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Abstract. These are the notes of the course I gave for the PhD school in Mathematics at the
University of Pisa in spring 2025.

The aim of the notes is to give an introduction to the ergodic theoretic properties of the geodesic
flow on Riemannian negatively curved surfaces, a classical example of a “hyperbolic” flow which
is a flourishing research area in dynamical systems. The statistical distribution of the orbits of
the geodesic flow was already studied in the first half of the last century, first for the case of
surfaces with constant negative curvature and then in the general case of variable curvature, and
it was established the existence of a very rich dynamics making the geodesic flow as a prototypical
example of a “chaotic” system. However, it was not until 1998 that the first quantitative result
appeared about the speed of the decay of correlations for the case of compact surfaces with variable
curvature, a result lately sharpened by applying the modern techniques of the dynamical systems
theory.

After recalling the classical results, the notes focus on the more recent results about the decay of
correlations. Finally, we introduce the thermodynamic formalism approach to dynamical systems
and apply it to count the number of prime closed geodesics.
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1. The geodesic flow on Riemannian surfaces

In this section, we first recall some basic notions of differential geometry of surfaces from the
intrinsic point of view. The reader can find more details on books on differential geometry, two
classical references we suggest are [dC76] and [Hi65].

Let Σ be a smooth connected Riemannian surface with metric tensor < ·, · >. The tangent space
at z ∈ Σ is denoted by TzΣ, and the tangent bundle of Σ is TΣ.

Definition 1.1 (Levi-Civita connection). The Levi-Civita connection on Σ is the unique affine
connection D which is compatible with the metric tensor and is torsion-free, that is, for all vector
fields X,Y, Z (i.e. smooth sections of the tangent bundle) the following is true

Z(< X,Y >) =< DZX,Y > + < X,DZY > ,

DXY −DYX = [X,Y ] ,

where [X,Y ] is the Lie bracket.

Definition 1.2 (Gaussian curvature). Let the Riemann curvature tensor R be defined for vector
fields X,Y, Z by

R(X,Y )Z := DXDY Z −DYDXZ −D[X,Y ]Z .

The Gaussian curvature of Σ is the function K given by

K :=
< X,R(X,Y )Y >

< X,X >< Y, Y > − < X,Y >2

for any vector fields X,Y for which the denominator does not vanish.

Definition 1.3 (Geodesics). Let γ : (−ε, ε)→ Σ be a smooth parametrized curve with γ(0) = z ∈
Σ and γ̇(0) = v ∈ TzΣ. The curve γ is the geodesic for (z, v) ∈ TΣ if Dγ̇ γ̇ = 0 for all t ∈ (−ε, ε)1.
We use the notation γ(z,v) for the geodesic for (z, v).

Proposition 1.4. Given z ∈ Σ and v ∈ TzΣ, v ̸= 0, there exist ε > 0 and a unique smooth
parametrized curve γ(z,v) : (−ε, ε)→ Σ which is the geodesic for (z, v).

Definition 1.5 (Complete Riemannian surface). A Riemannian surface Σ is called geodesically
complete if all the geodesics have maximal interval of definition given by R.

Proposition 1.6. Let γ : (−ε, ε)→ Σ be a geodesic with γ̇(0) ̸= 0, then |γ̇(t)| is constant.

Proof. Let s(t) := |γ̇(t)| and let ε′ ∈ (0, ε) such that s(t) > 0 for all t ∈ (−ε′, ε′). Then, define the
vector field X along γ for t ∈ (−ε′, ε′) as X := γ̇/s. It holds < X,X >= 1, therefore

0 = X(< X,X >) = 2 < DXX,X >,

hence DXX is orthogonal to X. Since Dγ̇ γ̇ = 0 and γ̇ = sX, by the properties of a connection2 we
have

0 = Dγ̇ γ̇ = sDX(sX) = s2DXX + sX(s)X .

In conclusion, being DXX orthogonal to X and s > 0, both terms vanish, therefore DXX = 0 and
X(s) = 0. □

Definition 1.7 (Jacobi field). A vector field J defined along a geodesic γ is called a Jacobi field if

Dγ̇Dγ̇J = R(γ̇, J)γ̇ .

1Intuitively, the component of the acceleration of the curve which is tangential to Σ vanishes.
2For all f, g ∈ C∞(Σ) and vector fields X,Y , it holds DfXY = fDXY and DX(gY ) = gDXY +X(g)Y .
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Proposition 1.8. Given a geodesic γ : [0, 1]→ Σ, for each u, v ∈ Tγ(0)Σ there exists a Jabobi field
J along γ such that J(0) = u and Dγ̇J(0) = v. Moreover, if u, v ∈ Tγ(0)Σ are orthogonal to γ̇(0),
then J and Dγ̇J remain orthogonal to γ̇ for all t.

Proof. The first statement follows by thinking of u, v as initial conditions for the second-order
differential equation defining a Jacobi field. The second statement follows from

γ̇(< Dγ̇J, γ̇ >) =< Dγ̇Dγ̇J, γ̇ >=< R(γ̇, J)γ̇, γ̇ >=< R(γ̇, γ̇)γ̇, J >= 0 ,

where we have used the symmetries of the Riemann curvature tensor, and by

γ̇(< J, γ̇ >) =< Dγ̇J, γ̇ > .

□

Proposition 1.9. Given a geodesic γ : [0, 1] → Σ and a geodesic variation hγ, namely a smooth
function hγ : (−ε, ε) × [0, 1] → Σ such that hγ(0, t) = γ(t) for all t ∈ [0, 1] and t 7→ hγ(s, t) is a
geodesic for all s ∈ (−ε, ε), then ∂hγ/∂s(0, t) is a Jacobi field along γ.

Proof. Let’s denote with ḣγ the partial derivative of hγ with respect to t. Since t 7→ hγ(s, t) is a

geodesic for all s ∈ (−ε, ε), it holds Dḣγ
ḣγ = 0. Therefore, for all (s, t) ∈ (−ε, ε)× [0, 1],

R

(
ḣγ ,

∂hγ
∂s

)
ḣγ = Dḣγ

D∂hγ/∂sḣγ −D∂hγ/∂sDḣγ
ḣγ −D[ḣγ ,∂hγ/∂s]

ḣγ = Dḣγ
Dḣγ

∂hγ
∂s

,

where we have also used that [ḣγ , ∂hγ/∂s] = 0 and that the connection D is torsion-free. It is then
enough to put s = 0 in the previous equality. □

Proposition 1.10. Let γ : [0, 1] → Σ be a unit speed geodesic and J an orthogonal Jacobi field
along γ, that is J(0) and Dγ̇J(0) are orthogonal to γ̇(0). Denote by N the orthonormal field to γ̇,
that is N ∈ TγΣ and < N, γ̇ >= 0, then the function

ρ(t) :=
γ̇(< J,N >)

< J,N >

satisfies the Riccati differential equation

(1.1) ρ̇(t) = −K(γ(t))− ρ2(t) , ∀ t ∈ (0, 1) ,

where K is the Gaussian curvature.

Proof. Since Dγ̇N = 0, we have

γ̇(< J,N >) =< Dγ̇J,N > and γ̇(< Dγ̇J,N >) =< Dγ̇Dγ̇J,N >=< R(γ̇, J)γ̇, N > ,

where we have used that J is a Jacobi field. Moreover, since J is orthogonal and |γ̇| = 1, we have

K(γ) =
< γ̇,R(γ̇, J)J >

< J, J >
= −< J,R(γ̇, J)γ̇ >

< J, J >
= −< N,R(γ̇, J)γ̇ >

< J,N >
.

Hence,

ρ̇ =
γ̇(< Dγ̇J,N >)

< J,N >
− < Dγ̇J,N >2

< J,N >2
= −K(γ)− ρ2 .

□

Definition 1.11 (Length of smooth curves). Let γ : (−ε, ε)→ Σ be a smooth parametrized curve,
its length is defined as

ℓ(γ) :=

∫ ε

−ε
|γ̇(t)| dt .
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Theorem 1.12 (Hopf-Rinow). Let d : Σ× Σ→ R+
0 be the geodesic distance defined by

d(z, z′) := inf
{
ℓ(α) : α is a piecewise smooth curve connecting z and z′

}
.

Then Σ is geodesically complete if and only if (Σ, d) is a complete metric space.

Proposition 1.13. For all z ∈ Σ there exists a neighborhood U(z) in Σ and r > 0 such that for
all w,w′ ∈ U there exists a unique smooth geodesic γ : [0, 1] → Σ such that: γ(0) = w; γ(1) = w′;
ℓ(γ) < r; ℓ(γ) ≤ ℓ(α) for any piecewise smooth curve α connecting w and w′, and if ℓ(γ) = ℓ(α)
then α and γ have the same image.

The properties of the geodesics on a complete Riemannian surface imply that it is well defined
the geodesic flow on the three-dimensional unit tangent bundle.

Definition 1.14 (Geodesic flow). Let Σ be a smooth complete Riemannian surface and let T 1Σ
denote its unit tangent bundle, i.e. all (z, v) where z ∈ Σ and v ∈ TzΣ with |v| = 1. Then the
geodesic flow on Σ is the dynamical systems given by the action of R on T 1Σ by

R× T 1Σ ∋ (t, (z, v)) 7→ φt(z, v) := (γ(z,v)(t), γ̇(z,v)(t)) ∈ T 1Σ .

For each t ∈ R, the map φt : T
1Σ→ T 1Σ is smooth.
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2. Surfaces with constant curvature

A well-known result states that if Σ is simply connected with constant Gaussian curvature then
it is isometric to one of the standard surfaces.

Theorem 2.1 (Killing-Hopf). Let Σ be a connected, simply connected, complete Riemannian sur-
face with constant Gaussian curvature K. Then, Σ is isometric to the Euclidean plane R2 if K = 0,
to the sphere S2 if K > 0, and to the hyperbolic half-plane H2 if K < 0.
Dropping the simple connectedness, Σ is isometric to a quotient of R2, S2, or H2, by a group acting
freely and properly discontinuously.

2.1. The Euclidean plane. For the Euclidean plane R2, it is well-known that the geodesics
are given by the straight lines, and for surfaces with constant vanishing Gaussian curvature, the
geodesics are given by the projection of the straight lines. This follows from the fact that on the
plane Dγ̇ γ̇ = γ̈, therefore the geodesic γ(z,v) with (z, v) ∈ T 1R2 is the solution of the Cauchy
problem 

γ̈(t) = 0

γ(0) = z

γ̇(0) = v

hence γ(z,v)(t) = z + tv.
In particular, the geodesic flow on a flat surface has simple dynamical properties. We state the

following facts, which should be compared to their counterparts in the other cases:

(flat-a) On R2, there are no closed geodesics and all geodesics are unbounded. On T2 := R2/Z2, a
geodesic is closed or dense on T2, but not on T 1T2.

(flat-b) On R2, for all z ∈ R2 and all v, v′ ∈ T 1
zR2 with v ̸= v′, we have

d(γ(z,v)(t), γ(z,v′)(t)) = 2t sinα , ∀ t ∈ R ,

where 2α ∈ (0, π) is the angle between v and v′. On a compact quotient of R2, this relation
holds for small times.
On any flat surface, the projection of the geodesic flow on Σ is an isometry. That is, for all
z, z′ ∈ R2 and all v of norm 1, we have

d(γ(z,v)(t), γ(z′,v)(t)) = d(z, z′) , ∀ t ∈ R .

2.2. The sphere. It is well-known that the geodesics on the sphere are all and only the great
circles. We give a proof of this results which mixes the analytical and geometrical points of view.

Proposition 2.2. The geodesics on S2 are all and only the great circles parametrised with constant
velocity.

Proof. First, we show that all the great circles are geodesics parametrised with constant velocity.
The sphere S2 as the subset of the Euclidean space R3 of equation x2 + y2 + ω2 = 1 in Euclidean
coordinates is a surface with constant Gaussian curvature K = 1. It is immediate to prove that
the curve Γ = S2 ∩ {ω = 0} parametrised by

γ(t) = (cos t , sin t , 0) , t ∈ [0, 2π] ,

is a geodesic. Indeed, |γ̇(t)| = 1, and γ̈(t) is in the plane {ω = 0} and is orthogonal to γ̇(t) for all
t. In addition, all the other great circles may be obtained as the image of Γ for an isometry of S2.
Since by Proposition 1.13, the geodesics are locally the unique minimisers of the geodesic distance,
it follows that all the great circles parametrised with constant velocity are geodesics.
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Analogously, let z ∈ S2 and z′ ∈ U(z) such that d(z, z′) < r, with U(z) and r > 0 given by
Proposition 1.13. Let α(t) be a geodesic with α(0) = z, α(1) = z′. Since there is a great circle
through z and z′, by the uniqueness result in Proposition 1.13 it follows that α(t) is part of a great
circle. □

Concerning the dynamical properties of the geodesic flow on S2 we can then make the following
remarks:

(pos-a) On S2, all the geodesics are closed.
(pos-b) For all (z, v), (z′, v′) ∈ S2, the geodesics γ(z,v)(t) and γ(z′,v′)(t) eventually intersect.

2.3. The hyperbolic half-plane. We consider the Poincaré upper half-plane model H2 of the
hyperbolic two-dimensional space. Let

H2 := {z = x+ iy ∈ C : y > 0}
with TH2 ∼= H2 × C. The connected half-plane H2 becomes a Riemannian surface with constant
Gaussian curvature K = −1 when endowed with the metric tensor defined for each z = x+ iy ∈ H2

by

(2.1) < v, v′ >:=
1

y2
ℜ(v v′) , ∀ v, v′ ∈ TzH2 ,

where ℜ(v v̄′) coincides with the Euclidean scalar product for v, v′ seen as vectors in R2.
We now proceed as in Section 2.2 to find all the geodesics on H2. The argument here follows

[FH19, Section 2.1].

Lemma 2.3. The imaginary axis I := {z ∈ H2 : x = 0} is a geodesic with unit-speed parametriza-
tion γ(i,i)(t) = iet.

Proof. First, it is immediate that γ̇(i,i)(t) = iet satisfies

|γ̇(i,i)(t)| =
√
< γ̇(i,i)(t), γ̇(i,i)(t) > =

1

et

√
ℜ(iet iet) = 1 , ∀ t ∈ R.

Then, let y0, y1 ∈ (0,+∞) and α(t) = x(t)+ iy(t) be a piecewise smooth curve connecting z0 = iy0
to z1 = iy1 for t ∈ [t0, t1]. Then

ℓ(α) =

∫ t1

t0

|α̇(t)| dt =
∫ t1

t0

√
ẋ2(t) + ẏ2(t)

y2(t)
dt ≥

∫ t1

t0

ẏ(t)

y(t)
dt ,

where the right-most term is the length of the imaginary axis between z0 and z1. Hence by the
length minimizing property of the geodesics, we find that the imaginary axis is a geodesic and the
geodesic distance between z0 and z1 on I is d(iy0, iy1) = log(y1/y0). □

To argue as in Proposition 2.2, we need to have a characterization of the group of isometries of
H2. We begin by introducing the Möbius transformations.

Lemma 2.4. Let GL+(2,R) be the group of real 2× 2 matrices with positive determinant, and let
Ψ be the map which associates to each g ∈ GL+(2,R) the transformation of H2 given by

GL+(2,R) ∋ g =

(
a b

c d

)
7→ ψg , with ψg(z) =

az + b

cz + d
, ∀ z ∈ H2.

Then, Ψ(GL+(2,R)) is a group under composition and it is a subgroup of the isometries of H2.
Moreover, Ψ is a group homomorphism with kernel R0 · Id, where R0 := R \ {0}.
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Proof. The result follows from standard computations showing that for all g, g′ ∈ GL+(2,R) we
have ψg ◦ ψg′ = ψgg′ and that ψλg = ψg for all λ ∈ R0, and by proving that ψg is an isometry of
H2. First,

(2.2) ℑ(ψg(z)) =
det(g)ℑ(z)
|cz + d|2

> 0 , ∀ z ∈ H2 , g =

(
a b

c d

)
∈ GL+(2,R) ,

hence ψg(H2) ⊆ H2. Then, dzψg(v) = ψ′
g(z)v for all (z, v) ∈ TH2, where

(2.3) ψ′
g(z) =

det(g)

(cz + d)2

is the derivative of ψg(z) with respect to z as a complex number. Hence, for all z ∈ H2 and all
v, v′ ∈ TzH2, we have

< dzψg(v), dzψg(v) >=
1

(ℑ(ψg(z)))2
ℜ(ψ′

g(z)v ψ
′
g(z)v

′) =
1

(ℑ(z))2
ℜ(v v′) =< v, v′ >

for all g ∈ GL+(2,R). □

The subgroup of isometriesM := Ψ(GL+(2,R)) is called the group of Möbius transformations,
and it is isomorphic to the quotient PSL(2,R) := GL+(2,R)/(R0 · Id) = SL(2,R)/(±Id).

Definition 2.5. The elements ofM∼= PSL(2,R) are of three types:

• Elliptic if the matrix g ∈ SL(2,R) satisfies |tr(g)| < 2 or ψg has exactly one fixed point in
H2. An important example of an elliptic element is the inversion given by

S =

(
0 −1
1 0

)
or ψS(z) = −

1

z
;

• Parabolic if the matrix g ∈ SL(2,R) satisfies |tr(g)| = 2 or ψg has exactly one fixed point
which lies in ∂H2. Important examples of parabolic elements are the translation given for
b ∈ R by

τb =

(
1 b

0 1

)
or ψτb(z) = z + b ;

• Hyperbolic if the matrix g ∈ SL(2,R) satisfies |tr(g)| > 2 or ψg has exactly two fixed
points both on ∂H2. Important examples of hyperbolic elements are the homotheties (or
squeezings) given for a ∈ R \ {0,±1} by

λa =

(
a 0

0 a−1

)
or ψλa(z) = a2z .

All parabolic and hyperbolic elements are conjugate to τb or to λa, respectively, for some b ∈ R
or a ∈ R \ {0,±1}.

We can now prove the fundamental result to find all the geodesics on H2.

