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3.2 Existence of periodic orbits

In this section [a,b] denotes a compact interval of the real line. Given a
finite number of points {}r—o, . » such that

a=x0< T <xT2< < xTp_1<xTp=>b,

we consider the partition J of [a, b] into the closed intervals Ji = [x;—1, 2],
k=1,...,n.

Definition 3.6. Given a partition J = {J;} of [a, b] and two not necessarily
distinct sets J, and Jp, of the partition, we say that J T-covers J, m-times,
with m € N U {oo}, if there exist m open sub-intervals Ki,..., K, of J
such that K; N K; =0 for i # j, and T(K;) = Jy, for alli = 1,...,m.

Definition 3.7. Given a partition J = {Jy},_, , of [a,b], the T-graph of
J is a graph with nodes given by the indices {1, o ,n}, and such that there
are m-arcs from a set Ji to a set Jy, if Ji T-covers Jy, m-times. An admissible
path of length s € N on the T-graph of J is a sequence Jy1)Jp2) - - - Jp(s)
with p(j) € {1,...,n} and such that there is at least one arc from Jp;) to
Jpij+1) forall j =1,...,s — 1. An admissible path of length s € N is called

P
closed if p(s) = p(1).

Lemma 3.5. If Jy1)Jp2) - - - Jp(s)Ip(s+1) @5 an admissible closed path on the
T'-graph of a partition J with s € Ny, then there exists a point x € Jy)
which is periodic for T with period s and such that T?(x) € Jp(i+1) for all
7=0,...,s.

Proof. Let us fix Ko41 = jp(s+1). Since the path Jy1)Jpe) - - - Jp(s) Ip(s+1) 18
admissible, there exists a family K; C Jy;), 7 = 1,...,s, of open intervals
such that T'(K};) = Kj11. Hence there exists an interval K1 C Jp,(1) such that
T5(K1) = Kgy1 2 K. The fixed-point theorem implies that there exists
z € K such that T%(x) = x, moreover by construction 77(z) € Kji1 C
Jpij41) forall 7 =0,...,s. O

Remark 3.6. It is important to notice that Lemma 3.5 does not prove the
existence of a periodic point with minimal period s. That the period s is
minimal may be obtained by looking at the path used in the proof of the
lemma.

Proposition 3.7. Let T : [a,b] — [a,b] be a continuous map for which there
exists a periodic orbit of odd period m > 1. Then T admits periodic orbits
of minimal period n for all n > m, for all even n < m, and forn = 1.
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Proof. Let’s assume that m is the smallest odd number greater than 1 for
which T has a periodic orbit of period m'. In particular, m is the minimal
period of the orbit. Let us denote by p1, po, ..., pm the points of the periodic
orbit ordered in [a, b], so that T'(p1) > p1 and T'(pm) < pm. It follows that
there exists h such that T'(p;,) > p;, and T'(px) < px for all k =h+1,...,m.
Finally let J be the partition given by the points a,b and the points of
the periodic orbit pi,pa,...,pm, and let Jy := [a,p1], Jm = [Pm,b], and
Ji = [pk,pr+1) for k € N := {1,...,m — 1}. By construction and the
fact that m > 2 we have that one of the inequalities T'(p; ;) < p; and
T'(py) > pjyq is strict, hence Jj, T-covers itself at least once. By Lemma
3.5, this gives the result for n = 1.

We now proceed by proving intermediate statements.
Step 1. There exists an admissible path on the T-graph of the partition J
from J;, to any set Ji of the partition with k € N
Let us define by recurrence the following subsets of the nodes N of the
T-graph. We put Ny := {h},

Ny :={r e N : J; T-covers J,} ,
and for i > 3
N;:={r e N : 3s € N;_;such that Js T-covers J, } .

Since m > 2, each Js with s € N/, T-covers at least one set J, with r # s.
Moreover the fact that J; T-covers itself implies that h € N; for all i > 1,
hence {N;} is a non-decreasing sequence of sets. We conclude that there
exists £ such that Ny = Ny 1 = N, since Ny # N implies that m is not the
minimal period of the periodic orbit. This finishes the proof of this step.

Step 2. There exists k € N such that Jy, T-covers J;,.

We argue by contradiction. If the thesis of this step is false, all points p; of
the periodic orbit with j < h have distinct images in the set {Prs1s - Pty
and analogously all points p; of the periodic orbit with j > h+1 have distinct
images in the set {p1,...,p;}. Since m is odd we get the contradiction.

