Chapter 3

Discrete-time dynamical
systems

In this chapter we consider discrete-time dynamical systems as defined in
Definition 1.2. Hence we need to specify a set X and a map T : X — X.
The properties of X and T may vary and give rise to different areas of
research. Here we assume that X is a locally compact connected metric
space and 7' is a continuous map, and call (X, T") a discrete-time continuous
dynamical system. In many situations one can simply consider X to be an
interval of the real line, and in fact some results of this chapter hold only
for one-dimensional spaces X or even for compact intervals of the real line.
We start with simple definitions.

Definition 3.1. Let (X,7) and (X,?) be two discrete-time continuous
dynamical systems. We say that (X,T) is a topological factor of (X,T) if
there exists a continuous map h : X — X that is surjective and satisfies

Toh=hoT. (3.1)

If the map h : X —>~X' _is a homeomorphism and satisfies (3.1) then we
say that (X,T) and (X, T) are topologically conjugate and h is a topological
conjugacy.

Ezample 3.1. Let’s consider the full shift (24, Np, o) on two symbols A =
{0,1} of Example 1.8, and the Bernoulli map 75 on S!' of Example 1.7,
Let Jo = [0,1/2) and J; = [1/2,1) be a partition of S, and let the map
h: Q1) — S1 be defined by

W= (wi)iGNo = h(w) = m TQ_i(‘]wi)'
1€Np
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The map h is continuous and surjective, and satisfies 7o o h = h o 0. Then
the Bernoulli map is a topological factor of the full shift on two symbols.

FEzample 3.2. Let’s consider the Tent map T with s = 2 of Example 1.5, and
the logistic map T with A = 4 of Example 1.6. Let the map h : [0,1] — [0, 1]
be defined by

[0,1] 3 2 — h(z) = sin? (gm> .

The map h is a homeomorphism, and satisfies Ty o h = h o T5. Hence the
Tent map T with s = 2 is topologicall conjugate to the logistic map T with
A =4

Remark 3.1. In some situations it is interesting to study the regularity of a
conjugacy. For example, if T" and T are C* maps, with k € Ny U {o0,w}, a
natural question is whether there exists a conjugacy h between the systems
(X,T) and (X, T) which is of class C*. If it exists we say that (X,T) and
(X,T) are C* conjugate.

3.1 Stability in one dimension

Let T : X — X be a continuous map of a one-dimensional space X =
[a, 8], (a,0), [a, +00), (@, +00), (=00, b], (~00,b), R, S™.

Definition 3.2. A fixed point xg € X of T is called attractive if there exists
d > 0 such that, for all z € Bs(zg), one has T"(x) € Bs(xog) for all n > 0,
and T"(z) — xo as n — +o0.

A fixed point zg € X is called repulsive if there exists § > 0 such that, for
all z € Bs(xg), © # x¢, there exists i € N for which T™(z) & Bs(xo).

To study the dynamics in a neighbourhod of a fixed point zg, first it is
useful to try the linearization approach. Let T be differentiable at x¢. Then,
there exists € > 0 such that for all z € B.(xg)

T(z) = T(x0)+T (x0)(x—x0)+0(|x—20|) = T0+T" (20) (T —20) +0(|T—20]) -
Hence,
T (x) — xo| = |T"(20)| |2 — 20| + o(|z — o)) - (3:2)

We deduce that, at the first order, it is the derivative T"(zo) which may
determine whether the orbit of a point x € B.(xo) gets closer or further
from the fixed point xg. This justifies the following definition.

Definition 3.3. Let T be differentiable at a fixed point xy. The fixed point
zo € X is called hyperbolic if |T"(zo)| # 1.
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Theorem 3.2. Let xg be a hyperbolic fixed point for a map T which is
differentiable at xo. If |T'(x0)| < 1 then the point is attractive, if |T'(zo)| > 1
then the point is repulsive.

Proof. Let |T'(zo)| < 1 and fix ¢ € (|T'(x0)|,1). If we choose 6 > 0 such
that |T'(z)| < ¢ for all z € Bs(xg), then we have that for all n > 1

|T™(z) — zo| < ™ |x —x0|, Va € Bs(xo). (3.3)

From (3.3) and ¢ € (0,1), it follows that T"(x) € Bs(x¢) for all n > 0 and
T"(x) — xp as n — +00.