Lemma 2.6. For all g ∈ SL(2,R), the image ψg(I) of the imaginary axis I := {z ∈ H2 : x = 0} is
a vertical line or a semicircle with center on the real line {y = 0}. Viceversa, let C be any vertical
line or any semicircle with center on the real line {y = 0}, then there exists g ∈ SL(2,R) such that
ψg(I) = C.
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Proof. The first part is a simple verification for which we use an important property. Namely,
every g ∈ SL(2,R) can be written as a composition of translations, a homothety, and the inversion.
Indeed,

(2.4) SL(2,R) ∋ g =

(
a b

c d

)
=

{
τba ◦ λa , if c = 0 and d = a−1;

τa/c ◦ S ◦ τcd ◦ λc , if c ̸= 0.

Since the the homotheties preserve I and the translations send I to a vertical line, ψg(I) is a vertical
line if c = 0. If c ̸= 0, (τcd ◦ λc)(I) is a vertical line, equal to I if d = 0. Now, the inversion S
preserves I and sends a vertical line {x = x0} in H2 with x0 ̸= 0 to the semicircle with center in
z = −1/(2x0), hence ψg(I) is again a vertical line or a semicircle with center on the real line.

The second part of the statement can be proved by constructing ψg. If C is a vertical line
{x = x0} then ψτx0 (I) = C. If C is a semicircle with endpoints x0 and x0 + r > x0 on the line
{y = 0}, then

g = τx0 ◦ λ√r ◦ τ1 ◦ S ◦ τ1 gives ψg(I) = C .

It is enough to check that τ1 ◦ S ◦ τ1 sends I to the semicircle with endpoints in 0 and 1, and that
the homothety λ√r and the translation τx0 give the wanted semicircle C. □

Proposition 2.7. The geodesics on H2 are all and only the vertical lines {x = x0} and the semi-
circles with center on the real line {y = 0}.

Proof. We proceed as in the proof of Proposition 2.2. Given that by Lemma 2.3 the imaginary axis
I is a geodesic, all the vertical lines and all the semicircles with center on the real line are image of
a geodesic for an isometry ψg ∈M of H2. Hence, by Proposition 1.13, they are geodesics.

On the contrary, all points z1, z2 ∈ H2 may be connected by a curve C, which is either a vertical
line or a semicircle with center on the real line. By Lemma 2.6, there exists an isometry which
sends C to I, therefore again by the length minimizing property of the geodesics, the only geodesic
connecting z1 and z2 is C. □

We can now state the first property of the geodesic flow on H2.

(neg-a) On H2, there are no closed geodesics and all geodesics are unbounded. Given (z, v) ∈ T 1H2,
the geodesic γ(z,v) has endpoints

(2.5) γ±(z,v) := lim
t±∞

γ(z,v)(t) .

If the geodesic is a semicircle then γ±(z,v) ∈ {y = 0} ⊂ ∂H2, if the geodesic is a vertical line

then one of the endpoints lies on {y = 0} and the other one is ∞ ∈ ∂H2.
On the quotients of H2 it is possible to find closed geodesics and dense on T 1H2 ones, but
other behaviors are possible.

For the other dynamical properties we need to extend the algebraic approach to T 1H2.

Proposition 2.8. The action ofM∼= PSL(2,R) on H2 may be lifted to an action on T 1H2, which
is simply transitive. In particular, PSL(2,R) is homeomorphic to T 1H2.

Proof. The action ofM∼= PSL(2,R) on T 1H2 is obtained by using the differential of the Möbius
transformations. That is we consider

(2.6) PSL(2,R)× T 1H2 ∋ (g, (z, v)) 7→ dψg(z, v) := (ψg(z), ψ
′
g(z)v) ∈ T 1H2 ,

where |ψ′
g(z)v| = |v| = 1 because ψg is an isometry.
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It is now enough to show that for each (z, v) ∈ T 1H2 there exists a unique g ∈ PSL(2,R) for
which dψg(i, i) = (z, v). First, given z = x+ iy, it is a simple calculation to show that

(2.7) g0 = τx λ√y =

( √
y x√

y

0 1√
y

)
gives ψg0(i) = z .

Then, a unit vector v ∈ TzH2 may be written as the complex number

(2.8) v = i y (cos θ + i sin θ) ,

where y = ℑ(z) and θ is the angle between v and the vertical vector pointing upward in the plane
measured counterclockwise. So, for example i ∈ TiH2 has θ = 0 and y = 1. Using (2.3), it is a
straightforward computation to verify that,

(2.9) dψg0(i, v) = (z, yv) .

Hence g0 does not change the orientation of any vector v ∈ T 1
i H2, and the same holds when acting

on any (z′, v) ∈ T 1H2.
Let us consider the action on (i, i) of the following subset of Möbius transformations

ρθ =

(
cos θ2 sin θ

2

− sin θ
2 cos θ2

)
.

Notice that S = ρ−π in PSL(2,R). Using (2.3) as before, one can verify that

(2.10) dψρθ(i, i) =
(
i, i(cos θ + i sin θ)

)
.

In particular, the subgroup K := {ρθ}θ is contained in the the stabilizer of z = i for the action of
M on H2 and acts on TiH2 as a rotation of angle θ.

Given any (z, v) ∈ T 1H2 with z = x+ iy and v = i y (cos θ + i sin θ), we are now ready to show
that dψg(i, i) = (z, v) for3

(2.11) g = g(z,v) := τx λ√y ρθ =

( √
y x√

y

0 1√
y

) (
cos θ2 sin θ

2

− sin θ
2 cos θ2

)
.

It is enough to put together (2.9) and (2.10).
So far we have proved that the action ofM on T 1H2 is transitive. We now have to prove that

it is free, and it is enough to prove that the element g(z,v) defined in (2.11) is the unique for which
dψg(i, i) = (z, v). This follows by showing that the stabilizer of (i, i) is {±Id}.

Let g ∈ PSL(2,R) with dψg(i, i) = (i, i). Then

g =

(
a b

c d

)
⇒ ai+ b

ci+ d
= i and

i

(ci+ d)2
= i .

The first condition on the right implies that the stabilizer of i for the action on H2 is in fact the
subgroup K, and the two conditions together give that dψg(i, i) = (i, i) implies g ∈ {±Id}. We
have thus proved that (2.11) gives a map from T 1H2 to PSL(2,R) that has an inverse, which is
given by

(2.12) PSL(2,R) ∋ g =

(
a b

c d

)
7→
(
ai+ b

ci+ d
, i

cos θ + i sin θ

c2 + d2

)
∈ T 1H2 ,

where θ = −2 arctan(c/d) if d ̸= 0, and θ = π (mod 2π) if d = 0.

3This is known as the Iwasawa decomposition of SL(2,R).
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Finally, thanks to the topological structures of PSL(2,R) and T 1H2, we have defined a homeo-
morphism between the two spaces. □

The geodesic flow of Definition 1.14 is the dynamical system on T 1H2 given by the action of R
which makes a point (z, v) to flow along the unique geodesic it defines. Since T 1H2 is homeomorphic
to PSL(2,R), the geodesic flow on T 1H2 may be seen as the action of a one-dimensional subgroup
of PSL(2,R) on the group PSL(2,R).

Proposition 2.9. Let (z, v) ∈ T 1H2 with z = x + iy and v = i y (cos θ + i sin θ), and let g(z,v) be
as in (2.11). Then, φt(z, v) is represented in PSL(2,R) by the matrix

gφt(z,v) = g(z,v) λet/2 = g(z,v)

(
et/2 0

0 e−t/2

)
.

Hence, the homeomorphism between T 1H2 and PSL(2,R) is a topological conjugacy between the
geodesic flow on T 1H2 and the right action of the one-dimensional group {λa}a>0 on PSL(2,R).

Proof. First, let’s prove the result for (i, i). We have g(i,i) = Id and, by Lemma 2.3, φt(i, i) =

(iet, iet). It follows that gφt(i,i) = λet/2 .

Let now (z, v) ∈ T 1H2 with z = x+iy and v = i y (cos θ+i sin θ). By Lemma 2.6 and Proposition
2.8, there exists a unique g = g(z,v) such that dψg(i, i) = (z, v) and φt(z, v) = dψg(φt(i, i)). It follows
that gφt(z,v) = g(z,v) gφt(i,i) = g(z,v) λet/2 . □

Remark 2.10. Given (z, v) ∈ T 1H2, we can write the endpoints γ±(z,v) (see (2.5)) of the geodesic

for (z, v) in terms of the entries of the matrix g(z,v). Applying the geodesic flow as the right
multiplication by λet/2 , one finds

g(z,v) =

(
a b

c d

)
⇒ γ+(z,v) =

a

c
, γ−(z,v) =

b

d
,

with the convention 1/0 =∞ ∈ ∂H2.

We are now ready to study the properties in (neg-b). First, we read the properties in (flat-b)
by using the differential structure of T 1R2 ∼= R2 × S1. The unit tangent bundle T 1R2 is a three-
dimensional manifold with T(z,v)(T

1R2) ∼= R2×R for all (z, v) ∈ T 1R2, with a possible basis of the

tangent space given by {v, u, 1} where v, u ∈ R2 satisfy < v, u >= 0. This basis identifies three
directions along which to move the initial condition (z, v) of the geodesic flow. The first direction,
the variation along v in the position z, corresponds to the motion along the geodesic itself. The
second direction, the variation along u in the position z, corresponds to consider initial conditions
(z+δu, v) for δ ∈ R. The third direction, the variation in the direction of v, corresponds to consider
initial conditions (z, v′) with v′ ̸= v. Thus, the natural variations considered in (flat-b) correspond
to the variations along a basis of the tangent space T(z,v)(T

1R2).
We can now repeat the same argument to obtain the statements in (neg-b). First, we have to

characterize the tangent spaces T(z,v)(T
1H2). For this, we use the homeomorphism with PSL(2,R),

which is a three-dimensional Lie group with Lie algebra sl(2,R). A possible basis of the Lie algebra
is given by

(2.13) X :=

(
1/2 0

0 −1/2

)
, H+ :=

(
0 1

0 0

)
, H− :=

(
0 0

1 0

)
.

Therefore, given (z, v) ∈ T 1H2 as the initial condition of a geodesic flow, we look at the variations
of the initial condition along the three directions identified by X,H+, H− and using right actions.
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We find that the first direction gives the point (z′, v′) for which

g(z′,v′) = g(z,v) exp(δX) = g(z,v) λeδ/2 ,

that is (z′, v′) = φδ(z, v), hence it corresponds to the motion along the geodesic γ(z,v).
Let us now consider the variations along H± beginning with initial condition (i, i). Since

(2.14) exp(δH+) = τδ and exp(δH−) =

(
1 0

δ 1

)
,

we find

(2.15) W+(i, i) :=
{
g(i,i) exp(δH+)

}
δ∈R =

{
(x+ i, i) ∈ T 1H2

}
x∈R ,

that is the horizontal line {y = 1} with tangent vectors i ∈ Tx+iH2 for all x ∈ R, and

(2.16)

W−(i, i) :=
{
g(i,i) exp(δH−)

}
δ∈R =

=

{
(x+ iy, v) ∈ T 1H2 : x2 +

(
y − 1

2

)2

=
1

4
, θ = −2 arctan

(
x

y

)}
,

that is the circle tangent to the line {y = 0} at x = 0 and passing through i, and with unit tangent
vectors orthogonal to the circle and pointing outwards.

Definition 2.11 (Horocycles). Let (z, v) ∈ T 1H2 and let γ(z,v) be the geodesic for (z, v).

• If γ(z,v) is a vertical line with v pointing upwards, then we call positive horocycle of (z, v)

the set W+(z, v) ⊂ T 1H2 given by the horizontal line {y = ℑ(z)} with tangent vectors
iℑ(z) ∈ Tx+iℑ(z)H2 for all x ∈ R, and we call negative horocycle of (z, v) the set W−(z, v) ⊂
T 1H2 given by the circle tangent to the line {y = 0} at x = ℜ(z) and passing through z,
and with unit tangent vectors orthogonal to the circle and pointing outwards.
• If γ(z,v) is a vertical line with v pointing downwards, then we call positive horocycle of (z, v)

the set W+(z, v) ⊂ T 1H2 given by the circle tangent to the line {y = 0} at x = ℜ(z)
and passing through z, and with unit tangent vectors orthogonal to the circle and pointing
inwards, and we call negative horocycle of (z, v) the set W−(z, v) ⊂ T 1H2 given by the
horizontal line {y = ℑ(z)} with tangent vectors −iℑ(z) ∈ Tx+iℑ(z)H2 for all x ∈ R.
• If γ(z,v) is a semicircle with center and endpoints γ±(z,v) on the line {y = 0}, then we

call positive horocycle of (z, v) the set W+(z, v) ⊂ T 1H2 given by circle tangent to the line
{y = 0} at x = γ+(z,v) and passing through z, and with unit tangent vectors orthogonal to the

circle and pointing inwards, and we call negative horocycle of (z, v) the setW−(z, v) ⊂ T 1H2

given by circle tangent to the line {y = 0} at x = γ−(z,v) and passing through z, and with

unit tangent vectors orthogonal to the circle and pointing outwards.

Proposition 2.12. For all (z, v) ∈ T 1H2 we have W±(z, v) = dψg(z,v)(W
±(i, i)).

Proof. It follows from the homeomorphism between PSL(2,R) and T 1H2, since

g(z,v) exp(δH±) ←→ d
(
ψg(z,v) ◦ ψexp(δH±)

)
(i, i) .

□

Definition 2.13 (Distance on T 1H2). The geodesic distance d(·, ·) on H2 can be extended to a
distance dh(·, ·) on T 1H2 by

dh((z, v), (z
′, v′)) =

√
d2(z, z′) + (∡(v, v′))2 , ∀ (z, v), (z′, v′) ∈ T 1H2,

11



where ∡(v, v′) is the angle in [0, 2π] between v′ and the parallel transport of v from TzH2 to Tz′H2

along the geodesic connecting z and z′.

Lemma 2.14. For all x ∈ R, consider the point (x+ i, i) ∈W+(i, i). We have

lim
t→+∞

et dh(φt(i, i), φt(x+ i, i)) =
√
2 |x| .

For all (z, v) ∈W−(i, i),

lim
t→−∞

e−t dh(φt(i, i), φt(z, v)) =
√
2

∣∣∣∣ℜ(z)ℑ(z)

∣∣∣∣ .
Proof. For the first part, we need to compute the distance dh between the points (z, v) = φt(i, i) =
(iet, iet) and (z′, v′) = φt(x+ i, i) = (x+ iet, iet). The geodesic between z and z′ is the semicircle

centered on the line {y = 0} at (x/2, 0) of radius rt =
√
x2/4 + e2t. It follows that

d(z, z′) ∼ |x| e−t ,
∣∣∣∡(v, v′)∣∣∣ ∼ |x| e−t , as t→ +∞,

hence we obtain the first result.
For the second result, we start observing that

dh(φt(i, i), φt(z, v)) = dh(φ−t(i,−i), φ−t(z,−v)) ,
and (z,−v) ∈W+(i,−i). Then, by Proposition 2.12, the transformation dψS given by the inversion
S sends W+(i,−i) to W+(i, i), hence dψS(z,−v) ∈ W+(i, i), and we can apply the first part. It
follows that

dh(φt(i, i), φt(z, v)) = dh(φ−t(i,−i), φ−t(z,−v)) = dh(dψS(φ−t(i,−i)), dψS(φ−t(z,−v))) =

= dh(φ−t(i, i), φ−t(dψS(z,−v))) ,
and

lim
t→−∞

e−t dh(φt(i, i), φt(z, v)) = lim
t→+∞

et dh(φt(i, i), φt(dψS(z,−v))) =
√
2 |ℜ(ψS(z))| .

Finally, from (2.16), we obtain

(z, v) = (x+ iy, v) ∈W−(i, i) ⇒ x2 + y2 = y ⇒ ℜ(ψS(z)) = ℜ
(
−1

z

)
= −x

y
.

□

Applying Proposition 2.12, we can state the general behavior for the orbits of variations of the
initial conditions.

(neg-b) For all (z, v) ∈ T 1H2 the tangent space T(z,v)(T
1H2) can be written as the sum of three

one-dimensional vector spaces,

(2.17) Ec := Span(X) , Es := Span(H+) , Eu := Span(H−) .

If we move the point (z, v) along Ec, we obtain points on the geodesic γ(z,v).
If we move the point (z, v) along Es, we obtain points (z′, v′) of the positive horocycle
W+(z, v), and

dh(φt(z, v), φt(z
′, v′)) ∼t→+∞ const(z, z′) · e−t , ∀ (z′, v′) ∈W+(z, v) .

If we move the point (z, v) along Eu, we obtain points (z′, v′) of the negative horocycle
W−(z, v), and

dh(φt(z, v), φt(z
′, v′)) ∼t→−∞ const(z, z′) · et , ∀ (z′, v′) ∈W−(z, v) .

12



We end this section by introducing the positive and negative horocycle flows on H2. Given (z, v) ∈
T 1H2 and its positive (negative) horocyle W+(z, v) (W−(z, v)), the positive (negative) horocycle
flow {u+s (z, v)}s∈R ({u−s (z, v)}s∈R) slides the unit vector v ∈ TzH2 along W+(z, v) (W−(z, v)).

By mimicking the argument in Proposition 2.9 we can prove the following algebraic representation
of the horocycle flows.

Proposition 2.15. Let (z, v) ∈ T 1H2 with z = x+ iy and v = i y (cos θ + i sin θ), and let g(z,v) be

as in (2.11). Then, u+s (z, v) is represented in PSL(2,R) by the matrix

gu+s (z,v) = g(z,v) exp(sH+) = g(z,v)

(
1 s

0 1

)
.

Hence, the homeomorphism between T 1H2 and PSL(2,R) is a topological conjugacy between the
positive horocycle flow on T 1H2 and the right action of the one-dimensional group {τb}b∈R on
PSL(2,R).

