f_y è positiva quando

$$\frac{1}{y} \le x^6 - x^2$$

ovvero quando

$$y \ge \frac{1}{x^6 - x^2} = \frac{1}{x^2(x^4 - 1)}.$$

Con un rapido studio di funzione si vede che la curva in cui si annulla f_y (con y > 0) è formata da due rami asintotici a y = 0 e alle rette $x = \pm 1$.

Osserviamo ora che non ci sono punti in cui si annullano contemporaneamente entrambe le derivate parziali. Dunque in tutti i punti del semipiano y>0 sono soddisfatte le ipotesi del teorema del Dini e quindi gli insiemi di livello si possono rappresentare in ogni punto come grafico di funzione rispetto alla variabile x o alla variabile y.

Visto che la funzione f è simmetrica rispetto all'asse delle y, in quanto f(x,y) = f(-x,y), anche gli insiemi di livello hanno la stessa simmetria.

Prendiamo ora il punto $p_0 = (0, 1)$ sull'asse delle y dove $f(p_0) = 0$ e ricostruiamo l'insieme di livello passante per questo punto. Per la simmetria appena

evidenziata sarà sufficiente determinare il comportamento per $x \geq 0$. Nel punto p_0 si annulla f_x dunque in tale punto l'insieme di livello ha tangente orizzontale. Spostandosi verso destra la curva di livello è decrescente in quanto $f_x < 0$, $f_y < 0$ da cui $dy/dx = -f_x/f_y < 0$.

Osserviamo ora che nessuna curva di livello può raggiungere l'asse delle x. Infatti se $y \to 0^+$ e x è limitato, la funzione f tende a $+\infty$. Dunque la nostra curva di livello dovrà necessariamente incontrare la retta $x = 1/\sqrt[4]{3}$ in un punto p_1 . Tale punto risulta essere un minimo, in base al segno di f_x . La curva di livello dunque diventa crescente, passato p_1 .

Notiamo ora che non è possibile che ci si presenti un asintoto verticale $x=\bar{x}$ a meno che non sia $\bar{x}=1$. Infatti notiamo che

$$f(x,y) = (x^6 - x^2 - \frac{\log y}{y})y$$

e se $x \to \bar{x}$ e $y \to +\infty$ il fattore $(x^6 - x^2 - \frac{\log y}{y}$ tende a $\bar{x}^6 - \bar{x}^2$ e quindi se $\bar{x}^6 - \bar{x}^2 \neq 0$ la funzione tende a $\pm \infty$. Questo significa che se $\bar{x} \neq 0$ e $\bar{x} \neq \pm 1$ l'insieme di livello non può avere l'asintoto verticale $x = \bar{x}$.

Di conseguenza la nostra curva di livello prosegue crescendo almeno fino a superare la retta x=1. A questo punto necessariamente deve incontrare la curva decrescente in cui $f_y=0$ in un punto p_2 . In tale punto la curva di livello ha tangente verticale e quindi ritorna indietro: la coordinata x cala mentre la y cresce. Visto che non è possibile che la curva di livello incontri nuovamente la curva $f_y=0$ (che può essere attraversata solo in un verso) dovrà necessariamente avere una asintoto verticale. E l'unica possibilità, per quanto visto in precedenza è che l'asintoto sia la retta x=1.

Questo conclude l'andamento della curva di livello uscente dal punto p_0 . Non ci possono essere altri rami della curva di livello 0, in quanto per x compreso tra 0 e 1, il segno della derivata f_y ci dice che la funzione è strettamente crescente sulle rette verticali e quindi assume ogni valore una unica volta. Per x>1, invece, la funzione, sulle rette verticali, ha un andamento prima decrescente e poi crescente. Dunque potrà avere al massimo due intersezioni con le rette verticali. Questo infatti è quello che avviene fino all'ascissa del punto p_2 . Da quel punto in poi la funzione risulta essere sempre positiva, come si può dedurre utilizzando la monotonia di f sulla curva $f_y=0$ e sulle rette orizzontali.

Possiamo quindi concludere che l'insieme di livello non ha altri rami, ed è quindi connesso.