We now prove (3.3) by induction. For n = 1, for all z € Bgs(xg) there
exists &1 between x and x( such that

T(x) — ol = |T(x) — T(xo)| = |T"(&1)| lx — w0l < c|a — @0l

where |T7(&1)| < ¢ since & € Bs(xp). Then, let’s assume that (3.3) holds for
a given n, and show that it holds for n 4+ 1. There exists &, between T"(x)
and x( such that

T (@) — @o| = |T(T" () — T(z0)| = T(&)| |T" (x) — zo| <
<c |z —xo| ="z — x|,

since &, € Bs(zo).

Let now |T"(zp)| > 1, and first consider the case T"(z¢) > 1. Then we
fix ¢ € (1,7"(x0)) and choose ¢ > 0 such that T"(x) > ¢ for all = € Bs(zo).
We now argue by contradiction and assume that there exists € Bs(xp),
x # g, such that T"(z) € Bs(xg) for all n > 1. Then, we can repeat the
argument above to show that

|T"(z) — xo| > " |z — 20|, ¥Yn>1,

from which we find that |T"(x) — x| — 400 as n — +oo since ¢ > 1. This
gives the contradiction with the assumption 7" (x) € Bj(zg) for all n > 1.
A similar argument works in the case |T"(x0)| > 1 and T'(z9) < —1. O

When the fixed point is not hyperbolic, the approach in (3.2) suggests
that the higher derivatives of T" at xp may give some information.

Definition 3.4. A fixed point x¢ € X is called semi-attractive from the left
if there exists § > 0 such that it is attractive for points on (xy — 0, xg) and
repulsive for points on (xg,x9 + 0). A fixed point xg € X is called semi-
attractive from the right if there exists § > 0 such that it is attractive for
points on (zg, xo + d) and repulsive for points on (xg — d, o).
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Proposition 3.3. Let xg be a fized point for a map T which is differentiable
at xg with |T'(xo)| = 1. The following possibilities hold:

(i) Let T'(z0) = 1 and assume that T € C*(B.(zg)) for some ¢ > 0, and
T"(x9) # 0. Then,

— If T"(x¢) > 0, then ¢ is semi-attractive from the left;
— If T"(x¢) < 0, then xg is semi-attractive from the right;

(ii) Let T'(z9) = 1 and assume that T € C3(B.(z0)) for some ¢ > 0, that
T"(z9) =0, and T" (x0) # 0. Then,
— If T"(x0) > 0, then xq is repulsive;
— If T"(z0) < 0, then xq is attractive;

(iii) Let T'(wo) = —1 and assume that T € C3(B(z¢)) for some & > 0.
Then we look at ST (xg), the Schwarzian derivative of T at xq, where

CT"@) 3 (T"(2)\?
ST(@) = Ty ~ 5 ( = (96)) : (3.4)

Then,

— If ST (zg) > 0, then z¢ is repulsive;
— If ST (z¢) < 0, then xg is attractive.

Proof. The proofs of (i) and (ii) are immediate from the graphical approach.
Let us prove (iii). Since 7"(x¢) = —1, in a neighborhood of zy the map T is
order-reversing. We look at G := T? for which G(z¢) = xo, and use that g
has the same stability for G and T". We have

G'(x) =T'(T()T'(x) = G'(x0)=(T"(0))* =1,
G"(z) =T"(T(x)) (T'(x))* + T'(T(x)) T" (x)
= G"(x0) = T"(x0) ((T’(xo))Q - T’(x0)> ~0.

Moreover G € C3(B.(x0)), hence we can compute G"(xg). It holds
G"(x) =T"(T(x)) (T"(2))° + 3T"(T(x)) T'(x) T"(2) + T'(T(2)) T" ()

= G"(w0) = T"(w0) ((T'(20))* + T'(x0)) + 3 (T" (20))* T (o)

= G"(xq) = 28T (x0).

The result follows from (ii). O
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We conclude this section by studying the stability for periodic orbits.

Definition 3.5. Let xg be a periodic point for T' with minimal period p. The
orbit O(x) is called attractive (respectively repulsive) if xq is an attractive
(respectively repulsive) fixed point for TP.

Remark 3.4. Let xg be a periodic point for T" with minimal period p. If
T € C, it is a straightforward corollary of the chain rule that the derivative
of TP is the same on all the points of the orbit of g, i.e. (TP)(T%(xg)) =
(T?) (xp) for alli =0,...,p— 1, since

n—1
(T%) (o) = [] T'(T7 (o))
=0