Analogously, u−s (z, v) is represented in PSL(2,R) by the matrix

gu−s (z,v) = g(z,v) exp(sH−) = g(z,v)

(
1 0

s 1

)
.

Hence, the homeomorphism between T 1H2 and PSL(2,R) is a topological conjugacy between the
negative horocycle flow on T 1H2 and the right action of the one-dimensional group {exp(δH−)}δ∈R
on PSL(2,R).

Proposition 2.16. For all t, s ∈ R, the geodesic and the horocycle flows on H2 satisfy the following
commutation rules

φt ◦ u±s = u±
se∓t ◦ φt .

Proof. Using Propositions 2.9 and 2.15, it’s enough to prove that(
1 s

0 1

) (
et/2 0

0 e−t/2

)
=

(
et/2 0

0 e−t/2

) (
1 s e−t

0 1

)
for the positive horocycle flow, and the analogous relation for the negative horocycle flow. □
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3. Hyperbolic dynamics

As shown in the previous section, the geodesic flow on the Euclidean plane and on the sphere
exhibits quite a “simple” dynamics. Either all orbits are periodic or little variations in the initial
conditions lead to “slow” separation of the orbits. The situation is different on the hyperbolic
half-plane.

In this section, we introduce the notion of Anosov flow, a class of flows including the geodesic
flow on surfaces with constant negative curvature, for which the dynamical properties have been
studied extensively over the last years.

Definition 3.1 (Anosov flow). Let M be a smooth connected manifold and Φ = {φt} a smooth
flow on M without fixed points4. A compact Φ-invariant set Λ ⊂ M is hyperbolic if there exist a
Φ-invariant splitting TM |Λ = Ec ⊕ Es ⊕ Eu and constants C ≥ 1, λ ∈ (0, 1), and µ > 1 such that
for all p ∈ Λ we have:

(i) Ecp = Span(φ̇t(p)|t=0);

(ii) for all w ∈ Esp, |dpφt(w)| ≤ C λt |w| for all t > 0;

(iii) for all w ∈ Eup , |dpφt(w)| ≤ C µt |w| for all t < 0.

A smooth flow Φ on M is said to be an Anosov flow if M is closed5 and hyperbolic.

An Anosov flow is an example of a uniformly hyperbolic dynamical system, an important class
of systems with many interesting properties, some of which will not be considered in these notes.
We refer to [FH19] and references therein for a more detailed discussion of Anosov flows.

That the geodesic flow on a compact hyperbolic surface is an Anosov flow follows from the
properties we have stated in Section 2.3,(neg-b) (see also [FH19, Remark 2.2.2] for a discussion
using the Lie bracket of vector fields). However the geodesic flow may be Anosov also on closed
surfaces with non-positive curvature. The first result was proved in [An69] for manifolds of any
dimension, and in [Eb73] by using Jacobi fields (see also the exposition for surfaces in [Ya22]). In
these notes we give a sketch of the proof by the Alekseev cone field criterion.

Definition 3.2 (Cones). Given linear spaces E,F and a constant β ∈ (0, 1), the β-cone Cβ(E,F )
is the subset of E ⊕ F given by

Cβ(E,F ) = {v + w : v ∈ E, w ∈ F, |w| < β|v|} .

Proposition 3.3 ([FH19]). Given a smooth connected manifold M and a smooth flow Φ = {φt}
on M without fixed points, a compact Φ-invariant set Λ ⊂M is hyperbolic if and only if there exist
constants C ≥ 1, β, λ ∈ (0, 1), and a decomposition TpM = Sp ⊕ Ecp ⊕ Up for all p ∈ Λ such that
we have:

(i) Ecp = Span(φ̇t(p)|t=0);

(ii) dpφt(Cβ(Up, Ecp ⊕ Sp)) ⊂ Cβ(Uφt(p), E
c
φt(p)

⊕ Sφt(p)) for all t > 0;

(iii) dpφt(Cβ(Sp, Ecp ⊕ Up)) ⊂ Cβ(Sφt(p), E
c
φt(p)

⊕ Uφt(p)) for all t < 0;

(iv) for all w ∈ Cβ(Sp, Ecp ⊕ Up), |dpφt(w)| ≤ C λt |w| for all t > 0;

(v) for all w ∈ Cβ(Up, Ecp ⊕ Sp), |dpφt(w)| ≤ C λ−t |w| for all t < 0.

4This condition can be dropped, it is satisfied by geodesic flows.
5That is, compact and without boundary.
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We just remark that for the “if” part of the proof of the proposition it is enough to consider the
construction

Esp :=
⋂
t<0

dφ−t(p)φt(Cβ(Sφ−t(p), E
c
φ−t(p)

⊕ Uφ−t(p))) ;

Eup :=
⋂
t>0

dφ−t(p)φt(Cβ(Uφ−t(p), E
c
φ−t(p)

⊕ Sφ−t(p))) .

Theorem 3.4 ([Eb73]). Let Σ be a closed connected oriented Riemannian surface with non-positive
curvature. If every geodesic in Σ contains a point where the curvature is negative, then the geodesic
flow on Σ is Anosov.

Proof. We sketch the proof in [Ko18] (see also [FH19, Theorem 5.2.8]). The idea is to construct a
cone field on T 1Σ and verify the cone criterion.

First, it is useful to consider for (z, v) ∈ T 1Σ the isomorphism

T(z,v)(T
1Σ) ∼= J (z, v)⊕ Ec(z,v) ,

where Ec(z,v) = Span(v), and J (z, v) is the two-dimensional vector space of Jacobi fields along the

geodesic γ(z,v) for which J and Dγ̇(z,v)J are orthogonal to γ̇(z,v). By Proposition 1.8, the bundle

{J (z, v)}(z,v) is invariant, namely

d(z,v)φt(J (z, v)) = J (φt(z, v)) , ∀ t ∈ R .

Then, for ε > 0, one considers the following cones

C±
0 :=

{
(ξ, η) ∈ R2 : ±ξη > 0

}
, C±

ε :=
{
(ξ, η) ∈ R2 : εη ≤ ±ξ ≤ η

ε

}
,

and the cone fields which to each (z, v) ∈ T 1Σ associate C±
0 , C

±
ε ⊂ J (z, v).

The thesis is a consequence of the following steps.

Step 1. There exists κ > 0 and t0 > 0 such that for every unit speed geodesic γ we have

(3.1)

∫ t0

0
K(γ(t)) dt ≤ −κ .

If the statement is false, let (γn) be a sequence of unit speed geodesics such that each γn is
defined on [0, n] and

0 ≥
∫ n

0
K(γn(t)) dt ≥ −

1

n
.

By compactness and a diagonal argument, one finds a subsequence converging uniformly on each
[0, n] to a geodesic γ defined on R for which

∫
RK(γ(t)) dt = 0. This is a contradiction with the

assumption of the theorem.

Step 2. There exists m > 0 and t1 > 0 such that, for any unit speed geodesic γ, the solution of
the Riccati differential equation u̇(t) = −K(γ(t))− u2(t) with u(0) = 0 satisfies u(t1) ≥ m.

Given a unit speed geodesic γ, let κ and t0 as in step 1. First of all, by comparison with the
differential equation v̇ = −v2, we have that u(t) ≥ 0 for all t ≥ 0. Then, choose t1 > t0 and, for
a > max{1, t1κ}, let m = κ(1/a− t1κ/a2). Define

t∗ := sup
{
t ∈ [0, t1] : u(t) ≥

κ

a

}
.
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If t∗ = 0 then, by step 1,

u(t1) =u(0) +

∫ t1

0
u̇(t) dt =

∫ t1

0
(−K(γ(t))− u2(t)) dt ≥

∫ t0

0

(
−K(γ(t))

)
dt+

∫ t1

0

(
−κ

2

a2

)
dt

≥κ− t1
κ2

a2
> m .

On the contrary,

u(t1) =u(t∗) +

∫ t1

t∗
u̇(t) dt ≥ u(t∗) +

∫ t1

t∗
(−u2(t)) dt ≥ κ

a
+

∫ t1

0

(
−κ

2

a2

)
dt

≥ κ
a
− t1

κ2

a2
= m.

Step 3. Let (z, v) ∈ T 1Σ and C±
0 , C

±
ε the cone fields defined above. Let ρ(t) as in Proposition

1.10 which satisfies the Riccati equation (1.1). Then, for t1 found in step 2,

d(z,v)φt1(C
+
0 ) ⊆ C+

ε and d(z,v)φ−t1(C
−
0 ) ⊆ C−

ε .

See [Ko18, Lemma 5.7].

Step 4. We can apply Proposition 3.3.
Since φt preserves the volume form on T 1Σ (see Theorem 4.5) and the surface Σ is compact,

the cone fields induce a decomposition of T(z,v)T
1Σ satisfying the properties in Proposition 3.3 (see

[Ko18, Theorem 3.3 and Lemma 5.8]). □

For our aims, the most important property of an Anosov flow is the existence of the strong stable
and strong unstable foliations.

Theorem 3.5 (Stable and Unstable Manifold Theorem (e.g. [FH19])). Let M be a smooth con-
nected closed manifold and Φ = {φt} a Cr, r ≥ 1, Anosov flow on M with constants λ, µ as in
Definition 3.1. Then for each p ∈ M there is a pair of embedded Cr-disks, W s

loc(p) and W u
loc(p),

depending continuously on p in the C1 topology and called the local strong stable manifold and the
local strong unstable manifold of p, respectively, such that

(i) TpW
s
loc(p) = Esp, TpW

u
loc(p) = Eup ;

(ii) φt(W
s
loc(p)) ⊆W s

loc(φt(p)) for all t > 0 and φt(W
u
loc(p)) ⊆W u

loc(φt(p)) for all t < 0;

(iii) for every δ > there exists Cδ > 0 such that

d(φt(p), φt(q)) < Cδ (λ+ δ)t d(p, q) , ∀ q ∈W s
loc(p), t > 0 ,

d(φt(p), φt(q)) < Cδ (µ− δ)t d(p, q) , ∀ q ∈W u
loc(p), t < 0 ;

(iv) there exists a continuous family of neighborhoods Up of p ∈M such that

W s
loc(p) =

{
q ∈ Up : φt(q) ∈ Uφt(p) ∀ t > 0 , d(φt(p), φt(q))→ 0 as t→ +∞

}
,

W u
loc(p) =

{
q ∈ Up : φt(q) ∈ Uφt(p) ∀ t < 0 , d(φt(p), φt(q))→ 0 as t→ −∞

}
.

Then, it is possible to look at the time evolution of the local strong stable and unstable manifolds,
to obtain the sets

(3.2)

W s(p) :=
⋃
t<0

φt(W
s
loc(φ−t(p))) = {q ∈M : d(φt(p), φt(q))→ 0 as t→ +∞} ,

W u(p) :=
⋃
t>0

φt(W
u
loc(φ−t(p))) = {q ∈M : d(φt(p), φt(q))→ 0 as t→ −∞} ,
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which are smoothly injectively immersed manifolds called the strong stable and strong unstable
manifolds, respectively. Finally, we call weak stable and weak unstable manifolds, the manifolds

(3.3) W cs(p) :=
⋃
t∈R

φt(W
s(p)) and W cu(p) :=

⋃
t∈R

φt(W
u(p)) .

Example 3.6. For the geodesic flow on the hyperbolic half-plane H2, the results in (neg-b) can be
restated by saying that for all (z, v) ∈ T 1H2,

W s(z, v) =W+(z, v) and W u(z, v) =W−(z, v) .

Moreover, the linear splitting of T(z,v)T
1H2 showing hyperbolicity of the geodesic flow does not

depend on (z, v).

For an Anosov flow, every single leaf of the strong foliations is a regular embedded manifold in
M , whose regularity is given by the regularity of the flow. However, the regularity of the foliations
is a different problem and, in general, one should not expect it to be more than continuous6. A
better result holds for geodesic flows on surfaces.

Theorem 3.7 ([Ho40, HP75]). Let Σ be a closed connected Riemannian surface with negative
curvature. Then the geodesic flow admits C1 strong stable and unstable foliations.

6For example, if the weak foliations are very smooth then the manifold is algebraic (see [Gh87]).
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4. Ergodicity

In this section, we begin to study the ergodic properties of the geodesic flow on smooth connected
complete orientable Riemannian surfaces Σ with negative curvature. The hyperbolic structure
constructed in Section 3 will play a major role.

We start by recalling the basic notions of ergodic theory.

Definition 4.1 (Invariant measure). Let (M,µ) be a probability space and T :M →M a (Borel-)
measurable map. The map T is measure preserving (or µ is T -invariant) if µ(T−1(A)) = µ(A) for
all measurable A ⊂M .

A measurable flow Φ = {φt} on (M,µ) is measure preserving if φt : M → M is measure
preserving for all t ∈ R.

A fundamental result for probability preserving maps and flows is the Birkhoff Theorem.

Theorem 4.2. Let Φ = {φt} be a measurable measure preserving flow on the probability space
(M,µ). Then, for all f ∈ L1(M,µ) there exists a Φ-invariant7 fΦ ∈ L1(M,µ) such that

fΦ(p) = lim
T→+∞

1

T

∫ T

0
f(φt(p)) dt = lim

T→+∞

1

T

∫ T

0
f(φ−t(p)) dt , for µ-a.e. p,

and
∫
M f dµ =

∫
M fΦ dµ.

Definition 4.3 (Ergodic measure). A measurable flow Φ = {φt} on (M,µ) is said to be ergodic
with respect to µ (or µ is ergodic with respect to Φ) if for any measurable A ⊂M with φt(A) = A
for all t ∈ R either µ(A) = 0 or µ(M \A) = 0.

It is immediate that a measurable flow Φ = {φt} is ergodic if a single time-t map φt is ergodic.
Moreover, ergodicity can be reformulated in various ways.

Proposition 4.4. For a measurable flow Φ = {φt} on (M,µ), the following are equivalent:

(i) Φ is ergodic with respect to µ.
(ii) Any Φ-invariant f ∈ L1(M,µ) is constant µ-a.e.
(iii) Assuming that Φ is measure preserving, if ν << µ is a Φ-invariant measure on M then µ = ν.
(iv) µ is ergodic for the time-t map φt for all but countably many t ∈ R.
(v) Assuming that Φ is measure preserving, for all f ∈ L1(M,µ) the function fΦ in Theorem 4.2

is µ-a.e. equal to the constant
∫
M f dµ.

Let’s now consider the geodesic flow Φ = {φt} on T 1Σ. First, we show that there exists an
invariant measure for Φ.

Theorem 4.5. The geodesic flow Φ = {φt} on a smooth connected complete orientable Riemannian
surface Σ is a contact flow. Namely, there exists a 1-form α on T 1Σ such that α ∧ dα is non-
degenerate, and the geodesic vector field X := d/dt|t=0 φt ∈ T (T 1Σ) satisfies: α(X) = 1, dα(X, ξ) =
0 for all ξ ∈ T (T 1Σ).

In particular, the geodesic flow preserves the Liouville measure, or volume form, µ = m × ℓ on
T 1Σ. Here, m denotes the volume form on Σ, and ℓ the Lebesgue measure on S1. If Σ is closed,
then µ is a probability measure.

Proof. Here we sketch the main steps of the proof. For all the details we refer to [Pa99, Section
1.3].

First, we define the 1-form α. Let π : TΣ → Σ be the canonical projection, π(z, v) = z for all
(z, v) ∈ TΣ. Then, define
(4.1) α(z,v)(ξ) :=< d(z,v)π(ξ), v > , ∀ ξ ∈ T(z,v)(TΣ) .

7A measurable f : M → R is said to be Φ-invariant if f ◦ φt = f µ-a.e. for all t ∈ R.
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Then, dα is a symplectic form on TΣ for which the geodesic flow is the Hamiltonian flow of
H(z, v) = 1/2 |v|2, that is

dH(ξ) = −dα(X, ξ) , ∀ ξ ∈ T (TΣ) .
It follows that, for all (z, v) ∈ T 1Σ,

α(z,v)(X(z, v)) =< d(z,v)π(X(z, v)), v >=< v, v >= 1 ,

and
dα(X, ξ) = −dH(ξ) = 0 , ∀ ξ ∈ T (T 1Σ) ,

since H is constant on T 1Σ.
It follows that the flow Φ preserves α and dα, in particular it preserves α∧dα, hence the Liouville

measure. Indeed,
LXα = iX(dα) + d(iXα) = 0 ,

since iXα = α(X) = 1 and iX(dα)(ξ) = dα(X, ξ) = 0 for all ξ ∈ T (T 1Σ). □

Example 4.6. The geodesic flow Φ = {φt} on the flat torus T2 is not ergodic. For all (z, v) ∈
T 1T2, we have φt(z, v) = (γ(z,v)(t), v) for all t ∈ R. Hence, if [a, b] ⊂ S1 denotes a finite arc

of directions of positive Lebesgue measure, the set Aa,b = T2 × [a, b] ⊂ T 1T2 is Φ-invariant, and
µ(Aa,b) = m(T2) · ℓ([a, b]) ̸= 0.

The same problem arises for the geodesic flow on the sphere S2 with constant positive curvature.

In the following of this section, we prove that the geodesic flow on a closed surface with negative
curvature is ergodic with respect to the Liouville measure. First, we prove this result in the case
of constant negative curvature using the algebraic framework introduced in Section 2.3. Actually,
we prove a more general result.

Theorem 4.7. Let Γ < SL(2,R) be a lattice, that is a discrete subgroup such that Σ = Γ\H2 has
finite volume. Then, the right action of all non-elliptic elements g ∈ SL(2,R) is measure preserving
and ergodic with respect to the Liouville measure µ on T 1Σ.

Proof. The Liouville measure µ is invariant by the left action of all elements g ∈ SL(2,R) since
they are isometries. That the right action of g is measure preserving with respect to µ follows from
the fact that SL(2,R) is unimodular (see [EW11, Proposition 9.19]).

It remains to prove that the right action of non-elliptic elements of SL(2,R) is ergodic with
respect to µ. By Proposition 4.4, it is enough to show that all g-invariant functions in L2(T 1Σ) are
constant µ-a.e. We adapt a more general argument from Margulis (see [EW11, Proposition 11.18]).

