5 aprile 2000

- 1. Siano $\{p_n\}$ e $\{q_n\}$ successioni di Cauchy in uno spazio metrico X. Dimostrare che la successione $\{d(p_n,q_n)\}$ converge. (Suggerimento: usare la disuguaglianza triangolare).
- 2. Sia X uno spazio metrico.
 - (a) Diciamo due successioni $\{p_n\}$ e $\{q_n\}$ di Cauchy in X equivalenti se

$$\lim_{n \to +\infty} d(p_n, q_n) = 0.$$

Provare che questa è una relazione di equivalenza.

(b) Sia X^* l'insieme delle classi di equivalenza così ottenute. Se $P \in X^*$, $Q \in X^*$, $\{p_n\} \in P$, $\{q_n\} \in Q$ definiamo

$$\Delta(P,Q) = \lim_{n \to +\infty} d(p_n, q_n);$$

per l'esercizio precedente questo limite esiste. Dimostrare che $\Delta(P,Q)$ non dipende dalla scelta del rappresentante e che quindi Δ è una distanza su X^* .

(c) Ad ogni $p \in X$ possiamo associare una successione di Cauchy: la successione $\{p_n\}$ con $p_n = p$ per ogni $n \in \mathbb{N}$; sia P_p l'elemento di X^* che contiene questa successione. Dimostrare che

$$\Delta(P_p, Q_q) = d(p, q)$$

per ogni $p, q \in X$. Quindi la funzione $i: X \longrightarrow X^*$, $i(p) = P_p$, che ad ogni $p \in X$ associa la sua classe di equivalenza è un'isometria da X in X^* (cioè un'applicazione che conserva le distanze).

- (d) Provare che i(X) è denso in X^* e che $i(X) = X^*$ se X è completo.
- (e) Provare che lo spazio X^* è uno spazio metrico completo.

Quindi possiamo identificare X e i(X) e considerare X immerso nello spazio metrico completo X^* . Chiamiamo X^* il completamento di X.