Step 3. The T-graph of the partition J contains a loop starting from Jj,
through all the sets J, with k € N, and contains one single arc from a set
Ji, with k € N to Jy,.

We first show that the shortest admissible path from Jj, to itself is of length
m. Let JyJp) - - . Jp(s)Jp, be such path with length s+ 1 < m, there are two

'If not, we prove the result for such smallest odd number greater than 1 and obtain
the proposition.
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cases. If s is odd, by Lemma 3.5 there exists © € J; such that T%(z) = =,
but s < m — 1 and we have a contradiction by the choice of m. If s is even,
we can consider the admissible path J;J,) . .. Jys)J;J;, which is of length
s + 2 and gives, by Lemma 3.5, the existence of a periodic point of period
s+ 1 < m. Again we have a contradiction by the choice of m.

Let JJp2) - - - Jp(m—1)J5, be the shortest admissible path from J; to itself.
All J; appear at most once in this path, indeed if one Jj appears twice, we
can construct a shorter admissible path from Jj, to itself. It follows that this
path is actually a loop starting from J; through all the sets Ji, with k € N.
The same argument shows that the T-graph of the partition J contains one
single arc from a set Jj, with k € N to J;.

Let us now relabel the sets of the partition J by letting I; := Jj and
Ia, ..., In—1 be chosen so that there exists an arc from I to Ip,; for all

kEeWN.

Step 4. The map T admits periodic orbits of minimal period n for all n > m.
This follows from step 3 by applying Lemma 3.5 to the closed ammissible
path I1Is... I, 11y ...1I; of length n + 1.

Step 5. For each odd k € N there exists an arc from I,,_1 to Ij.

The statement is clearly true for m = 3. If m > 3 we show that the sets
Ij; are ordered in [a,b] in a precise way. From step 3 we know that I T-
covers itself and I, and no other set. So T'(p) = pp o and T'(pj 1) = Pi»
or T'(py) = P41 and T'(pp 1) = pj_q- In the first case Io = [pf 1, Phyals
and since Iy T-covers only I3 we have I3 = [p;_;,p;]. We can continue
repeating the argument to conclude that I,,—1 = [Pm—1,Pm], and T (pm—1) =
p1, T(p1) = pm and T(py) = pj. Since I with k£ odd are of the form
[ph, Phe1) with h < h, the thesis of the step follows.

Step 6. The map T admits periodic orbits of minimal period n for all even
n < m.

This follows from step 5 by applying Lemma 3.5 to the closed admissible
path of length n + 1 from I, to itself of the form I, 11;lj41... It
where j = m — n is odd. O

Theorem 3.8 (Sharkovsky). Let T : [a,b] — [a,b] be a continuous map and
consider the following ordering on N

1<2<4<8<---<2m<ontl o gntly oontlg o

3.5
e =<2"5<2"M3 <. <2-5<2-3<...7<5<3 (8:5)

If T admits a periodic orbit of minimal period m then it admits a periodic
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orbit of minimal period n for all n < m in the ordering (3.5).

Proof. If m is odd, the thesis follows from Proposition 3.7.

If m =2 -m with m odd and T admits no periodic orbits with odd period,
then we can repeat the same argument of the proof of Proposition 3.7 up
to step 2. This shows that A = s/ and, in the T-graph of the partition
including the sets J;, with k& € N, there exists an admissible path from the
set [pm, pm+1] to all the sets Ji with k € M. This implies that T admits
a fixed point. However there is no arc to [pm, pm+1] from a different set,
since otherwise by Lemma 3.5 we could find a periodic orbit of T" with odd
period. It follows that T'(p;) > ps+1 for all j < m and T'(p;) < pys, for all
j > m+1, so the points py, ..., ps give a periodic orbit of period m for T2.
We can then repeat the argument for 72 and find periodic orbits of T2 with
period n for all 7 < m in the ordering (3.5). The thesis for T' follows.

If m=2"-m with r > 1, m odd and T admits no periodic orbits with odd
period, then we do one step as in the previous case, and we are reduced to
the case m = 2"~!.7m. So we can repeat the argument and obtain the thesis.
We remark that when m = 1, we only obtain periodic orbits with period
powers of 2. O