First, let g ∈ SL(2,R) be a hyperbolic element. Then, up to conjugacy, we let g = λa with
a ∈ R \ {0,±1} (see Definition 2.5) and |a| > 1. The case |a| < 1 follows analogously. We now
prove the following claim: If f ∈ L2(T 1Σ) is λa-invariant, then it is constant µ-a.e.

By rescaling f , we assume ∥f∥2 = 1. Since the action SL(2,R) ∋ h 7→ f ◦h ∈ L2(T 1Σ) is unitary
and continuous, we obtain that the map

(4.2) SL(2,R) ∋ h 7→ p(h) :=< f ◦ h , f >
is continuous. Moreover, for all n,m ∈ Z,
(4.3) p(λna hλ

−m
a ) =< f ◦ (λna h) , f ◦ λma >= p(h)

since f is λa-invariant. Let us now consider the one-dimensional subgroup {τb}b∈R. For all τb, we
have by a direct computation that λna τb λ

−n
a → Id for n→ −∞. Hence, by (4.3) and the continuity

of p(·),
p(τb) = lim

n→−∞
p(λna τb λ

−n
a ) = p(Id) = 1 .

Then, by the Cauchy-Schwarz inequality, 1 = |p(τb)| ≤ ∥f ◦ τb∥2 ∥f∥2, and it follows that f ◦ τb = f
µ-a.e. for all b ∈ R.
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In the same way, one can prove that if f ∈ L2(T 1Σ) is λa-invariant, then it is invariant under
the action of exp(δH−) for all δ ∈ R (see (2.14)). Recalling that SL(2,R) is generated by the
subgroups {τb}b and {exp(δH−)}δ, it follows that if f ∈ L2(T 1Σ) is λa-invariant, it is SL(2,R)-
invariant. Hence, f is constant µ-a.e. because the action of SL(2,R) on H2 is transitive.

Let’s consider now the case of a parabolic g ∈ SL(2,R). Up to conjugacy, we let g = τb with
b ∈ R. As before, we prove that: If f ∈ L2(T 1Σ) is τb-invariant, then it is constant µ-a.e.

We follow the same ideas as before. Fixed b ∈ R, let {εk} be a vanishing sequence in R+ such
that bεk ∈ R\Q for all k ∈ N. Then, classical results in Diophantine approximation of real numbers
guarantee the existence of sequences {nk} and {mk} in Z such that

|nk bεk − 1| < εk and

∣∣∣∣mk bεk +
nk bεk

1 + nk bεk

∣∣∣∣ < εk .

Let now consider the elements hk = exp(εkH−). If f ∈ L2(T 1Σ) is τb-invariant, using the function
p(h) defined in (4.2), by (4.3) we have

p(τnk
b hk τ

mk
b ) = p(hk)→ p(Id) = 1 , as k → +∞,

At the same time,

τnk
b hk τ

mk
b =

(
1 + nk bεk (1 + nk bεk)mk b+ nk b

εk 1 +mk bεk

)
→

(
2 r

0 1
2

)
=: h̄ , as k → +∞,

up to the choice of as subsequence {kj}. Therefore, the continuity of the function p(h) implies

p(τnk
b hk τ

mk
b )→ p(h̄) , as k → +∞,

and, as before, from p(h̄) = 1, we obtain that f ◦ h̄ = f µ-a.e.
Finally, since h̄ is a hyperbolic element in SL(2,R), it is conjugate to some λa with a ∈ R\{0,±1}.

Hence, we have proved that if f ∈ L2(T 1Σ) is τb-invariant for any b ∈ R, it is λa-invariant for some
a ∈ R\{0,±1}. As proved above, this shows that f is constant µ-a.e. and the proof is finished. □

Corollary 4.8. Let Γ < SL(2,R) be a lattice and Σ = Γ\H2. Then, the geodesic flow and the
horocycle flows on Σ are measure preserving and ergodic with respect to the Liouville measure µ on
T 1Σ.

We now consider the non-constant curvature case.

Theorem 4.9 ([Ho39, Ho40]). Let Σ be a smooth closed connected orientable Riemannian surface
with negative curvature. Then, the geodesic flow is ergodic with respect to the Liouville measure
µ = m× ℓ on T 1Σ.

Proof. We follow the argument by Hopf as exposed in [Br95] for manifolds of arbitrary finite
dimension. The proof is divided into steps.

Step 1. Let f : T 1Σ → R be a measurable function invariant for the geodesic flow Φ = {φt}.
Then, there exists sets N s and Nu of null µ-measure, such that

f(z′, v′) = f(z, v) for all (z, v), (z′, v′) ∈ T 1Σ \ (N s ∪Nu) and (z′, v′) ∈W s(z, v) ∪W u(z, v).

Without loss of generality let f be a non-negative Φ-invariant function. Then, for all C > 0, the
function fC := min{f, C} is in L1(T 1Σ, µ) and Φ-invariant. Hence, there exists a sequence {gn}n∈N
of continuous functions on T 1Σ such that ∥fC − gn∥1 < 1/n.

For each n ∈ N, Theorem 4.2 implies that there exists (gn)Φ such that

(gn)Φ(z, v) = lim
T→+∞

1

T

∫ T

0
gn(φt(z, v)) dt
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for µ-a.e. (z, v) ∈ T 1Σ. Then, if (z′, v′) ∈ W s(z, v) and (gn)Φ(z
′, v′) exists, (gn)Φ(z

′, v′) =
(gn)Φ(z, v) because gn is uniformly continuous.

Finally, using that the Liouville measure µ is Φ-invariant, we obtain

1

n
>

∫
T 1Σ
|fC(z, v)− gn(z, v)| dµ =

∫
T 1Σ
|fC(φt(z, v))− gn(φt(z, v))| dµ

=

∫
T 1Σ
|fC(z, v)− gn(φt(z, v))| dµ ,

from which∫
T 1Σ

∣∣∣∣fC(z, v)− 1

T

∫ T

0
gn(φt(z, v)) dt

∣∣∣∣ dµ ≤ 1

T

∫ T

0

∫
T 1Σ
|fC(z, v)− gn(φt(z, v))| dµ dt <

1

n
.

Passing to the limit for n→∞, we obtain that ∥fC − (gn)Φ∥1 → 0.
Therefore, there exists a set N s

n of null µ-measure, such that for all (z, v), (z′, v′) ∈ T 1Σ \ N s
n

and (z′, v′) ∈W s(z, v) the value (gn)Φ(z
′, v′) exists and is equal to (gn)Φ(z, v). Hence, fC(z

′, v′) =
fC(z, v) for all (z, v), (z

′, v′) ∈ T 1Σ \N s
n and (z′, v′) ∈W s(z, v) where N s = ∪n∈NN s

n.
The same argument works for the unstable manifold.

Step 2. The weak stable and weak unstable manifolds give absolutely continuous foliations of
T 1Σ. That is, for each (z, v) ∈ T 1Σ, let U be an open set for which U ∩W cs(z, v) is a union of
local stable manifolds, i.e. there exists T > 0 for which

U ∩W cs(z, v) =
⋃

t∈(−T,T )

(W s
loc(φt(z, v)) ∩ U) .

Then, there is a measurable family of positive measurable functions ht : W
s
loc(φt(z, v)) ∩ U → R

such that for any measurable set A ⊂ U

µcs(A ∩W cs(z, v)) =

∫ T

−T

(∫
W s

loc(φt(z,v))∩U
χA(z

′, v′)ht(z
′, v′) dµs(z

′, v′)
)
dt ,

where µcs and µs denote the two and one dimensional volumes induced from µ on W cs(z, v) and
W s(z, v), respectively. And the analogous result holds for the weak unstable manifold.

This follows putting together that: the geodesic flow is smooth; the local stable and unstable
manifolds are smooth; the strong stable and unstable foliations are C1 (see Theorem 3.7).

Step 3. Let f : T 1Σ → R be a measurable function invariant for the geodesic flow Φ = {φt}.
Then, f is constant µ-a.e.

From Step 1, a Φ-invariant measurable function f is constant on the strong stable and unstable
manifolds up to a set of null µ-measure. Since the strong foliations are C1, we can repeat Step 2
using the weak and the strong foliations to obtain an absolutely continuous foliation of the manifold,
on which the function f is then constant µ-a.e. □

The proof of Theorem 4.9 can be adapted to finite volume surfaces with curvature bounded and
bounded away from 0.
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5. A detour: flows under a function

A classical method to study the dynamics of a flow is the identification of a Poincaré section for
the flow and the definition of a Poincaré map. The result of this classical procedure is modelling
the flow by a flow under a function.

Definition 5.1. Given a set M and a map T :M →M , consider a function τ :M → [0,+∞) and
define the space

Mτ := {(p, s) ∈M × R : 0 ≤ s ≤ τ(p)} / ∼
with (p, τ(p)) ∼ (T (p), 0). The function τ is called the roof function ofMτ and the map T :M →M
is called the base map.
The semi-flow under the function τ is the “vertical” flow V = {Vt} defined onMτ for all t ∈ [0,+∞)
as

Mτ ∋ (p, s) 7→ Vt(p, s) = (p, s+ t) ∈Mτ .

If the map T is invertible, the maps Vt can be defined for all t ∈ R and define the flow under the
function τ .

When the map T is the Poincaré map on a section X, then τ is the return time function for the
flow.

Proposition 5.2. Given a measure space (M,ν) and a ν-measure-preserving map T :M →M , the
semi-flow V = {Vt} under a function on Mτ , with τ ∈ L1(M,ν), preserves the probability measure
µτ := (ν × ℓ)/

∫
M τ dν.

Proof. It’s enough to control the µτ -measure of the sets of the form A × (s1, s2) for A ⊂ M ν-
measurable. Then, the results follows by checking that the µτ -measure doesn’t change when the
set goes through the roof of Mτ . □

Proposition 5.3. Given a probability space (M,ν) and a ν-measure-preserving map T :M →M ,
the semi-flow V = {Vt} under a function on Mτ , with τ ∈ L1(M,ν), is ergodic with respect to µτ
if and only if T is ergodic with respect to ν.

Proof. Let’s assume that the base map T is ergodic on (M,ν) and let f :Mτ → R be in L2(Mτ , µτ )
and V -invariant, that is f ◦ Vt = f µτ -a.e. for all t ∈ R. Then, there exists a set N ⊂ M of null
ν-measure such that

g(p) :=
1

τ(p)

∫ τ(p)

0
f(p, s) ds

is defined for all p ∈ M \ N , and g(p) = f(p, 0) and g(T (p)) = f(T (p), 0). Since f(T (p), 0) =
f(p, τ(p)) = (f ◦ Vτ(p))(p, 0), it follows g(p) = g(T (p)) for ν-a.e. p ∈ M . By the ergodicity of the
base map T , it follows that g(p) is constant ν-a.e. Hence f(p, s) is constant µτ -a.e.

On the other direction, let’s assume that the flow V is ergodic on (Mτ , µτ ). Given a function
g ∈ L2(M,ν) which is T -invariant, we define f(p, s) = g(p) for all s ∈ [0, τ(p)). Then, f(p, s+ t) =
f(p, s) for all t ∈ [−s, τ(p)− s). For the other t’s, we have

f(p, s+ t) = f(T (p), s+ t− τ(p)) = g(T (p)) = g(p) = f(p, s)

for all t ∈ [τ(p) − s, τ(T (p)) + τ(p) − s), and the argument can be repeated for the other cases to
show that f is V -invariant. Hence, f(p, s) is µτ -a.e. constant, and the same holds for g for ν-a.e.
p ∈M . □

Exercise 5.4. Consider T2 = R2/Z2 and the flow Φ = {φt} given by

[0, 1)× [0, 1) ∋ (x, y) 7→ φt(x, y) = (x, y) + tv ∈ T2
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for a fixed v = (v1, v2) ∈ R2 with |v| = 1, v1 ≥ 0, and v2 ̸= 0. Consider the section M =
{0}× [0, 1) ⊂ T2, compute the return time function τ on M , and define the Poincaré map T on M .
Find the conditions on v under which the Poincaré map is ergodic.

It turns out that flows under a function are an important class to study. For a proof of the next
result see also [FH19, Theorem 3.6.2].

Theorem 5.5 ([Am41]). Let Φ be a measure-preserving flow on a Lebesgue space with essentially
no fixed points, then Φ is isomorphic to a flow under a function.

5.1. The modular surface SL(2,Z)\H2. The following material is from [BDI24, Appendix A].
Let us consider the quotient of H2 by the action of the lattice SL(2,Z), in this section Σ denotes
the modular surface, that is the quotient SL(2,Z)\H2, with fundamental domain

F =

{
z = x+ iy ∈ H2 : |x| ≤ 1

2
, |z| ≥ 1

}
,

and let π : H2 → Σ be the standard projection. By Corollary 4.8, the geodesic flow on Σ is measure
preserving and ergodic with respect to the Liouville measure µ. Here we construct a Poincaré
section and write the geodesic flow as a flow under the return time function. This is similar in
spirit to the results in [AF84, Se85] and uses essentially the same Poincaré section as in [Ma12].

Given n ∈ Z, let In denote the vertical line in H2 given by

In =
{
x+ iy ∈ H2 : x = n

}
and let

I+ := I0 ∩ F =
{
z ∈ H2 : x = 0, y ≥ 1

}
and I− := I0 \ I+ =

{
z ∈ H2 : x = 0, 0 < y < 1

}
.

Our Poincaré section will be the set

C :=
{
(z, v) ∈ T 1Σ : z ∈ I+, θ(v) ̸= 0, π

}
,

where θ is as in (2.8). Set moreover C :=
{
(z, v) ∈ T 1H2 : dπ(z, v) ∈ C

}
. Using ψS(i) = i and

ψS(I+\{i}) = I−, with S defined as in Definition 2.5, and the fact that the lift dψS : T 1H2 → T 1H2

satisfies

θ(dψS(z, v)) = θ(v) + π (mod 2π) , ∀ (z, v) ∈ T 1H2 with z ∈ I0,
for each (z, v) ∈ C there exists (z′, v′) ∈ T 1H2 with z′ ∈ I0 and θ(v′) ∈ (−π, 0) such that dπ(z′, v′) =
(z, v). Hence in the following we identify C with the set of points on I0 with tangent unit vector v
pointing towards the half-plane of points with strictly positive real part, in accordance with

(5.1) C = dπ
({

(z, v) ∈ T 1H2 : z ∈ I0 , θ(v) ∈ (−π, 0)
})

.

Stated otherwise, when we write (z, v) ∈ C we think of it as a couple with z ∈ I0 and θ ∈ (−π, 0).
Analogously we set

(5.2) C =
{
(z, v) ∈ T 1H2 : ∃ g ∈ SL(2,Z) such that ψg(z) ∈ I0 , θ(dψg(z, v)) ∈ (−π, 0)

}
.

Subsets of C which play an important role in the rest of the section are points with base on the
lines In and on the half-circles

Jn :=

{
x+ iy ∈ H2 :

(
x− n− 1

2

)2

+ y2 =
1

4

}
.

Note that In = ψnτ1(I0) and Jn = ψnτ1(ψl(I0)), where

l =

(
1 0
1 1

)
.
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Note moreover that for each n ∈ Z the lines In, Jn and In+1 are the sides of the hyperbolic triangle

∆n :=

{
x+ iy ∈ H2 : n ≤ x ≤ n+ 1,

(
x− n− 1

2

)2

+ y2 ≥ 1

4

}
with vertices in n, n+1 ∈ R and∞ (each ∆n contains three copies of the fundamental domain F).

Let (z, v) ∈ C and γ(z,v)(t) be the corresponding geodesic. Since θ(v) ∈ (−π, 0) we have γ+(z,v) ∈
R+ and γ−(z,v) ∈ R−. We let

G :=
{
(γ, η) : γ, η ∈ R+

}
and consider the map

G : C → G, (z, v) 7→ G(z, v) =
(
γ+(z,v),−γ

−
(z,v)

)
.

Using the identification of T 1H2 with PSL(2,R) in (2.11), we have

(5.3) (z, v) = G−1(γ, η) ⇒ g(z,v) =


(
η
γ

) 1
4 γ√

γ+η
−
(
γ
η

) 1
4 η√

γ+η(
η
γ

) 1
4 1√

γ+η

(
γ
η

) 1
4 1√

γ+η

 .

We now consider the return to C starting from a point (z, v) ∈ C and along γ(z,v)(t) for positive
times t. Let (γ, η) = G(z, v). Given (z′, v′) the point in C of the first return, we can describe the
Poincaré map as a map

P : G→ G, Pg(γ, η) = (γ′, η′) := G(z′, v′) .

Our aim is now to describe the map P on the points of G. The map Pg depends on the set of C
defined in (5.2) on which the first return occurs. The proof of the following result is straightforward.

Lemma 5.6. For (z, v) ∈ C, let (γ, η) = G(z, v). If the first return to C along γ(z,v)(t) for positive

t occurs on ψ−1
g (I0) for some g ∈ SL(2,Z), then (γ′, η′) = P(γ, η) satisfies

γ′ = ψg(γ) and η′ = −ψg(−η).

There are a couple of different cases to be considered. Given (z, v) = G−1(γ, η), if γ > 1 the first
return to C along γ(z,v)(t) for positive t occurs on I1 = ψτ1(I0). On the other hand, if γ < 1 it
occurs on J0 = ψl(I0). Finally, when γ = 1 there are no returns to C along γ(z,v)(t) for positive t.
However we can extend the map also to this case, and using Lemma 5.6 we obtain

(5.4) (γ′, η′) = P(γ, η) =


(γ − 1, η + 1) , if γ > 1;(

γ
1−γ ,

η
1+η

)
, if γ < 1;

(0,∞) , if γ = 1.

We can now construct the flow under a function associated to (G,P). Let (z, v) ∈ C and apply
the geodesic flow along γ(z,v)(t) for t positive. Letting (γ, η) := G(z, v), the first return of the
geodesic flow on C occurs at a time t̄(z, v) > 0, which can then be written as a function of (γ, η)
as τ(γ, η) := t̄(G−1(γ, η)). Let us now compute τ(γ, η). When γ > 1, we have seen that the first
return on C along γ(z,v)(t) for positive t occurs on I1. Hence, using the identification between T 1H2

and PSL(2,R) and Proposition 2.9, we write

gγ(z,v)(t) =

(
a b
c d

) (
e

t
2 0

0 e−
t
2

)
where g(z,v) =

(
a b
c d

)
,
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from which it follows that t̄(z, v) is the positive solution of

ℜ

(
a e

t
2 i+ b e−

t
2

c e
t
2 i+ d e−

t
2

)
= 1 .

A straightforward computation and (5.3) give

t̄(z, v) =
1

2
log

(
ac+ d2

ac− c2

)
and τ(γ, η) =

1

2
log

(
1 + 1

η

1− 1
γ

)
if γ > 1.

When γ < 1, we have seen that the first return on C along γ(z,v)(t) for positive t occurs on J0.
Hence, as before it follows that t̄(z, v) is the positive solution of∣∣∣∣∣

(
a e

t
2 i+ b e−

t
2

c e
t
2 i+ d e−

t
2

)
− 1

2

∣∣∣∣∣ = 1

2
.

A straightforward computation and (5.3) give

t̄(z, v) =
1

2
log

(
b2 − bd
ac− a2

)
and τ(γ, η) =

1

2
log

(
1 + η

1− γ

)
if γ < 1.

Now we can construct the flow under the roof function τ(γ, η) with base map P on G. Given

Gτ := {(γ, η, s) : (γ, η) ∈ G , γ ̸= 1 , 0 ≤ s ≤ τ(γ, η)} / ∼ ,
with (γ, η, τ(γ, η)) ∼ (P(γ, η), 0), we consider the vertical flow V = {Vt} on Gτ defined by

Vt(γ, η, s) = (γ, η, s+ t) .

Proposition 5.7. The following properties hold:

(i) The map P : G → G preserves the infinite measure ν which is absolutely continuous with
respect to the Lebesgue measure on G with density h(γ, η) = (γ + η)−2.

(ii) The roof functions τ(γ, η) is in L1(G, ν), hence the vertical flow V = {Vt} preserves the
probability measure µτ = (ν × ℓ)/

∫
G τ dν on Gτ .

(iii) The vertical flow V = {Vt} on (Gτ , µτ ) is isomorphic to the geodesic flow Φ = {φt} on
(T 1Σ, µ), where µ is the Liouville measure dµ(x, y, θ) = y−2 dx dy dθ, with θ = θ(v).
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6. Decay of correlations

We begin to study the “chaotic” properties of the geodesic flows. The chaos index we consider
is mixing and its rate. Let’s first recall the basic definitions.

Definition 6.1 (Mixing). Let (M,µ) be a probability space and Φ = {φt} a measurable flow on
M which preserves µ. The flow Φ is said to be mixing if for any two measurable sets A,B ⊂M

lim
t→+∞

µ(A ∩ φ−t(B)) = µ(A)µ(B) .

It is interesting to study the quantity

µ(A ∩ φ−t(B)) =

∫
M
χA (χB ◦ φt) dµ

for more general observables.

Definition 6.2 (Koopman operator). Let (M,µ) be a probability space and Φ = {φt} a measurable
flow on M which preserves µ. The Koopman operator Ut associated to Φ for t ∈ R is the linear
operator defined for all p ≥ 1 by

Ut : L
p(M,µ)→ Lp(M,µ) , Utf = f ◦ φt .

Definition 6.3 (Decay of correlations). Let (M,µ) be a probability space and Φ = {φt} a mea-
surable flow on M which preserves µ. Given f, g ∈ L2(M,µ), we call correlations of f and g with
respect to the flow Φ the quantities

CΦ(f, g, t) :=

∫
M
f (Utg) dµ−

(∫
M
f dµ

)(∫
M
g dµ

)
.

We say that the flow Φ has decay of correlations if for all f, g ∈ L2(M,µ)

lim
t→+∞

CΦ(f, g, t) = 0 .

Proposition 6.4. For a measure-preserving flow Φ = {φt} on the probability space (M,µ), the
following are equivalent:

(i) Φ is mixing.
(ii) Φ has decay of correlations.

The question we want to answer is whether it is possible to obtain an estimate on the rate of the
decay of correlations for observables in a functional subspace of L2. We can interpret this rate of
decay as a measure of chaoticity of the system.

The first results on a precise rate of decay of correlations for the geodesic flow on a negatively
curved surface were obtained in the case of constant curvature in [Ra87]. The main advantage was
clearly the possibility of using the algebraic structure. Here, we recall the proof that the geodesic
flow on the hyperbolic surfaces is mixing.

Theorem 6.5. Let Γ < SL(2,R) be a lattice and Σ = Γ\H2. Then, the geodesic flow on Σ is
mixing with respect to the Liouville measure µ on T 1Σ.

Proof. We follow [FH19, Theorem 3.4.32] and prove that the geodesic flow Φ = {φt} has decay of
correlations. First, we remark that the Koopman operator Ut is an isometry on L2 = L2(T 1Σ, µ).
Then, for all g ∈ L2, the set {Utg}t is bounded, hence there exist a sequence tk → +∞ and g∞ ∈ L2

such that Utkg converges weakly to g∞. The proof of the theorem is finished if we show that, for
all g ∈ L2, we have g∞ =

∫
T 1Σ g dµ and the convergence holds for Utg as t→ +∞.

Let ’s consider a fixed g ∈ L2 and a sequence {tk} for which tk → +∞ and

Utkg −−−−⇀
k→+∞

g∞ ∈ L2 .
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Then, on one hand, using Proposition 2.16 and the isometric property of the Koopman operator,
we have

∥Utkg ◦ u
+
s − Utkg∥2 = ∥Utk(g ◦ u

+
se−tk

)− Utkg∥2 = ∥g ◦ u
+
se−tk

− g∥2 −→
k→∞

0 ,

where {u+s } is the positive horocycle flow. On the other hand, being the Liouville measure u+s -
invariant by Corollary 4.8, we have

Utkg ◦ u
+
s −−−−⇀

k→+∞
g∞ ◦ u+s

for all fixed s. It follows that

∥g∞ ◦ u+s − g∞∥2 = 0 .

Since the horocycle flow is ergodic with respect to the Liouville measure (see Corollary 4.8), then
g∞ =

∫
T 1Σ g dµ.

Finally, the same argument can be repeated for all sequences {tk} for which tk → +∞, hence

Utg −−−−⇀
t→+∞

∫
T 1Σ

g dµ

and the thesis follows. □

The argument in the proof of Theorem 6.5 can be repeated for the geodesic flow on a negatively
curved closed surface Σ, by proving that for all g ∈ L2(T 1Σ, µ) the weak-accumulation points of
{Utg} are µ-a.e. constant along the strong stable and unstable foliations. Then, we obtain the
following result, whose proof can be found in [FH19, Theorem 7.1.9].

Theorem 6.6. Let Σ be a smooth closed connected orientable Riemannian surface with negative
curvature. Then, the geodesic flow is mixing with respect to the Liouville measure µ on T 1Σ.

We conclude this short discussion about the mixing property, by recalling the Anosov alternative
for flows under a functions.

Theorem 6.7. Let Φ be a measure preserving Anosov flow then:

either the strong stable and unstable foliations are ergodic and Φ is mixing;
or the flow is the flow under a function with constant roof function and base map given by an

Anosov diffeomorphism.

This gives another proof of Theorem 6.6.

Corollary 6.8. Contact measure preserving Anosov flows are mixing.

Proof. We show that a contact Anosov flow Φ = {φt} cannot be given by a flow under a function
with constant roof. For simplicity, we consider flows on three dimensional manifolds.

Let α be the 1-form such that the flow vector field X = d/dt|t=0φt satisfies α(X) = 1, α ∧ dα
is non-degenerate, and dα(X, ξ) = 0 for all vector fields ξ. It follows by the Anosov property that
kerα = Es ⊕ Eu. If the flow is a flow under a constant function, then kerα is tangent to the
foliation into level sets of time, hence α = a(s)ds for some smooth function a. But then, dα = 0
contrarily to the non-degeneracy assumption on α ∧ dα. □

6.1. Exponential decay of correlations. Finally, we are ready to state and prove the estimate
on the decay of correlations for geodesic flows.

Definition 6.9 (Rates of decay of correlations). Let (M,µ) be a probability space and Φ = {φt} a
measurable flow on M which preserves µ. Given a function r : R→ (0,+∞) such that r(t)→ 0 as
t→ +∞ and two Banach spaces (B, ∥·∥B) and (B′, ∥·∥B′) continuously embedded in (L2(M,µ), ∥·∥2),
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we say that the flow Φ has decay of correlations with rate r(t) on B and B′ if there exists a constant
C > 0 such that for all f ∈ B and g ∈ B′

(6.1) |CΦ(f, g, t)| ≤ C ∥f∥B ∥g∥B′ r(t) .

In particular, we say that flow Φ has exponential decay of correlations on B and B′ if (6.1) holds
with r(t) = ϑt for some ϑ ∈ (0, 1).

Theorem 6.10 ([Do98, Li04]). Let Σ be a smooth closed connected orientable Riemannian surface
with negative curvature. Then, the geodesic flow has exponential decay of correlations on couples
of C1 observables.

The proof uses the transfer operator Lt associated to the geodesic flow Φ = {φt} on Σ, defined
as the operator dual to the Koopman operator with respect to the Liouville measure µ, that is∫

T 1Σ
f (Utg) dµ =

∫
T 1Σ

(Ltf) g dµ , ∀ f, g ∈ L2(T 1Σ, µ) ,

from which, since µ is Φ-invariant,

(6.2) Ltf = f ◦ φ−t .

It follows from (6.2) that the constant functions are fixed by the transfer operator, and this is
equivalent to the Liouville measure being Φ-invariant. Hence, we restrict ourselves to the case of
functions f ∈ L2(T 1Σ, µ) with

∫
T 1Σ fdµ = 0. This can be done without loss of generality. Let

f = f0 + c for c ∈ R and
∫
T 1Σ f0dµ = 0. Then, for all g ∈ L2(T 1Σ, µ),

CΦ(f, g, t) =

∫
T 1Σ

f0 (Utg) dµ+ c

∫
T 1Σ

Utg dµ− c
∫
T 1Σ

g dµ = CΦ(f0, g, t) ,

where we have used that µ is Φ-invariant. Then, we follow [Li04] in proving Theorem 6.10 as a
corollary of the following result for the transfer operator Lt. See Appendix A for an example of
the application of the transfer operator method to discrete dynamical systems.

We need to define a Banach space B of functions on which we can control the action of Lt. We
begin by introducing a couple of dynamical distances. The geodesic flow on Σ is Anosov, hence we
find constants λ ∈ (0, 1) and µ > 1 as in Definition 3.1.

Definition 6.11. Let σ ∈ (0,+∞) such that eσ ∈ (1,min{λ−1, µ}) and let

ds((z, v), (z
′, v′)) :=

∫ +∞

0
eσt d(φt(z, v), φt(z

′, v′)) dt ,

du((z, v), (z
′, v′)) :=

∫ 0

−∞
e−σt d(φt(z, v), φt(z

′, v′)) dt ,

where d(·, ·) is the Riemannian metric on T 1Σ.

The two dynamical (pseudo-)distances ds, du are finite and smooth only on points which belong
to the same strong stable and unstable manifold, respectively. Moreover,

(6.3)
ds(φt(z, v), φt(z

′, v′)) ≤ e−σt ds((z, v), (z′, v′)) , ∀ t > 0 ,

du(φt(z, v), φt(z
′, v′)) ≤ eσt du((z, v), (z′, v′)) , ∀ t < 0 .

Then, we consider the spaces of Hölder functions with respect to these distances. For a fixed
δ > 0, let for β > 0 and h ∈ C1(T 1Σ)

(6.4) Hs,β(h) := sup
ds((z,v),(z′,v′))<δ

|h(z, v)− h(z′, v′)|
ds((z, v), (z′, v′))β

, |h|s,β := ∥h∥∞ +Hs,β(h) .
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Then, we denote by Cβs ⊂ C0(T 1Σ) the closure of C1(T 1Σ) with respect to | · |s,β. The analogous

definitions using du lead to quantities Hu,β(h) and |h|u,β, and to the space Cβu .
We are now ready to introduce an auxiliary space B of Banach functions useful in the proof of

the result.

Definition 6.12. Let f ∈ C1(T 1Σ) and β ∈ (0, 1). Let’s consider the following quantities

|f |w := sup
h∈C1

s , |h|s,1≤1

∫
T 1Σ

f h dµ ,

∥f∥B := Hu,β(f) + sup
h∈Cβ

s , |h|s,β≤1

∫
T 1Σ

f h dµ .

Then, we define the space B to be the closure of C1(T 1Σ) with respect to ∥ · ∥B, and the space Bw
to be the closure of C1(T 1Σ) with respect to | · |w.

Theorem 6.10 follows from:

Theorem 6.13 ([Li04]). The transfer operators Lt defined in (6.2) form a strongly continuous
group on B. In addition, there exist constants C > 0 and θ ∈ (0, 1) such that for all f ∈ C1(T 1Σ)
with

∫
T 1Σ fdµ = 0 one has

(6.5) ∥Ltf∥B ≤ C ∥f∥C1 θt , ∀ t > 0 .

Proof of Theorem 6.10. For all f ∈ C1 with
∫
T 1Σ fdµ = 0 and g ∈ C1 ⊂ Cβs , with β ∈ (0, 1), we

can apply Theorem 6.13 to obtain constants C > 0 and θ ∈ (0, 1), independent on f and g, such
that for all t > 0,

|CΦ(f, g, t)| =
∣∣∣ ∫

T 1Σ
(Ltf) g dµ

∣∣∣ ≤ ∥Ltf∥B |g|s,β ≤ C ∥f∥C1 ∥g∥C1 θt ,

where we have used that, by definition, B is contained in the dual of Cβs . □

We now give a sketch of the main steps of the proof of Theorem 6.13. For all the details, we
refer to [Li04].

Proof of Theorem 6.13. The idea is to overcome the problems due to the existence of a central
direction for the action of the time-t maps of the flow Φ = {φt} in the tangent space to T 1Σ, by
using the spectral properties of the infinitesimal generator of the group Lt. First, one needs to
prove the following lemma. We fix a β ∈ (0, 1) as in the statement of Theorem 6.10.

Lemma 6.14. The operators Lt extend to a group of bounded operators on B and Bw, and they
form a strongly continuous group. In addition, for all f ∈ Bw

|Ltf |w ≤ |f |w ,
and for each β′ ∈ (0, β) there exists a constant C1 > 0 such that for all f ∈ B

∥Ltf∥B ≤ ∥f∥B , ∥Ltf∥B ≤ 3e−σβ
′t ∥f∥B + C1 |f |w .

Then, the operators Lt are equi-continuous on B with spectrum spec(Lt|B) ⊆ B(0, 1) = {ζ ∈ C :
|ζ| ≤ 1}. In addition, one can consider the infinitesimal generator

L(f) := lim
t→0

Ltf − f
t

which has domain D(L) containing the smooth functions, on which it coincides with the vector
field defining the flow. By Lemma 6.14, the spectrum of L, spec(L), is contained in the half plane
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{ℜ(ζ) ≤ 0}, and 0 is an eigenvalue corresponding to constant functions in D(L). Then, we can
consider the resolvent

(6.6) {ℜ(ζ) > 0} ∋ ζ 7→ R(ζ)f := (ζId− L)−1f =

∫ +∞

0
e−ζt Ltf dt .

Lemma 6.15. For each ζ ∈ {ℜ(ζ) > 0}, R(ζ) is compact as an operator from B to Bw. In addition,
for f ∈ D(L2) it holds

(6.7) R(ζ)f − ζ−1f + ζ−2L(f) = ζ−2R(ζ)L2(f) ,

and for f ∈ D(L2) ∩ C0, using ζ = ρ+ iη, ρ, η ∈ R, one can write

(6.8) Ltf =
1

2π

∫ +∞

−∞
e(ρ+iη)tR(ρ+ iη)f dη , with ρ = ℜ(ζ) > 0 fixed.

To obtain the estimate (6.5), we need to shift the contour of integration in (6.8) to the half plane
{ℜ(ζ) < 0}. And, to this aim, we need a better control of the spectrum of L.

Lemma 6.16. For each ζ ∈ C with ρ = ℜ(ζ) > 0, and for all f ∈ C1(T 1Σ), it holds

∥R(ζ)∥B ≤ ρ−1 , ∥R(ζ)jf∥B ≤
3

(ρ+ σβ′)j
∥f∥B + C1 ρ

−j |f |w ,

where σ is as in Definition 6.11, and β′ and C1 are as in Lemma 6.14.
In addition, there exist ρ̄ > 1, η̄ > 0, and ν ∈ (0, 1), such that for all ζ = ρ+ iη with ρ ∈ [ρ̄−1, ρ̄]

and |η| ≥ η̄, the spectral radius of R(ζ)|B is bounded by ν ρ−1.

Proof. The first inequality follows from (6.6) and Lemma 6.14, since

∥R(ζ)f∥B ≤
∫ +∞

0
e−ρt ∥Ltf∥B dt ≤ ρ−1 ∥f∥B , ∀ f ∈ C1 .

For the second inequality, we use the formula

R(ζ)jf =
1

(j − 1)!

∫ +∞

0
tj−1 e−ζt Ltf dt , ∀ j ∈ N .

Again from Lemma 6.14, it follows,

∥R(ζ)jf∥B ≤
1

(j − 1)!

∫ +∞

0
tj−1 e−ρt ∥Ltf∥B dt ≤

≤ 1

(j − 1)!

∫ +∞

0
tj−1 e−ρt

(
3e−σβ

′t ∥f∥B + C1 |f |w
)
dt =

=
3

(ρ+ σβ′)j
∥f∥B + C1 ρ

−j |f |w .

The proof of the last statement can be found in [Li04, Sections 5-6]. □

Applying Theorem A.1, the inequalities in Lemma 6.16 show that, for all ζ = ρ+ iη with ρ > 0,
we have essspec(R(ζ)|B) ⊆ B(0, (ρ+σβ′)−1). Since, by (6.6), L = ζ−R(ζ)−1 for all ζ ∈ {ℜ(ζ) > 0},
setting Aζ(w) := ζ − w−1, we find that

essspec(L|B) ⊆
⋂

ζ=ρ+iη,ρ>0

Aζ

(
B(0, (ρ+ σβ′)−1)

)
=
{
ℓ ∈ C : ℜ(ℓ) ≤ −σβ′

}
.

Actually, more can be obtained by using the last statement in Lemma 6.16. Namely, there exists
r0 > 0 such that

(6.9) spec(L|B) ∩ {ℓ ∈ C : ℜ(ℓ) > −r0} = {0} .
We need the last estimate on the resolvent.
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Lemma 6.17. There exists r ∈ (0, r0) for which there exists C2 > 0 such that for all ρ ∈ [−r, 0]
and η ∈ R, we have

∥R(ρ+ iη)∥B ≤ C2 (1 +
√
|η|) .

Now, we are ready to obtain the thesis of the theorem for f ∈ D(L2) ∩ C0. By (6.9), we can
move the line of integration in (6.8) to the left of {ℜ(ζ) = 0}, and write

Ltf =
1

2π

∫ +∞

−∞
e(−r+iη)tR(−r + iη)f dη =

1

2π

∫ +∞

−∞
e(−r+iη)t

(
R(−r + iη)− (−r + iη)−1

)
f dη ,

where we have used the Residue Theorem to add the last term which has vanishing integral. By
(6.7) and Lemma 6.17, it follows

∥Ltf∥B ≤
1

2π
e−rt

∫ +∞

−∞

1

r2 + η2

(
∥L(f)∥B + ∥R(r + iη)∥B ∥L2(f)∥B

)
dη ≤

≤ 1

2π
e−rt

∫ +∞

−∞

1

r2 + η2

(
∥L(f)∥B + C2 (1 +

√
|η|) ∥L2(f)∥B

)
dη ≤

≤C3

(
∥L(f)∥B + ∥L2(f)∥B

)
e−rt .

Finally, we consider any f ∈ C1, with
∫
T 1Σ f dµ = 0, and prove the statement. Let ξ : R→ [0,+∞)

be a fixed C∞ function with support in (0, 1) and
∫
R ξ(t)dt = 1. Then, for each ε > 0 let

ξε(t) := ε−1 ξ(ε−1t), and set

fε :=

∫ ε

0
ξε(t) (Ltf) dt .

Then, fε ∈ D(Ln) ∩ C1 for all n ∈ N, and

∥fε − f∥B ≤
∫ ε

0
ξε(t) ∥Ltf − f∥Cβ dt ≤ εβ ∥f∥C1 sup

t∈[0,1]
|φ−t|C1 .

Moreover,

∥L2fε∥B ≤
∫ ε

0
|ξ′′ε (t)| ∥Ltf∥B dt ≤ ε−2 ∥ξ′′∥1 ∥f∥C1 .

Hence, for all t > 0 and all ε > 0, we have

∥Ltf∥B ≤ ∥Ltfε∥B + ∥fε − f∥B ≤
(
C4 ε

−2 e−rt + C5 ε
β
)
∥f∥C1 .

Choosing ε = e−r(β+2)−1t, we find that for all f ∈ C1, with
∫
T 1Σ f dµ = 0, and all t > 0

∥Ltf∥B ≤ C∥f∥C1 ϑt

with ϑ = e−rβ(β+2)−1
. □
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7. Zeta functions counting periodic orbits

Given a set M and a map T : M → M for which Fix(Tn), the set of fixed points of the iterate
Tn, is finite for all n ∈ N, one can build the Zeta function

(7.1) ZT (w) := exp
+∞∑
n=1

wn

n
#Fix(Tn) ,

a complex function to control the exponential rate of increase of #Fix(Tn) by the convergence
radius of Z(w). This idea was introduced in [AM65], where it was proved that a C1-dense set of
diffeomorphisms of a smooth compact manifold satisfies

h(T ) := lim sup
n→+∞

1

n
log (#Fix(Tn)) < +∞ ,

hence Z(w) has a positive radius of convergence.
We now show the properties of the Zeta function for a simple example, a subshift of finite type.

Let A be a finite alphabet of N elements, for example A = {1, . . . , N}, and let Ω = AZ denote the
set of bi-infinite words with symbols from A, that is

Ω := {ω = (ωi)i∈Z : ωi ∈ A, ∀ i ∈ Z} .

We then consider a N ×N matrix M with coefficients mhk ∈ {0, 1} for h, k ∈ A, which we call the
transition matrix, and restrict our attention to the infinite words in ΩM ⊆ Ω which are allowed by
M , that is

ΩM :=
{
ω ∈ Ω : mωi ωi+1 = 1, ∀ i ∈ Z

}
.

The subshift of finite type is the dynamical system defined by the discrete-time action on ΩM of
the shift map

(7.2) σ : ΩM → ΩM , (σ(ω))i = ωi+1 ∀ i ∈ Z .

When endowed with the product topology over the discrete set A, Ωm is a compact space and the
shift map is continuous.

We now state two preliminary results. The first is a corollary of the well-known Perron-Frobenius
Theorem on matrices with non-negative coefficients.

Definition 7.1. A N×N matrixM with non-negative coefficients is called primitive if there exists
m ∈ N for which all entries of Mm are positive.

Lemma 7.2. If M is primitive, then M has a unique real positive maximal eigenvalue λM .

Lemma 7.3. For the fixed points of the iterates of the shift map, it is true that

#Fix(σn) = trace(Mn) .

Hence, if M is primitive,

h(σ) = lim
n→+∞

1

n
log (#Fix(σn)) = log λM ,

where λM is the maximal eigenvalue of M .

Lemma 7.3 implies that the Zeta function Zσ(w) for the subshift of finite type on ΩM has radius
of convergence λ−1

M and it defines an analytic function on {|w| < λ−1
M }. However, it is possible to

32



obtain a meromorphic continuation for Zσ(w) to C. For |w| < λ−1
M , we can write

(7.3)

Zσ(w) = exp

+∞∑
n=1

wn

n
#Fix(σn) = exp

+∞∑
n=1

wn

n
trace(Mn) = exp

+∞∑
n=1

1

n
trace((wM)n)

= exp trace
( +∞∑
n=1

1

n
(wM)n

)
= exp trace

(
− log(Id− wM)

)
= det exp

(
− log(Id− wM)

)
=

1

det(Id− wM)
.

This is the required continuation, which shows that Zσ(w) is a meromorphic function on C with
poles of finite order at the values wj for which w−1

j is an eigenvalue of M . Hence, under the

assumptions of Lemma 7.2, the smallest pole is a simple one at λ−1
M .

This is the property we would like to obtain also for a general dynamical system by using a
suitable transfer operator instead of M . This would give us information on the growth of the
number of periodic points, for which in general we don’t have an explicit relation like that in
Lemma 7.3. Before coming back to the geodesic flow on negatively curved surfaces, let’s make a
last remark on the Zeta function (7.1).

Let’s write w = e−αh with α ∈ C and h = h(σ). Indicating with “ppo” the set of primitive
periodic orbits and by ℓ(·) the period of such an orbit, we obtain8 with some abuse of notation

(7.4)

Zσ(α) = exp
+∞∑
n=1

1

n
e−αnh#Fix(σn) = exp

+∞∑
n=1

1

n

∑
ω∈Fix(σn)

e−αnh

= exp
∑

γ ∈ ppo

+∞∑
m=1

1

m
e−αmℓ(γ)h = exp

∑
γ ∈ ppo

− log
(
1− e−αℓ(γ)h

)
=

∏
γ ∈ ppo

(
1− e−αℓ(γ)h

)−1
,

which is convergent for ℜ(α) > 1.
The last expression has the advantage of being well defined also for continuous-time dynamical

systems, under the assumption that primitive periodic orbits are at most a countable infinity.
Let Φ = {φt} be the geodesic flow on a smooth closed connected orientable negatively curved

Riemannian surface Σ. Given a primitive periodic orbit (ppo) γ for the flow, and denoting by ℓ(γ)
its length or period, we consider the counting function

(7.5) (0,+∞) ∋ T 7→ π(T ) := # {γ ∈ ppo : ℓ(γ) ≤ T} .

By Theorems 3.4 and 6.6, the flow Φ is Anosov and mixing with respect to the volume form on
T 1Σ. As a corollary we then obtain

Proposition 7.4 ([Bo72]). Let Σ be a smooth closed connected orientable Riemannian surface with
negative curvature. Then, the geodesic flow has countably many primitive periodic orbits and,

h(Φ) := lim
T→+∞

1

T
log π(T )

exists, is finite, and coincides with the topological entropy of the flow.

The following result gives a more precise estimate of the asymptotic behavior of π(T ).

8This is the analogous computation of that giving the Euler product expression for the Riemann Zeta function.
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Theorem 7.5 ([PP83, PS88]). Let Φ = {φt} be the geodesic flow on a smooth closed connected
orientable negatively cruved Riemannian surface Σ. Then, letting h = h(Φ), there exists c < h such
that

π(T ) =

∫ ehT

2

1

log τ
dτ +O(ecT ) .

The idea of the proof is to obtain “good” continuation properties for the Zeta function of the
flow Φ, and to do that one can use a flow under a function with base map a subshift of finite type.
The properties of the zeta functions are obtained by relating them to generalised complex transfer
operators associated to the base map. This procedure is part of the thermodynamic formalism
approach to dynamical systems.

In these notes we give the proof of the simpler result

(7.6) π(T ) ∼ ehT

hT
.

For the proof of Theorem 7.5 we refer the reader to [PS88] and the survey in [Ma04].

7.1. Thermodynamic formalism for subshifts of finite type. Let A be a finite alphabet
with N symbols, M a N × N transition matrix, and Ω+

M := (AN0)M the set of one-sided infinite

sequences with symbols from A and admissible with respect to M . Let the shift map σ act on Ω+
M

as in (7.2). This defines a one-sided subshift of finite type.
For ϑ ∈ (0, 1), consider the following metric on Ω+

M . For ω, ω̃ ∈ Ω+
M , let

N(ω, ω̃) := inf {i ∈ N0 : ωi ̸= ω̃i} ,
with N(ω, ω̃) = +∞ if ωi = ω̃i for all i ∈ N0, and define

dϑ : Ω+
M × Ω+

M → [0,+∞) , dϑ(ω, ω̃) = ϑN(ω,ω̃) .

The metric dϑ induces on Ω+
M the product topology, hence (Ω+

M , dϑ) is a compact metric space.

Let Bϑ be the space of Lipschitz functions on Ω+
M endowed with the norm

∥u∥ϑ := ∥u∥∞ + |u|ϑ , |u|ϑ := sup
ω ̸=ω̃

|u(ω)− u(ω̃)|
dϑ(ω, ω̃)

.

Fixed u ∈ Bϑ, we define the Ruelle transfer operator Lu to be the linear operator

(7.7) Lu : Bϑ → Bϑ , (Luf)(ω) =
∑

σ(ω̃)=ω

eu(ω̃) f(ω̃) .

The function u is called the potential of Lu. By varying the choice of the potential, one may reduce
Lu to the transfer operator defined in the previous section.

We now recall classical results for the Ruelle transfer operators. A classical reference is [PP90].
First, it is easy to see that Lu is bounded. If u is real and Lu1 = 1, we say that u is normalised.

Definition 7.6. Two functions u, v ∈ Bϑ are said to be cohomologous, and we write v ∼ u, if there
exists a continuous function g such that v = u+ g ◦ σ − g.

Lemma 7.7. If u ∈ Bϑ is real valued and Lu has a real positive eigenfunction fβ with eigenvalue
β ∈ (0,+∞), then v = u− log β − log fβ ◦ σ + log fβ ∼ u is normalised.

We now state the main result for the transfer operators Lu associated to a subshift of finite
type. The proof of the parts (a) and (c), known as the Ruelle-Perron-Frobenius Theorem, follows
by arguing as in the proof of Theorem A.2. For the other parts we refer the reader to [PP90].

Theorem 7.8 ([PP90]). Let M be a primitive transition matrix. Given a potential u ∈ Bϑ, we
have:

34



(a) If u is real valued and normalised, then:
(i) Lu has 1 as simple maximal eigenvalue with eigenfunction 1 ∈ Bϑ;
(ii) Lu has a spectral gap;
(iii) There exists a unique probability measure m such that L∗um = m, where L∗u is the dual

operator, and m is σ-invariant;
(iv) For all f ∈ C0(Ω+

M ), it holds Lnuf →
∫
Ω+

M
f dm uniformly as n→ +∞.

(b) If u is complex valued with ℜ(u) normalised, then:
(i) The spectral radius of Lu is bounded above by 1;
(ii) If Lu has an eigenvalue β of modulus 1 then it is simple and unique, and Lu =

βMLℜ(u)M−1 where M is a multiplication operator. In addition, Lu has a spectral
gap;

(iii) If Lu has no eigenvalues of modulus 1, then its spectral radius is strictly smaller than
1.

(c) If u is real valued and non-normalised, then:
(i) Lu has a simple maximal positive eigenvalue β with real positive eigenfunction fβ ∈ Bϑ;
(ii) Lu has a spectral gap;
(iii) There exists a unique probability measure m such that L∗um = βm, where L∗u is the

dual operator, and fβm is σ-invariant;

(iv) For all f ∈ C0(Ω+
M ), it holds β−nLnuf → fβ

∫
Ω+

M
f dm uniformly as n→ +∞.

(d) Let D ⊂ Bϑ denotes the set of non-necessarily real functions u such that Lu has a simple
maximal eigenvalue β(u) with spectral gap (clearly real valued functions are in D). Then:
(i) D is open;
(ii) the pressure P (u) := log β(u), fixed to be real for real valued potentials, is defined mod

2πi and is an analytic map;
(iii) if u ∈ D and u ∼ v+c+2πiṽ for some integer valued function ṽ, then P (u) = P (v)+c

(mod 2πi).

Having generalised the transfer operator, we can consider the analogous generalisation for the
Zeta function (7.1). Instead of simply counting the fixed points of σn, we can weigh them by using
a potential.

Given u ∈ Bϑ, we define the dynamical Zeta function of σ by

(7.8) Zσu (w) := exp
+∞∑
n=1

wn

n

∑
ω∈Fix(σn)

n−1∏
j=0

eu(σ
j(ω)) .

Clearly Zσ0 (w) = Zσ(w).

Proposition 7.9. If u ∈ Bϑ is real, then Zσu (w) has radius of convergence e−P (u) = β(u)−1. In
particular, P (0) = h(σ).

Proof. If u(ω) = u(ω0, ω1), namely u only depends on the first two symbols of ω, then we can repeat

the argument in (7.3) with the matrix Mu = euM , for which (mu)hk = eu(h,k)mhk for all h, k ∈ A,
to obtain

Zσu (w) =
1

det(Id− wMu)
.

At the same time, the operator Lu is given by

(Luf)(ω) =
∑
h∈A

mhω0 e
u(hω) f(hω) =

∑
h∈A

mhω0 e
u(h,ω0) f(hω) .

Then, the real positive eigenfunction fβ, relative to the maximal eigenvalue β given in Theorem
7.8-(c-i), is of the form fβ(ω) = fβ(ω0), hence is represented by a row vector Fβ = (Fh)h∈A which
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satisfies FβMu = βFβ. Therefore, β(u) is the maximal eigenvalue of the primitive matrix Mu, and
the result follows in this case.

For any real u ∈ Bϑ, for all ε > 0 there exists ũ ∈ Bϑ depending on a finite number of symbols
such that ∥u−ũ∥ < ε. The result follows by using that the pressure function is Lipschitz continuous
with constant 1. □

In the following, we are interested in the convergence of a dynamical zeta function Zσu at w = 1,
which for a real valued u is equivalent to P (u) < 0.

The next result is a consequence of the analytic properties of the pressure.

Theorem 7.10 ([PP90]). Let u ∈ Bϑ with ℜ(u) normalised, hence P (ℜ(u)) = 0. Then:

(i) If the spectral radius of Lu is strictly smaller than 1, then there exists ε > 0 such that for all
v ∈ Bϑ with ∥u− v∥ϑ < ε, the dynamical zeta function Zσv converges absolutely at w = 1.

(ii) If the spectral radius of Lu is equal to 1, then then there exists ε > 0 such that for all v ∈ Bϑ
with ∥u− v∥ϑ < ε, the series

Z̄σv (w) := exp

+∞∑
n=1

wn

n

∑
ω∈Fix(σn)

( n−1∏
j=0

ev(σ
j(ω)) − enP (v)

)
converges absolutely at w = 1. In addition, the expression

v 7→ Zσv (1) :=
Z̄σv (1)

1− eP (v)

gives an extension of Zσu (1) to a neighbourhood of u, which is non-zero and analytic provided

that eP (u) ̸= 1, that is 1 is not an eigenvalue of Lu.

7.2. Proof of (7.6). Let ZΦ(α) be the Zeta function of the geodesic flow Φ

(7.9) ZΦ(α) =
∏

γ ∈ ppo

(
1− e−αhℓ(γ)

)−1

where h = h(Φ) is as in Proposition 7.4 and is convergent for ℜ(α) > 1.
Using the next result we reduce the problem to the study of the dynamical zeta function of a

subshift of finite type.

Theorem 7.11 ([Bo73]). There exists a subshift of finite type (ΩM , σ) on a finite alphabet A with
primitive transition matrix M , and a positive roof function τ ∈ Bϑ for some ϑ ∈ (0, 1), such that
the vertical flow V = {Vt} defined on (ΩM )τ with base map σ has topological entropy h(V ) = h(Φ)
and its zeta function ZV (α) is such that ZΦ(α)/ZV (α) is non-zero and analytic in the region
ℜ(α) > 1− ε for some ε > 0.

We are thus interested in studying ZV (α). First, we note that there is a one-to-one correspon-
dence between the periodic orbits for V and for σ. If γ′ is a periodic orbit for V then there exists
exactly one γ = {ω, σ(ω), . . . , σn−1(ω)} periodic for σ with period n such that

ℓ(γ′) =
n−1∑
j=0

τ(σj(ω)) .
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Hence, we can repeat the computations in (7.4) backward to obtain for h = h(V ) = h(Φ)

ZV (α) =
∏

γ′ ∈ ppo(V)

(
1− e−αhℓ(γ′)

)−1
= exp

+∞∑
n=1

1

n

∑
ω∈Fix(σn)

e−αh
∑n−1

j=0 τ(σj(ω))

= exp
+∞∑
n=1

1

n

∑
ω∈Fix(σn)

n−1∏
j=0

e−αhτ(σ
j(ω)) = Zσ−αhτ (1) .

Hence, we are reduced to study the convergence properties of the dynamical Zeta function (7.8)
of the subshift of finite type with potential uα(·) := −αhτ(·) ∈ Bϑ. Moreover, without loss of
generality, we can consider the one-sided subshift σ on Ω+

M . Thus, we are ready to apply the results
from Section 7.1.

Lemma 7.12. Let G ∈ C((Ω+
M )τ ) and g(ω) :=

∫ τ(ω)
0 G(ω, s) ds. Then, there exists a constant

c = c(G) such that P (g − cτ) = 0. In addition, c(0) = h(V ), hence P (u1) = P (−hτ) = 0, that is
u1 is normalised.

Thanks to Lemma 7.12, we write α = 1+ iη and apply Theorem 7.10 to u1+iη for all η ∈ R. The
first question is whether 1 may be an eigenvalue for Lη := Lu1+iη .

Proposition 7.13. For all η ∈ R \ {0}, 1 is not an eigenvalue of Lη .

Proof. We use that the vertical flow V = {Vt} on (Ω+
M )τ is mixing. In particular, it is weakly

mixing, that is the Koopman operator on L2 has no eigenvalue of modulus one different from the
maximal eigenvalue 1.

Let η ∈ R \ {0}, and assume that Lη has 1 as an eigenvalue. That is, the potential u1+iη(·) =
−hτ(·)− iηhτ(·) is such that ℜ(u1+iη) = u1 is normalised, since P (−hτ) = 0, and Lη has a simple

maximal eigenvalue at 1 = eP (u1).
Let f1 ∈ Bϑ be the eigenfunction of Lη with eigenvalue 1, then

|f1(ω)| = |(Lu1+iηf1)(ω)| =
∣∣∣ ∑
σ(ω̃)=ω,ω̃∈Ω+

M

e−hτ(ω̃) e−iηhτ(ω̃) f1(ω̃)
∣∣∣

≤
∑

σ(ω̃)=ω,ω̃∈Ω+
M

e−hτ(ω̃) |f1(ω̃)| = (Lu1 |f1|)(ω) .

Let now m be the unique probability measure for which L∗u1m = m. Then,∫
Ω+

M

|f1| dm =

∫
Ω+

M

(Lu1 |f1|) dm .

It follows that |f1| is a multiple of the eigenfunction of Lu1 for the eigenvalue 1, hence |f1| is m-a.e.
constant.

In addition, recalling that Lu11 = 1, we write

f1(ω) = (Lu1+iηf1)(ω) =
(
Lu1
(
e−iηhτf1

))
(ω) =

∑
σ(ω̃)=ω,ω̃∈Ω+

M

e−hτ(ω̃) e−iηhτ(ω̃) f1(ω̃) .

Hence, the rightmost term is a convex combination of complex numbers with modulus |f1| which
is a complex number with modulus |f1|. Therefore,

∀ω ∈ Ω+
M , e−iηhτ(ω) f1(ω) = f1(σ(ω)) .
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This gives a contradiction with the vertical flow being weakly mixing. Indeed, setting for all
(ω, s) ∈ (Ω+

M )τ , F (ω, s) := f1(ω)e
−iηhs, we have

F (ω, τ(ω)) = f1(ω)e
−iηhτ(ω) = f1(σ(ω)) = F (σ(ω), 0) ,

hence F is well defined as a continuous function on (Ω+
M )τ and in L2. Moreover,

F (Vt(ω, s)) = F (ω, s+ t) = f1(ω)e
−iηh(s+t) = e−iηht F (ω, s) , ∀ t ∈ R .

The mixing property of V implies that ηht = 0, hence η = 0. This is a contradiction. □

Applying Theorem 7.10 to ZV (α) = Zσ−αhτ (1), Proposition 7.13 implies the existence of an

analytic continuation of ZV (α) to a neighborhood of {ℜ(α) ≥ 1} with a simple pole at α = 1.
Theorem 7.11 then implies that

Corollary 7.14. The Zeta function ZΦ(α) of the geodesic flow Φ defined in (7.9) converges for
ℜ(α) > 1, has a simple pole at α = 1, and has a non-zero analytic extension to a neighborhood of
ℜ(α) = 1.

By the properties in Corollary 7.14, we can write

(ZΦ)′(α)

ZΦ(α)
=

d

dα
logZΦ(α) = −

∑
γ ∈ ppo

+∞∑
m=1

hℓ(γ) e−αmℓ(γ)h

= −
∫ +∞

0
e−αht d

( +∞∑
m=1

∑
γ ∈ ppo, mℓ(γ) ≤ t

hℓ(γ)
)

=
1

1− α
+W (α) ,

where W (α) is analytic in ℜ(α) ≥ 1. A classical Ikehara-Wiener Tauberian Theorem (see [PP90,
Theorem 6.7]) implies that

ψ(T ) :=
+∞∑
m=1

∑
γ ∈ ppo, mℓ(γ) ≤ T

hℓ(γ) ∼ ehT , as T → +∞.

In addition, recalling the definition of the counting function π(T ) in (7.5),

ψ(T ) =
∑

γ ∈ ppo, ℓ(γ) ≤ T

⌊ T

ℓ(γ)

⌋
hℓ(γ) ≤ hT π(T ) ,

hence,

(7.10) lim inf
T→+∞

hT π(T )

ehT
≥ 1 .

In the other direction, let ξ ∈ (0, 1). Then,

π(T ) =π(ξT ) +
∑

ξT≤ℓ(γ)≤T

1 ≤ π(ξT ) +
∑

ℓ(γ)≤T

ℓ(γ)

ξT

≤π(ξT ) + ψ(T )

ξhT
.

Since π(ξT ) = o(ehT ), we have

(7.11) lim sup
T→+∞

hT π(T )

ehT
≤ 1

ξ
.

From (7.10) and (7.11) for all ξ ∈ (0, 1), we obtain (7.6).
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Appendix A. Exponential decay of correlations for discrete-time dynamical
systems

In this appendix we apply the transfer operator method to prove exponential decay of correlations
for smooth expanding and hyperbolic maps. For more information we refer to [DKL21]. We recall
the following result, known as Hennion’s Theorem (see e.g. [DKL21, Theorem 1.1]) and similar to
other spectral results, such as Ionescu-Tulcea-Marinescu’s Theorem.

Theorem A.1. Let (B, ∥ ·∥B) and (Bw, | · |w) two Banach spaces with B compactly embedded in Bw,
and let L : Bw → Bw be a linear continuous operator for which L(B) ⊆ B. If there exist constants
CH > 0 and M > κ > 0 for which, for all f ∈ B and j ∈ N, the following hold

|Ljf |w ≤ CHM j |f |w ,(A.1)

∥Ljf∥B ≤ CH κj ∥f∥B + CHM
j |f |w ;(A.2)

then, using the notation B(0, r) = {ζ ∈ C : |ζ| ≤ r}, the spectrum and the essential spectrum of L
satisfy

spec(L|B) ⊆ B(0,M) , essspec(L|B) ⊆ B(0, κ) .

The first result we prove shows how to apply the spectral properties of the transfer operator for
one-dimensional smooth expanding maps.

Theorem A.2. Let T : S1 → S1 be C2 and expanding, that is there exists λ > 1 such that
|T ′(x)| ≥ λ for all x ∈ S1. Then, there exists a unique T -invariant probability measure µ which is
ergodic, mixing, and absolutely continuous with respect to the Lebesgue measure with density h(x).
Moreover, h ∈W 1,2(S1) and T has exponential decay of correlations on W 1,2(S1) and L2(S1).

Proof. We begin by recalling the standard continuous embedding for the Sobolev and Lebesgue
spaces of S1 with Lebesgue measure,

(A.3) W 1,2(S1) ⊂c L2(S1) ⊂ L1(S1) , W 1,1(S1) ⊂ C0(S1) ,

where ⊂c denotes a compact embedding9. Moreover, we will need that for all x ∈ S1 the set of
preimages ⋃

k∈N
T−k(x) =

{
y ∈ S1 : ∃ k ∈ N for which T k(y) = x

}
is dense in S1. This follows from the expanding property of T , indeed for all ε > 0 and all y ∈ S1

there exists k ∈ N for which S1 ⊂ T k(y − ε, y + ε).
Let now introduce the transfer operator L associated to T , defined as the linear operator on

L1 which is the dual to the Koopman operator Ug = g ◦ T on L∞ with respect to the Lebesgue
measure. That is,

(A.4)

∫
S1

f (Ug) dx =

∫
S1

(Lf) g dx , ∀ f ∈ L1, g ∈ L∞ .

All x ∈ S1 have a finite number of preimages, that is

(A.5) N := max
x∈S1

(
#
{
y ∈ S1 : T (y) = x

})
≤ ∥T ′∥∞ <∞ , ∀x ∈ S1 .

Hence Lf is well defined by

(A.6) L : L1 → L1 , Lf(x) :=
∑

T (y)=x

1

|T ′(y)|
f(y) .

9From now on, we drop S1 from the notation of the Sobolev and Lebesgue spaces.
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Step 1. The transfer operator L is positive and continuous on L1, with ∥L∥1 = 1. In particular,
the spectrum satisfies spec(L|L1) ⊆ B(0, 1), where B(0, 1) = {ζ ∈ C : |ζ| ≤ 1}.

It is immediate that f ≥ 0 implies Lf ≥ 0, hence L is positive. Then, by (A.4),∫
S1

Lf dx =

∫
S1

f dx , ∀ f ∈ L1 ,

from which it follows that Lf ∈ L1 and ∥Lf∥1 ≤ ∥f∥1. In addition, ∥Lf∥1 = ∥f∥1 for all f ≥ 0.
Hence, ∥L∥1 = 1.

Step 2. There exists h ∈W 1,2 such that Lh = h. In particular, dµ(x) = h(x)dx is a T -invariant
probability measure which is equivalent to the Lebesgue measure, that is h(x) > 0 for all x ∈ S1.

We claim that f ∈W 1,2 implies Lf ∈W 1,2. This follows from (A.6). First, we write

(A.7)

∥Lf∥22 =
∫
S1

(Lf) (Lf) dx =

∫
S1

f (ULf) dx ≤ ∥f∥2
(∫

S1

(Lf)2 ◦ T dx
) 1

2
=

= ∥f∥2
(∫

S1

(Lf)2 (L1)dx
) 1

2 ≤ ∥f∥2 ∥L1∥∞ ∥Lf∥2 ≤
N

λ
∥f∥2 ∥Lf∥2 ,

where 1 denotes the constant function and we have used (A.5). Then,

(A.8) (Lf)′(x) =
∑

T (y)=x

sgn(T ′)
( 1

|T ′(y)|2
f ′(y)− T ′′(y)

|T ′(y)|3
f(y)

)
where sgn(T ′) is ±1 according to whether T ′ is always positive or negative, from which

(A.9) |(Lf)′| ≤
∣∣∣L( f ′

|T ′|

)∣∣∣+ ∣∣∣L(T ′′ f

|T ′|2
)∣∣∣ .

It follows

∥(Lf)′∥2 ≤
N

λ
∥|T ′|−1 f ′∥2 +

N

λ
∥T ′′ |T ′|−2 f∥2 ≤

N

λ2
∥f ′∥2 +

∥T ′′∥∞N

λ3
∥f∥2 .

However, it turns out that for f ∈W 1,2 we can bound ∥Ljf∥W 1,2 uniformly for all j ≥ 1. First,
we consider the norm ∥Ljf∥W 1,1 . From Step 1, we have

∥Ljf∥1 ≤ ∥f∥1 , ∀ j ∈ N .
Moreover, from (A.9), we obtain

∥(Lf)′∥1 ≤ ∥|T ′|−1∥∞ ∥f ′∥1 + ∥T ′′ |T ′|−2∥∞ ∥f∥1 ≤
1

λ
∥f ′∥1 +

∥T ′′∥∞
λ2

∥f∥1 .

Iterating, we get

∥(Ljf)′∥1 ≤
1

λ
∥(Lj−1f)′∥1 +

∥T ′′∥∞
λ2

∥f∥1 ≤
1

λ2
∥(Lj−2f)′∥1 + ∥T ′′∥∞

( 1

λ3
+

1

λ2

)
∥f∥1 ≤ · · ·

· · · ≤ 1

λj
∥f ′∥1 +

∥T ′′∥∞
λ2

( j−1∑
i=0

λ−i
)
∥f∥2 ≤

1

λj
∥f ′∥1 +

∥T ′′∥∞
λ(λ− 1)

∥f∥1 .

Finally,

(A.10) ∥Ljf∥W 1,1 ≤
1

λj
∥f ′∥1 +

(
1 +

∥T ′′∥∞
λ(λ− 1)

)
∥f∥1 , ∀ j ∈ N .

Now, using (A.3), we obtain

∥Ljf∥∞ ≤ ∥Ljf∥W 1,1 ≤
(
2 +

∥T ′′∥∞
λ(λ− 1)

)
∥f∥W 1,1 , ∀ j ∈ N .
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Hence, we can repeat the argument in (A.7) for Ljf to obtain that

(A.11) ∃C1 = 1 +
∥T ′′∥∞
λ(λ− 1)

> 0 such that ∥Ljf∥2 ≤ C1 ∥f∥2 , ∀ f ∈ L2 , ∀ j ∈ N .

To obtain the estimate for ∥(Ljf)′∥2, we first note that

(Ljf)(x) =
∑

T j(y)=x

1

|(T j)′(y)|
f(y) .

Hence, similarly to (A.8), we write

(Ljf)′(x) =
∑

T j(y)=x

sgn(T ′)
( 1

|(T j)′(y)|2
f ′(y)− (T j)′′(y)

|(T j)′(y)|3
f(y)

)
=

=sgn(T ′)
(
Lj
( f ′

|(T j)′|

)
(x)− Lj

( (T j)′′ f
|(T j)′|2

)
(x)
)
.

For all j ∈ N, we have the estimate ∥(T j)′|−1∥∞ ≤ λ−j , and we can write

(T j)′′(x) =

j−1∑
i=0

T ′′(T i(x))

T ′(T i(x))
(T i)′(x) (T j)′(x) ,

from which, using that T ∈ C2, for all j ∈ N

|(T j)′′(x)|
|(T j)′(x)|2

≤
∥∥∥T ′′

T ′

∥∥∥
∞

j−1∑
i=0

∣∣∣ (T i)′(x)
(T j)′(x)

∣∣∣ ≤ ∥∥∥T ′′

T ′

∥∥∥
∞

j−1∑
i=0

λi−j ≤ 1

λ− 1

∥∥∥T ′′

T ′

∥∥∥
∞

=: C2 .

Thus, we get that

(A.12) ∃C2 > 0 such that ∥(Ljf)′∥2 ≤ C1 λ
−j ∥f ′∥2 + C1C2 ∥f∥2 , ∀ f ∈W 1,2 , ∀ j ∈ N .

Now, since 1 ∈W 1,2, for all n ∈ N,

gn :=
1

n

n−1∑
j=0

Lj1 ∈W 1,2

and ∥gn∥2 ≤ C1 since ∥Lj1∥2 ≤ C1 for all j. By the compactness of the embedding of W 1,2 in L2,
there exists a subsequence {nk}k and h ∈ L2 such that

lim
k→+∞

∥gnk
− h∥1 = 0 .

First, we show that Lh = h. It is a consequence of the continuity of L on L1 and of the following
limits in L1

Lh = lim
k→∞

Lgnk
= lim

k→∞

1

nk

nk∑
j=1

Lj1 = lim
k→∞

(
gnk

+
Lnk1− 1

nk

)
= h .

From (A.4) we obtain that dµ(x) = h(x)dx is a T -invariant probability measure. One gets∫
S1

(Ug) dµ =

∫
S1

(Ug)h dx =

∫
S1

g (Lh) dx =

∫
S1

g h dx =

∫
S1

g dµ , ∀ g ∈ L∞ .

Moreover,

µ(S1) =

∫
S1

h dx = lim
k→∞

∫
S1

gnk
dx = lim

k→∞

1

nk

nk−1∑
j=0

∫
S1

Lj1 dx = 1 .
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We now prove that h ∈W 1,2. Since gn ∈W 1,2 and gnk
→ h in L1, for all ψ ∈ C∞ we have∫

S1

g′nk
ψ dx =

∫
S1

gnk
ψ′ dx −−−−→

k→+∞

∫
S1

hψ′ dx .

Moreover, by (A.12),

∥g′nk
∥2 ≤

1

nk

nk−1∑
j=0

∥(Lj1)′∥2 ≤ C1C2 , ∀ k ∈ N ,

therefore, up to a subsequence there exists a function h′ ∈ L2 such that g′nk
⇀ h′ for k →∞ in L2.

Then, for all ψ ∈ C∞ ∫
S1

g′nk
ψ dx −−−−→

k→+∞

∫
S1

h′ ψ dx ,

and together with the previous value of the limit, we get that h′ is the weak derivative of h in L2.
Therefore, h ∈W 1,2.

It remains to prove that h > 0. First, since L is a positive operator, we have gn ≥ 0 for all n ∈ N,
hence h ≥ 0. By contradiction, let x0 ∈ S1 for which h(x0) = 0. Then,

0 = h(x0) = (Lkh)(x0) =
∑

Tk(y)=x0

1

|(Tn)′(y)|
h(y) ∀ k ∈ N ⇒ h(y) = 0 ∀ y ∈

⋃
k∈N

T−k(x0) .

But the last set is dense, and since h ∈W 1,2 hence is continuous, this implies h ≡ 0. This is absurd
since µ(S1) = 1.

Step 3. The spectrum of L on W 1,2 satisfies spec(L|W 1,2) ∩ {|ζ| = 1} = {1}, and 1 is a simple
eigenvalue.

Let f ∈ W 1,2 ⊂ W 1,1, f ̸≡ 0, satisfy Lf = eiℓf for ℓ ∈ R. We need to show that ℓ = 0 and
f ≡ h. Since h > 0, we let g := f/h. We have

eiℓ g = eiℓ
f

h
=
Lf
h

⇔ g(x) = e−iℓ
1

h(x)

∑
T (y)=x

1

|T ′(y)|
g(y)h(y) , ∀x ∈ S1 .

Since g is continuous, because f and h are, we find x0 ∈ S1 such that |g(x0)| = ∥g∥∞. Using the
previous equality and Lh = h, we obtain

∥g∥∞ = |g(x0)| ≤
1

h(x0)

( ∑
T (y)=x0

1

|T ′(y)|
h(y)

)
sup

T (y)=x0

|g(y)| = sup
T (y)=x0

|g(y)| .

As above, using that the set of preimages of every point is dense, we find that |g(x)| = ∥g∥∞ for

all x ∈ S1, hence g(x) = c eiℓ(x) for some c ∈ R and a continuous ℓ : S1 → R. Then, for all x ∈ S1,

eiℓ(x) = e−iℓ
1

h(x)

∑
T (y)=x

1

|T ′(y)|
eiℓ(y) h(y) = e−iℓ

∑
T (y)=x

h(y)

|T ′(y)|h(T (y))
eiℓ(y) .

The right hand side is a convex combination of points on S1, since it has to be a point on S1, we
have that there exists y ∈ T−1(x) for which

eiℓ(x) = e−iℓ eiℓ(y) ⇔ ℓ(y)− ℓ(T (y)) = ℓ , ∀ y ∈ S1 .

Using that the probability measure µ is T -invariant, we obtain

ℓ =

∫
S1

(
ℓ(y)− ℓ(T (y))

)
dµ = 0 .

Hence, g(x) ≡ c and f(x) = c h(x).
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Step 4. The map T has exponential decay of correlations on W 1,2 and L2.
By Definition 6.9, we have to show that there exist constants C > 0 and ϑ ∈ (0, 1) such that

|CT (f, g, n)| ≤ C ∥f∥W 1,2 ∥g∥2 ϑn , ∀n ∈ N, f ∈W 1,2 , g ∈ L2 .

In Step 2, we have proved that L(W 1,2) ⊂ W 1,2 and that we can apply Theorem A.1 to L with
Bw = L2 and B =W 1,2. In particular, (A.11)-(A.12) imply (A.1)-(A.2) with

CH = max{C1, 1 + C1C2} , M = 1 , κ = λ−1 ∈ (0, 1) .

Therefore,
essspec(L|W 1,2) ⊆ B(0, λ−1) ,

and applying the spectral theorem, we find that there exist linear operators K,R : W 1,2 → W 1,2,
with K compact and R continuous, such that RK = KR = 0, and for all j ∈ N,

Ljf = Kjf +Rjf with ∥Rjf∥W 1,2 ≤ λ−j ∥f∥W 1,2 , ∀ f ∈W 1,2 .

In particular, K corresponds to the projections on the eigenspaces of the eigenvalues of L|W 1,2 in
{|ζ| > λ−1}. By Step 3, 1 is a simple eigenvalue and it’s the only one on {|ζ| = 1}, hence, setting

ϑ := max
{
|ρ| : ρ is an eigenvalue of L with λ−1 < |ρ| < 1

}
,

we can write K = K1 +Kϑ, where K1 is the projection on h and Kϑ is the projection associated
to the other eigenvalues in {|ζ| > λ−1}. Then, K1Kϑ = KϑK1 = 0, and writing R̃ = Kϑ + R we

obtain K1R̃ = R̃K1 = 0, and for all j ∈ N,

(A.13) Ljf = Kj
1f + R̃jf with ∥R̃jf∥W 1,2 ≤ ϑj ∥f∥W 1,2 , ∀ f ∈W 1,2 .

We now describe K1. There exists a functional k1 : W 1,2 → R such that, for all f ∈ W 1,2,
K1f = k1(f)h. For all f ∈W 1,2, we have∫

S1

f dx =

∫
S1

1

n

n−1∑
j=0

Ljf dx =

∫
S1

( 1
n

n−1∑
j=0

Kj
1f +

1

n

n−1∑
j=0

R̃jf
)
dx =

=

∫
S1

K1f dx+

∫
S1

1

n

n−1∑
j=0

R̃jf dx ≤
∫
S1

K1f dx+
1

n

n−1∑
j=0

∥R̃jf∥W 1,2 = k1(f) + o(1) as n→ +∞.

Hence,

k1(f) =

∫
S1

f dx , ∀ f ∈W 1,2 .

Finally, we recall that f, h ∈ W 1,2 implies f · h ∈ W 1,2 and there exists a constant c > 0 such
that

(A.14) ∥f · h∥W 1,2 ≤ c ∥f∥W 1,2 ∥h∥W 1,2 .

Then, for all f ∈W 1,2 and g ∈ L2 we write∫
S1

f (Ung) dµ =

∫
S1

f h (Ung) dx =

∫
S1

(Ln(fh)) g dx =

=

∫
S1

(Kn
1 (fh)) g dx+

∫
S1

(R̃n(fh)) g dx =

∫
S1

k1(fh)h g dx+

∫
S1

(R̃n(fh)) g dx =

=
(∫

S1

f dµ
)(∫

S1

g dµ
)
+

∫
S1

(R̃n(fh)) g dx .

Since,∣∣∣ ∫
S1

(R̃n(fh)) g dx
∣∣∣ ≤ ∥R̃n(fh)∥W 1,2 ∥g∥2 ≤ ∥f̃h∥W 1,2 ∥g∥2 ≤ c ∥h∥W 1,2 ϑn ∥f∥W 1,2 ∥g∥2 ,
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where we have used (A.14), we set C = c ∥h∥W 1,2 to obtain

|CT (f, g, n)| =
∣∣∣ ∫

S1

f (Ung) dµ−
(∫

S1

f dµ
)(∫

S1

g dµ
)∣∣∣ ≤ C ∥f∥W 1,2 ∥g∥2 ϑn .

Step 5. The map T is mixing, hence ergodic, with respect to the probability measure µ. By
Proposition 6.4, it is enough to show that

lim
n→∞

CT (f, g, n) = 0 , ∀ f, g ∈ L2 .

We know that the previous limit holds with exponential decay if f ∈W 1,2. Since W 1,2 is dense in
L2, for all f ∈ L2 and for all ε > 0 there exists f0 ∈W 1,2 such that ∥fh− f0∥2 < ε. Hence,∣∣∣ ∫

S1

f dµ−
∫
S1

f0 dx
∣∣∣ ≤ ∫

S1

|fh− f0| dx < ε ,

and, for all g ∈ L2 and all n ∈ N,∣∣∣ ∫
S1

f (Ung) dµ−
∫
S1

(Lnf0) g dx
∣∣∣ ≤ ∫

S1

|Ln(fh)−Lnf0| g dx ≤ ∥Ln(fh)−Lnf0∥2 ∥g∥2 < εC1 ∥g∥2 ,

where we have used (A.11). Therefore, for all n ∈ N, we write

|CT (f, g, n)| ≤
∣∣∣ ∫

S1

f (Ung) dµ−
∫
S1

(Lnf0) g dx
∣∣∣+ ∣∣∣ ∫

S1

f dµ−
∫
S1

f0 dx
∣∣∣ ∥g∥2+

+
∣∣∣ ∫

S1

(Lnf0) g dx−
(∫

S1

f0 dx
)(∫

S1

g dµ
)∣∣∣ <

< (1 + C1) ε ∥g∥2 + C ∥f0∥W 1,2 ∥g∥2 ϑn ,
where C > 0 and ϑ ∈ (0, 1) are as in Step 4. This proves that for all f, g ∈ L2

lim
n→∞

|CT (f, g, n)| < (1 + C1) ε ∥g∥2 , ∀ ε > 0 ,

hence the result of this last step and the theorem are proved. □

In order to introduce the difficulties one needs to face when studying Anosov flows, here we sketch
the proof of the exponential decay of correlations via the transfer operator method for the simpler
case of a hyperbolic discrete dynamical system. Namely, we consider maps for which the tangent
space has a splitting in stable and unstable directions. The existence of the central direction for
Anosov flows will make the argument more difficult as explained in Section 6.1.

Here, we consider the simplest possible example of a hyperbolic discrete system, the toral auto-
morphisms.

Theorem A.3. Let A ∈ SL(2,Z) be symmetric with eigenvalues λ > 1 and λ−1 ∈ (0, 1), and
orthogonal eigenvectors vu and vs, respectively. Let TA : T2 → T2 be the toral automorphism
defined by

T2 ∋ (x, y) 7−→ TA(x, y) := A

(
x
y

)
(mod Z2) .

Then, the Lebesgue measure m on T2 is a TA-invariant probability measure, and TA is ergodic
and mixing with respect to m. Moreover, TA has exponential decay of correlations for couples of
observables in C∞(T2).

Proof. Since A ∈ SL(2,Z), the map TA is continuous, invertible, and preserves the area. Hence,
the Lebesgue measure m is TA-invariant. By Proposition 6.4, the mixing property of TA can be
proved by checking that

lim
n→∞

CTA(f, g, n) = 0 , ∀ f, g ∈ L2(T2,C)
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directly. For all f ∈ L2(T2,C), we can use the Fourier series expansion and write

f(x, y) =
∑

(n,m)∈Z2

f̂n,m e
2πi(nx+my) .

Then, it is enough to consider the case f(x, y) = e2πi(nx+my) and g(x, y) = e2πi(n
′x+m′y) for some

n, n′,m,m′ ∈ Z. We have

CTA(f, g, k) =

∫
T2

f̄ (Ukg) dx dy =

∫
T2

e−2πi(nx+my) e2πi(<(n′,m′),Tk
A(x,y)> dx dy =

=

∫
T2

e−2πi(nx+my) e2πi(<(n′,m′),Ak(x,y)> dx dy =

∫
T2

e−2πi(nx+my) e2πi(<A
k(n′,m′),(x,y)> dx dy =

=

∫
T2

e2πi(<A
k(n′,m′)−(n,m),(x,y)> dx dy ,

where we have used that T kA(x, y) = Ak(x, y) (mod Z2) and that A is symmetric. By the properties
of A, for all (n′,m′) there exist cu, cs ∈ R such that (n,m) = cu v

u+ cs v
s as a vector in R2. Hence,

Ak(n′,m′) ∼ λk cu vu , as k → +∞.

In particular, this implies that for all n, n′,m,m′ ∈ Z there exists k̄ ∈ N such that Ak(n′,m′) ̸=
(n,m) for all k ≥ k̄. In conclusion,

CTA(f, g, k) =

∫
T2

f̄ (Ukg) dx dy = 0 , ∀ k ≥ k̄ ,

and this proves that TA is mixing with respect to m.
We now use the transfer operator method to show exponential decay of correlations. We follow

[DKL21, Section 3.4]. Since det(A) = 1, defining the transfer operator L as in (A.4), we have that
for all f ∈ L1 and g ∈ L∞,∫

T2

f (Ug) dx dy =

∫
T2

(Lf) g dx dy ⇒ Lf = f ◦ T−1
A .

Arguing as in the proof of Theorem A.2, we expect that L regularizes observables in the expanding
direction spanned by vu at each point (x, y) ∈ T2, but the contrary happens in the contracting one.
Therefore, we need to look at norms which capture high order derivability in the vu direction and
high order nice distributional behavior in the vs direction.

Let10 f ∈ C∞. We use the following notations

∂uf :=< vu,∇f > and ∂sf :=< vs,∇f > .

Fix a δ > 0 and consider the space of real functions in C∞
0 ([−δ, δ]). For all q ∈ N0, let ψ

(q) denote
the q-th derivative for ψ ∈ C∞

0 ([−δ, δ]). Then, we set

∥ψ∥Cq := max
0≤q′≤q

∥ψ(q′)∥∞ .

Let’s now introduce the Banach spaces we will use to apply Theorem A.1. For all p, q ∈ N0 and
f ∈ C∞, consider the norm

(A.15) ∥f∥p,q := sup
(x,y)∈T2

sup
0≤p′≤p

(
sup

ψ∈C∞
0 ([−δ,δ]),∥ψ∥Cq≤1

∫ δ

−δ
∂p

′
u f((x, y) + tvs)ψ(t) dt

)
.

Then, we define Bp,q to be the Banach space obtained by completing C∞ with respect to ∥ · ∥p,q.
The spaces Bp,q have the properties stated in the next lemma. For the proof we refer to [DKL21,
Lemmas 3.8-3.9-3.10].

10When not specified we refer to real functions defined on T2.
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Lemma A.4. For all p, q ∈ N0 the spaces Bp,q satisfy:

(i) If p > 0, then Bp,q is continuously embedded in (Cq)∗, the dual of Cq.
(ii) The operator ∂u is bounded as an operator from Bp+1,q to Bp,q, with kernel given by the

constant functions.
(iii) If p > 0, the space Bp,q embeds compactly in Bp−1,q+1.

For our aims, it is enough to fix p = 1 and q = 0.

Step 1. If in Theorem A.1 we choose (Bw, | · |w) = (B0,1, ∥ · ∥0,1) and (B, ∥ · ∥B) = (B1,0, ∥ · ∥1,0),
then (A.1) and (A.2) hold.

Let f ∈ C∞. First, we want to estimate ∥Ljf∥0,1 for all j ∈ N. For all ψ ∈ C∞([−δ, δ]), since
T−1 stretches the lines in the vs direction by a factor λ, we have∫ δ

−δ
Ljf((x, y) + tvs)ψ(t) dt =

∫ δ

−δ
f(T−j(x, y) + tλjvs)ψ(t) dt

=λ−j
∫ δλj

−δλj
f(T−j(x, y) + tvs)ψ(λ−jt) dt ,

which can be reduced to the sum of c1 · λj terms, for a fixed constant c1 > 0, of the form∫ ti+δ

ti−δ
f((x, y) + tvs)ψ(λ−jt)ψi(t) dt ,

with {ψi}i a C∞ partition of unity with ψi having supports of size δ and ∥ψi∥C1 ≤ c2. Then, we
find ∣∣∣ ∫ δ

−δ
Ljf((x, y) + tvs)ψ(t) dt

∣∣∣ ≤ c1 ∥f∥0,1 ∥ψ∥C1 .

Hence,
∥Ljf∥0,1 ≤ c1 ∥f∥0,1 , ∀ j ∈ N .

This proves (A.1) with M = 1.
Let’s now consider ∥Ljf∥1,0. For all ψ ∈ C∞([−δ, δ]), we estimate the integrals∫ δ

−δ
∂p

′
u (Ljf)((x, y) + tvs)ψ(t) dt , for p′ = 0, 1.

When p′ = 0, we follow the same computations as above, but at the end we use, for all i, the
estimate ∣∣∣ ∫ ti+δ

ti−δ
f((x, y) + tvs)ψ(λ−jt)ψi(t) dt

∣∣∣ ≤ c2 ∥ψ∥∞ ∥f∥0,1 .
Let’s now set p′ = 1. We recall that, being A symmetric, ∇(f ◦ T−j) = A−j ∇f , hence
(A.16) ∂u(Ljf) =< vu,∇(f ◦ T−j) >=< A−jvu, (∇f) ◦ T−j >= λ−j (∂uf) ◦ T−j .

Therefore,∣∣∣ ∫ δ

−δ
∂u(Ljf)((x, y) + tvs)ψ(t) dt

∣∣∣ = λ−j
∣∣∣ ∫ δ

−δ
Lj(∂uf)((x, y) + tvs)ψ(t) dt

∣∣∣ ≤
≤ c1 λ−j ∥∂uf∥0,0 ∥ψ∥∞ ≤ c1 λ−j ∥f∥1,0 ∥ψ∥∞ .

We have thus proved
∥Ljf∥1,0 ≤ c1 λ−j ∥f∥1,0 + c2 ∥f∥0,1 , ∀ j ∈ N .

This proves (A.2) with M = 1 and κ = λ−1 ∈ (0, 1).

Step 2. The spectrum of L satisfies spec(L|B1,0) ∩
{
|ζ| > λ−1

}
= {1}.
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By Step 1, we have spec(L|B0,q) ⊆ B(0, 1) for all q ∈ N0. Let f ∈ B1,0, f ̸= 0 satisfy Lf = ℓf for
some ℓ ∈

{
|ζ| > λ−1

}
. Then,

ℓ ∂uf = ∂u(Lf) = λ−1 L(∂uf)
as shown in (A.16). Hence, ∂uf ∈ B0,0 by Lemma A.4-(ii) and it is an eigenfunction of L with
eigenvalue ℓλ ∈ {|ζ| > 1}. Since spec(L|B0,0) ⊆ B(0, 1), it follows that ∂uf = 0. Therefore, by
Lemma A.4-(ii), f is constant. This implies ℓ = 1.

Step 3. The map TA has exponential decay of correlations for couples of observables in C∞(T2).
We can repeat the argument in Theorem A.2 - Step 4, to get

|CTA(f, g, n)| ≤ max{c1, c2} ∥f∥1,0 ∥g∥∞ λ−n .

This concludes the proof. □
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Akad. Wiss. Leipzig Math.-Phys. Kl. 91 (1939), 261–304.
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Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa
Email address: claudio.bonanno@unipi.it

48


